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Abstract: This paper investigates the adaptive output feedback control issue for
an uncertain robotic manipulator (RM) under input and output triggering. Due to
the influence of the output-triggering mechanism, the output state becomes discrete,
thereby leading to the non-differentiability problem of the virtual controller. Therefore,
a first-order low-pass filter is constructed to generate a filtered version of the sampled
output with continuous differentiability for controller design. By utilizing the fuzzy
logic systems (FLSs), the unknown robotic dynamics are effectively approximated
without requiring the global Lipschitz condition. Subsequently, an adaptive fuzzy state
observer is developed based on the filtered output signal to estimate the joint velocity
of the RM. Based on the Lyapunov stability analysis method of the hybrid system,
it is rigorously proved that all signals of the RM are bounded, and Zeno behavior is
precluded. Furthermore, the designed event-triggered control protocol can ensure the
desirable system performance and reduce communication resources even under output
discretization. Finally, a two-link RM is employed to verify the effectiveness of the
control protocol.

Keywords: uncertain robotic manipulator; event-triggered control; adaptive filtering
method; fuzzy logic systems; output feedback control

1. Introduction

Because robotic manipulators (RMs) exhibit strong nonlinearity and high coupling characteristics, their control
problems have long been an important research topic in the field of automation. Moreover, RMs have been widely
applied in various fields such as industrial manufacturing [1,2], military [3,4], and medical care [5,6]. Therefore,
numerous researchers have conducted extensive and in-depth studies on the control methods of RMs. For example,
ref. [7] proposed an adaptive control strategy based on the forward stepping approach for the RM with closed
architecture. In [8], the sliding mode control method was developed to achieve trajectory tracking for the industrial
RM system. However, due to the high cost and susceptibility to noise interference of speed sensors, the speed
information is often difficult to measure directly, which makes all the above methods have significant limitations
in practical applications. In response to this issue, many studies [9–13] have developed the observer-based output
feedback control methods to estimate the system states under unmeasurable velocity conditions, thereby ensuring
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satisfactory control performance. Note that the above works all adopt continuous-time control strategies. With
the widespread application of communication networks in control systems, the traditional continuous-time control
and periodic sampling methods generate a large volume of redundant data due to frequent signal updates, thereby
wasting limited network bandwidth.

To save communication resources, the event-triggered control (ETC) methods [14–19] have been proposed.
Such control methods determine when to update control signals by setting triggering conditions, thereby significantly
reducing the number of transmissions. The ETC strategy with a dynamic event-triggered mechanism (ETM) was
proposed in [14] to solve the tracking control issue of the RM. Ref. [15] proposed the output feedback controller
based on the switching ETM for the nonlinear interconnected system. It is worth noting that the above works
only focus on the resource utilization in the controller-to-actuator channel. The information from the sensor-to-
controller channel is still continuously transmitted, and the control input is calculated based on continuous state
variables. In practical applications, RMs are often deployed in resource constrained scenarios, such as mobile
platforms [20] or remote operating systems [21]. Due to limited battery power and communication bandwidth,
continuous communication from the sensor to the controller is difficult to achieve. Especially when the system state
changes rapidly, frequent transmissions not only waste resources but may also cause problems such as redundant
control, transmission delays, and network congestion. Therefore, from the perspective of saving communication
resources, the ETM transmits data only when there is a significant change in the system state. This not only helps
to reduce the system burden but also improves resource utilization while ensuring control performance. Thus,
introducing the ETM on the sensor-to-controller channel has important practical significance.

Based on the above analysis, many state-triggering and output-triggering control strategies have been proposed
by scholars [22–26]. To achieve the trajectory tracking of the surface vessel, the model-based state-triggering
control method was developed in [22]. Based on event-sampling states, ref. [23] proposed the adaptive fuzzy
ETC scheme for the nonlinear multi-agent systems. However, the works in [22,23] failed to solve the problem of
non-differentiability in virtual controllers. Due to the introduction of the ETM into the sensor-to-controller channel,
state variables become discontinuous sampled values, resulting in the virtual controllers no longer being continuous.
Traditional backstepping methods cannot calculate their derivatives, which may cause unacceptable jumps at the
triggered moments. To address this issue, ref. [24–26] introduced the dynamic surface control (DSC) methods to
avoid taking derivatives of virtual controllers. Although considerable progress has been made in the design of
differentiable virtual controllers, these methods are limited to systems whose functions satisfy global Lipschitz
conditions or whose unknown parameters are restricted to known compact sets, rendering them unsuitable for direct
application to the RM system.

