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Received: 6 October 2025 Abstract: Materials science excels at collecting numbers but often loses sight of
Revised: 7 December 2025 the conditions, mechanisms, and provenance that give those numbers meaning. We
have vast databases, long papers, and a forest of plots, yet the bench-top questions
persist: what works here, now, under these conditions and why? This Viewpoint
argues for a practical posture: treat conditions as first principles, make mechanisms
explicit, and attach sources and uncertainty to every claim. We outline a plain work
loop, i.e., ask — retrieve — compute — validate — write back, that increases
learning speed without requiring “hero” datasets or black-box models. We
demonstrate how these habits are applied in practice across catalysis, solid-state
batteries, and hydrogen storage, and we highlight platform design choices (e.g.,
DigMat Platform) that enforce them. The goal is not fireworks, but fewer wrong
turns: fairer comparisons, predictions tied to the exact world they apply to, and
decisions that withstand daylight.
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1. From Piling up Numbers to Asking Better Questions

We long treated data like “ore” [1]: we dug it up, stacked it, and hoped value would appear by sheer volume.
It rarely does. Real lab questions are local and conditional: Why does this surface wake up only at high pH? Why
does a half-cell result fade inside a real device? If we can change only two knobs before lunch, which two should
they be? Those questions never felt “big”, so we assumed the answers would be easy. They are not. Numbers
without context rarely provide clear guidance on what to try next.

Vague questions—“Does catalyst A beat B?”—invite confident but unhelpful answers. Precise questions
carry the context that makes answers actionable: “At pH 13, with this electrolyte, under this transport regime, does
catalyst A outperform B at a given overpotential?”. Concurrently, when precise questions meet emerging
techniques, LLM-enabled retrieval/reasoning [2] and generative design frameworks [3], the benefits become
apparent when embedded in a condition-first, provenance-aware practice. Precision is not pedantry; it is how we
avoid comparing apples to something that merely looks like an apple.

While the community has rightly embraced FAIR principles (Findable, Accessible, Interoperable, Reusable)
to organize data, we argue that accessibility alone is insufficient for reasoning. FAIR ensures a number can be
found; it does not ensure the number is physically valid for a specific inference context. Standard databases often
treat data as static records. In contrast, we propose a dynamic paradigm termed “Condition-First Reasoning”,
where physical mechanisms and environmental constraints are hard-coded into the retrieval and inference logic.
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This shift is critical to prevent Al models from hallucinating in “Out-of-Distribution” (OOD) regions, a challenge that
metadata tagging alone cannot solve.

2. Conditions Are Not Footnotes

Many repositories record what we tested, but often forget the specific conditions under which it was done.
That is how “apples-to-apples” usually becomes “apples-to-something-that-looks-like-an-apple”. Electrolyte,
potential or current mode, pH, film thickness, surface state, stirring or flow, temperature, pressure: these are not
afterthoughts buried in the supplement. They are the stage on which the play happens. If you move the stage, the
same script gives a different story.

Imagine a student reading two papers that both claim “excellent stability”. One ran at 25 °C in a calm beaker;
the other at 60 °C under flow. The charts look similar; the realities are not. When a database treats conditions as
first-class, the student no longer needs detective work. They can filter by the world they care about, not the one a
figure silently assumed.

In this Viewpoint, “treating conditions as first principles” means that environmental variables such as pH,
temperature, pressure, applied potential, mass-transport regime, and surface state are treated as primary inputs that
define the validity window of any descriptor, mechanism, or prediction. These conditions are embedded directly
in the query structure and modeling feature space, constraining inference in the same way that boundary conditions
constrain a differential equation. A prediction is therefore considered valid only when its provenance vector
matches the query condition vector. This practice prevents out-of-distribution extrapolation and ensures that
comparisons remain tied to the physical world in which they are meant to hold.

3. Make Mechanism Visible

Mechanism turns lists into stories. In practice, we reason through a web of descriptors and limits, including
adsorption, coverage, barriers, rate-determining steps, phase stability, defects, and mass transport limits. Each one
matters only within a window. If we hide those links, it is easy to sound convincing for the wrong reason.

Let us consider the oxygen reduction reaction (ORR) [4]. A simple descriptor might explain a trend at one
pH and fail at another when surface coverage flips or mass transfer takes over. When the chain is explicit; this
holds at high pH because this intermediate dominates and the transport cap moves here; we can argue less and
test faster. A claim you cannot trace is not a claim; it is a hunch.

4. Multi-Scale Integration

Mechanisms extend beyond the microscale: they must be visible across scales. From atomic adsorption to
macroscopic degradation, each layer limits couple tightly. Al platforms should build in multi-scale mappings, like
linking DFT barriers to battery cycle fade, otherwise paper mechanisms never become real experiments.

5. Provenance, Not Performance

Science is full of confident sentences. Confidence is cheap; provenance is expensive and worth it. Every
answer should carry its sources, assumptions, and error bars. “Most promising” means little unless it also says
“according to these papers, under these windows, with these knobs, within this uncertainty”. This is not red tape;
it is a time saver. Provenance turns debates into choices: if we disagree, which assumption should we flip first?
What measurement would settle it by Friday? Provenance reduces the drama and amplifies the signal-to-noise ratio.

6. A Plain, Workable Loop

Once we accept that context and mechanism matter, the workflow becomes simpler and calmer.

We begin with a compute-ready question that has explicit conditions. We pull only evidence that matches the
conditions. We run the calculation that the mechanism asks for, not the one that happens to be convenient. We test
on a clear system, something robust and boring, before chasing complexity. Then we write the results back,
including failures, so tomorrow search begins wiser than today.

Nothing here is glamorous, and that is the point. The loop is designed to reduce waste. It does not promise
breakthroughs on demand; it promises fewer wrong turns. The full workflow is summarized visually in Figure 1,
which illustrates how questions, evidence, computation, validation, and “write-back” interact in a closed feedback
system to progressively reduce uncertainty.
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Figure 1. The Reasoning Loop for Materials Data. Instead of linearly piling up data, the workflow follows a closed
loop: (1) Ask: Questions define explicit environmental conditions (e.g., pH, T) upfront. (2) Retrieve: Only
provenance-matched evidence is pulled; incompatible data is filtered out. (3) Compute: Al models are constrained
by physical mechanisms (e.g., thermodynamic limits) rather than pure statistical extrapolation. (4) Validate:
Predictions are tested in the exact physical context defined in step 1. (5) Write Back: Both successes and failures
are logged with their specific conditions and uncertainties, refining the system’s memory for the next cycle.

7. Learning Honestly in Messy Systems

Real materials behave like real life: coupled, noisy, and full of surprises. Interfaces are not ideal;
manufacturing introduces constraints that no chart predicted; degradation appears after the tenth cycle and then
persists. In this setting, the aim should be modest and practical: compare fairly, predict in context, and decide with
costs and risks accounted for.

When we connect this discipline to routine automation, such as simple synthesis, standard diagnostics, and
quick-turn tests, it becomes a bench-side companion. Not a blinking dashboard, not a “black box”, just a system
that remembers, checks, and nudges.

8. The OOD Trap in Al-Empowered Materials Design

Al-empowered materials design almost always faces a common pitfall: the uncertainty of out-of-distribution
(OOD) predictions. Existing databases are filled with known materials, those mediocre, even “poor” performers,
that form the model training distribution. But what we truly seek is the realm of excellence: the “blank zone” of
high capacity, low cost, and ultra-stability, where data points are scarce. When models extrapolate to these
unknown regions, biases naturally swell, a seemingly “optimal” prediction may just be a blind extension of low-
performance trends, leading to wasted experiments and false positives.

This is not the “fault” of Al, but a reflection of data nature: history favors the readily available losers over
the rare winners. The remedy lies in honestly acknowledging OOD: attach distribution confidence intervals to
predictions, and prioritize physical mechanisms to constrain models (like thermodynamic limits) over pure data
fitting. At the same time, introduce active learning loops, letting the system generate high-value experiment
suggestions targeted at OOD regions, and write back after validation, so the blanks gradually fill, and predictions
grow reliable. In the end, this strengthens the original loop: not just asking “what is optimal”, but “under OOD,
how inaccurate is this optimal, and why?”.

9. Platforms as Habits: The DigMat Example

Platforms matter only if they help us keep these habits. The Digital Materials Platform (DigMat:
www.digmat.org (accessed on 18 December 2025)), developed by Hao Li and colleagues at Tohoku University,
is one representative example. Its design choices are straightforward: place conditions alongside composition, not
beneath it; maintain a living map of mechanisms and descriptors; ensure every answer includes sources and
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uncertainty; and log every outcome back into the system. To support this condition-first posture, the platform
organizes its data in a structured schema rather than a flat table. Each record links a material system to a condition
vector that specifies parameters such as pH, temperature, pressure, applied potential, transport regime, and surface
state. Properties are associated with mechanism labels that indicate the relevant operating regime, and every entry
carries explicit provenance including source identifiers and uncertainty.

The DigMat platform then applies the same rhythm in three areas. In DigCat (catalysis: www.digcat.org
(accessed on 18 December 2025)) [5-7], pH, potential, and transport are built into the way we ask and answer, so
predictions are tied to microkinetic reasoning before an experiment starts. In DigBat (solid-state batteries:
www.digbat.org (accessed on 18 December 2025)) [8,9], ion transport and interfacial compatibility coexist with
conductivity, which prevents “paper wins” that fail upon contact. In DigHyd (hydrogen storage: www.dighyd.org
(accessed on 18 December 2025)) [10], the ranking balances capacity, kinetics, cycling, and cost as actually tested,
not as marketed. Pilot-scale results are allowed to correct earlier optimism. None of these tries to crown a winner.
It tries to keep our bets honest.