By using the dual asynchronous ETMs of the system output and the control input, this paper designs an
adaptive ETC scheme for an uncertain RM system, which does not require continuous data transmission throughout
the entire control process. The contributions of this paper are summarized as follows:

(i) Regarding the existing ETC strategies [14–17] that do not consider the resource consumption issue in the
sensor-to-controller channel, this paper designs the dual asynchronous ETMs combining the system output
and the control input, thereby further saving communication resources. Moreover, compared with the methods
in [24,27,28], the proposed control scheme reduces the number of ETMs and communication channels, further
lowering the computational and communication burdens of the system.

(ii) In this paper, a low-pass filter is constructed to take the sampled output as input and generate a necessarily
differentiable filtered variable for controller design. Based on this, under the DSC framework, the filtered
variable is employed to design the differentiable virtual controller, effectively avoiding the design difficulties
caused by the non-differentiability of traditional virtual controllers [22,23].

(iii) FLSs are utilized to approximate the unknown nonlinear dynamics of the RM and integrated into the state
observer to enable estimation of the unmeasurable joint velocity. Compared to the assumption in [24,26,27]
that the nonlinear term must satisfy the global Lipschitz condition, this paper relaxes this requirement, thereby
expanding the applicability of the control method. In addition, based on the stability lemma of the hybrid
system, the boundedness of all signals in the RM is rigorously proved.

Notation 1. In this paper, N, Rn, and Rn×m denote the set of natural numbers, the n-dimensional real vector
space, and the set of n×m real matrices, respectively. diag{γ1 . . . , γn} is the diagonal matrix, and ∥x∥ stands for
the Euclidean norm of the vector x ∈ Rn. The symbols I and 0 represent the identity matrix and the zero vector
(matrix) with appropriate dimensions, respectively. The minimum and maximum eigenvalues of a matrix are denoted
by λmin(·) and λmax(·). Besides, υ(t+) = lima→0+υ(t+ a) and ∆υ(t) = υ(t+)− υ(t) are defined.
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2. Problem Statement and Preliminaries

The n-link uncertain rigid RM dynamic equation is described as follows:

M0(q)q̈+C0(q, q̇)q̇ +G0(q) + ∆N(q, q̇, q̈)

+γ(t− Tf )φ(q, q̇) = τ, (1)

where q, q̇, q̈ ∈ Rn are the joint position, velocity, and acceleration vectors, respectively. M0(q) ∈ Rn×n,
C0(q, q̇) ∈ Rn×n and G0(q) ∈ Rn denote the nominal values of the inertia matrix, Coriolis and centripetal matrix,
and gravity vector, respectively. τ ∈ Rn is the torque input. φ(q, q̇) represents the process fault component in the
RM. γ(t− Tf ) is the time curve of the fault, where Tf is the time when the fault occurs. ∆N(q, q̇, q̈) stands for the
uncertain dynamics of the RM, which arise from the uncertain matrices ∆M(q), ∆C(q, q̇), ∆G(q), and the friction
vector F (q, q̇) ∈ Rn. ∆N(q, q̇, q̈) can be formulated as

∆N(q, q̇, q̈) = ∆M(q)q̈ +∆C(q, q̇)q̇ +∆G(q) + F (q, q̇). (2)

The matrix γ(t− Tf ) is given by

γ(t− Tf ) = diag{γ1(t− Tf ), . . . , γn(t− Tf )}, (3)

where γi(·) is defined as follows:

γi(t− Tf ) =

{
0, t < Tf

1− e−ℓi(t−Tf ), t ≥ Tf

(4)

where ℓi > 0 denotes the development of the fault. If ℓi is small, the initial fault is postulated. In contrast, if ℓi is
large, the abrupt fault exists.

Property 1. [29]: The matrix M0(q) is symmetric positive definite and bounded, with its bound denoted by
∂a < ∥M0(q)∥ < ∂b, where ∂a and ∂b are positive constants.

Property 2. [29]: There exist positive constants ∂c, ∂d, and ∂e such that ∂c <
∥∥M−1

0 (q)
∥∥ < ∂d and ∥G0(q)∥ ≤

∂e < ∞.

Lemma 1. [30]: By exploiting the universal approximation capability of the FLS, we have

f(x) = WTS(x) + ε(x), ∀x ∈ Ωx, (5)

where f(x) denotes an unknown nonlinear function vector, and W = [W1(x), . . . ,Wl(x)]
T ∈ Rl×n is the

weight matrix. The vector S(x) = [S1(x), . . . , Sl(x)]
T ∈ Rl stands for the fuzzy basis function, satisfying

0 < ST (x)S(x) ≤ 1, and l is the number of fuzzy rules. The approximation error ε(x) is bounded by ∥ε(x)∥ ≤ ε̄,
where ε̄ is an unknown constant.

Now, let x1 = q = [x1,1, . . . , x1,n]
T and x2 = q̇, the system (1) is rewritten in the following form:{

ẋ1 = x2,

ẋ2 = Γτ + f(x) = Γτ +WTS(x) + ε(x),
(6)

where f(x) = M−1
0 (x1)[−C0(x1, x2)x2−G0(x1)−∆N(x1, x2, ẋ2)−γ(t−Tf )φ(x1, x2)] represents the uncertain

term, x = [xT
1 , x

T
2 ]

T ∈ R2n, and Γ = M−1
0 (x1).

3. Event-Triggered Control of Robotic Manipulator System

3.1. Dual Event-Triggered Mechanisms

To maximize the conservation of communication resources, this paper designs the ETMs separately on the
sensor-to-controller and controller-to-actuator channels, thereby ensuring good tracking performance while reducing
communication frequency. The output ETM is designed as follows:

tm+1
x,i = inf{t > tmx,i : |x1,i(t)−

⌣
x1,i(t)| ≥ δx1}
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⌣
x1,i(t) =x1,i(t

m
x,i), ∀t ∈ [tmx,i, t

m+1
x,i ) (7)

where i = 1, 2, . . . , n, m ∈ N, and tmx,i denotes the triggering instant for the sensor output with t0x,i = 0. δx1 is the
positive constant. ⌣

x1,i represents the sampled value of x1,i at tmx,i, and it remains unchanged during the interval
t ∈ [tmx,i, t

m+1
x,i ).

The following control input ETM is constructed:

tm̄+1
τ,i = inf{t > tm̄τ,i : |ui(t)− τi(t)| ≥ δτ}

τi(t) =ui(t
m̄
τi), ∀t ∈ [tm̄τ,i, t

m̄+1
τ,i ) (8)

where m̄ ∈ N, and tm̄τ,i is the input triggering instant with t0τ,i = 0. δτ > 0 denotes the triggering threshold, and the
control input ui will be designed later in (20).

To solve the issue of virtual controllers being non-differentiable due to the instantaneous jump of ⌣
x1,i at time

tmx,i, the following first-order filter is introduced:

η1ẋ1f,i + x1f,i =
⌣
x1,i, ∀t ∈ [tmx,i, t

m+1
x,i ) (9)

where η1 > 0 is the filter gain, and x1f,i is the filtered version of ⌣
x1,i.

Remark 1. In the general backstepping design framework, the differentiation of virtual controllers relies on the
derivatives of state variables. However, under the output ETM, only the sampled output ⌣

x1 is available, which
renders the constructed virtual controller non-differentiable and thus hinders the direct application of the recursive
backstepping method. To overcome the above challenge, this paper designs the filter (9) to generate the continuously
differentiable variable x1f to replace ⌣

x1.