This condition-first ethos shines in hydrogen storage platforms like XPEAK [11] and Cat-Advisor [12] for
catalysis, FIND [13] for alloying, all anchored in the open Digital Hydrogen-S platform [14] (digital-
hydrogen.com/storage (accessed on 18 December 2025)). The database curates preparation, characterization, and
performance data across Mg-based, AB, and related systems, enabling automated literature benchmarking for fair
comparisons. Crucially, these implementations demonstrate that enforcing logic yields performance gains that
standard models cannot match. XPEAK uses more than 2000 MgH, XRD fingerprints to predict dehydrogenation
peaks (R? = 0.86); this precision was achieved by strictly anchoring predictions to valid experimental domains,
whereas unconstrained models often fail to distinguish signal from noise. Similarly, Cat-Advisor curates 809
catalysts via LLM (R? > 0.91), using genetic algorithms not just to optimize, but to align predictions with physical
validity windows. FIND integrates over 6000 records with variational autoencoders to optimize plateau pressures,
enthalpies, and capacities in Mg-Ni-La-Ce systems. Together, these tools enforce precise questions, explicit
mechanisms, and traceable provenance, yielding contextual predictions and fewer wrong turns.

10. Keep Intuition—Add Memory

Good groups already behave this way in their heads. They carry context, prefer mechanisms over buzzwords,
distrust claims without lineage, and close loops fast. A shared system adds what people cannot: durable memory.
It preserves the awkward footnotes that would otherwise get lost; records why a nice alloy failed when the
electrolyte changed; saves negative results that never made a figure but would have saved a month; and lets a new
student inherit judgment, not just folders.

11. Human-Al Symbiosis

Memory augments intuition but does not replace it. Al excels at patterns; humans at “why not”. The ideal
collaboration: let Al propose hypotheses, humans inject domain knowledge (like tacit manufacturing constraints),
and together scrutinize OOD risks. Thus, the system is no oracle, but a sparring partner, helping us iterate faster.

12. Two Small Stories

ORR screen with context. A descriptor-only model applied to PtsNi returns a top-five list for ORR activity
(0.9 V overpotential); two fail in alkaline electrolyzer cells (pH 13, 60 °C flow) due to unaccounted HO* coverage
shifts promoting a peroxide pathway [15]. Adding microkinetic mechanisms reranks the list to favor HO*-tolerant
alloys like PtzCo; now four out of five achieve >80% stability over 100 h under the same regime. This shift proves
the viewpoint core: pH-transport context yields provenance-aware predictions, turning hunches into validated wins.

A “perfect” solid electrolyte. LisLasZr,01, (LLZO) performs well in room-temperature half-cells (25 °C,
10-14 S/cm conductivity, 100 cycles < 5% fade); yet in full stacks (80 °C, 1C rate), interfacial voids cause failure
after 20 cycles [16]. A platform prioritizing compatibility/processing alongside conductivity flags this risk pre-
build via DFT simulations. Not magic: condition-first retrieval and mechanism visibility ensure fair comparisons
across half- to full-cell realities and avoid “paper-to-device” pitfalls.

13. Lighter Questions, Heavier Answers

We often debate about the “right” algorithm or the “best” dataset. Those arguments cool down when we agree
to ask lighter questions with heavier answers. What holds, when, and why? If we can also say how we would try
to break the claim tomorrow, progress starts to feel real. The field gets quieter in a good way.
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14. Conclusions

Data-driven materials research should not mean “more data”. It should mean “better memory and better
manners”. Do not lose context. Do not imply mechanism; show it. Do not make anonymous claims; attach a source
and an uncertainty. When we work this way, we trade volume for traction: comparisons become fair; predictions
stay tied to the world they belong to; Decisions stand up in daylight. For instance, the DigMat platform is effective
because it encourages these habits without drawing attention to them. It takes a general posture: ask carefully,
compute honestly, validate early, write back always; and lets it play out in three different families of problems.
That is how a digital idea turns into ordinary practice: fewer grand promises, fewer wasted afternoons, more steady wins.

15. Outlook

There are a few things we can do right away. We can agree on standard reporting windows: shared,
unglamorous ranges of pH, temperature, flow, and current where results must be given. This single step would
shrink many cross-paper debates. We can also commit to writing back failures. Negative and unclear outcomes
are cheap lessons that a field often hides; sharing them openly saves everyone time. Besides, we can tie modest
automation to precise questions: rigs that test this claim under these conditions by Friday and log the outcome with
its uncertainty.

Looking further ahead, the most interesting aspect is the transfer without distortion. Methods that behave in
catalysis should be applied to batteries and hydrogen storage, and return with scars but still functioning. Three
branches of DigMat are one conversation about that transfer. Other groups will build different shapes and names.
If they keep the same habits: context first, mechanism explicit, provenance mandatory, loop closed, the labels will
matter less. What will matter is that the bench grows steadily calmer, choices grow more grounded, and the next
student starts one rung higher than the last.
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