3.2. Fuzzy State Observer Design

Since only the state x1 is measurable, an adaptive fuzzy state observer is designed based on the filtered sampled
output x1f to estimate the unmeasurable state vector as follows:{

˙̂x1 = x̂2 +K1(x1f − x̂1),

˙̂x2 = Γτ + ŴTS(x̂) +K2(x1f − x̂1),
(10)

where x̂i = [x̂i,1, . . . , x̂i,n]
T ∈ Rn (i = 1, 2) is the estimate of xi. K1 = diag{k1,1, . . . , k1,n} and K2 =

diag{k2,1, . . . , k2,n} are the observer gains. Ŵ denotes the weight estimate of W and x̂ = [x̂T
1 , x̂

T
2 ]

T ∈ R2n.
To facilitate the observer analysis and the controller design, the following error variables are defined: ei =

xi − x̂i(i = 1, 2) are the observer errors; W̃ = W − Ŵ is the weight estimation error; π1 = x1f − ⌣
x1 denotes the

filter error; µ1 = x1 −
⌣
x1 is the measurement error.

It can be derived from (6) and (10) that{
ė1 = −K1e1 + e2 −K1(π1 − µ1),

ė2 = −K2e1 −K2(π1 − µ1) + W̃TS(x̂) + θ(x̂, x) + ε(x),
(11)

where θ(x̂, x) = WTS(x)−WTS(x̂).
From (11), the derivative of e = [eT1 , e

T
2 ]

T ∈ R2n is given as follows:

ė = Ae+ F −KB, (12)

where

A =

[
−K1 In×n

−K2 0n×n

]
, B =

[
π1 − µ1

π1 − µ1

]
,

K =

[
K1 0n×n

0n×n K2

]
, F =

[
0n×1

F1

]
,

F1 =W̃TS(x̂) + θ(x̂, x) + ε(x).

By appropriately choosing the gains K1 and K2, the matrix A is Hurwitz. Consequently, there exist the
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symmetric positive definite matrices P and Q such that ATP + PA = −Q.
Define the Lyapunov function as

Ve = eTPe. (13)

Taking the derivative of (13), one yields

V̇e =2eTP (Ae+ F −KB)

≤− eTQe+ 2∥e∥∥P∥∥F∥+ 2∥e∥∥P∥∥K∥∥B∥

≤ − (λmin(Q)− 5)∥e∥2 + ∥P∥2||W̃ ||2

+ 4∥P∥2∥K∥2πT
1 π1 + Ξ, (14)

where Ξ = 2∥P∥2∥W∥2 + ∥P∥2ε̄2 + 4n∥P∥2∥K∥2δ2x1. To derive (14), the inequalities 2∥e∥∥P∥∥K∥∥B∥ ≤
∥e∥2 + 4∥P∥2∥K∥2πT

1 π1 + 4n∥P∥2∥K∥2δ2x1 and 2∥e∥∥P∥∥F∥ = 2∥e∥∥P∥∥F1∥ ≤ 4∥e∥2 + ∥P∥2||W̃ ||2 +

2∥P∥2∥W∥2 + ∥P∥2ε̄2 are used.

3.3. Adaptive Controller Design

In this section, the backstepping-based adaptive control method is proposed for the RM system (1). Under the
framework of DSC, the following coordinate transformation is defined:

z1 =x̂1, (15)

z2 =x̂2 − ω2, (16)

β =ω2 − α1, (17)

where z1 and z2 are the stabilizing errors. β denotes the boundary error. The signal ω2 is generated by passing the
virtual controller α1 through the following filter to address the “explosion of complexity” issue encountered in the
traditional backstepping method:

ξω̇2 + ω2 = α1, ω2(0) = α1(0), (18)

where ξ > 0 is a design constant.
Then, the virtual controller α1, the control input ui and the adaptive law ˙̂

Wi are designed as

α1 =− (c1 + 0.5)z1 −K1(x1f − x̂1), (19)

u =Γ−1[−z1 − (c2 + 1)z2 − ŴTS(x̂)

−K2(x1f − x̂1) + ω̇2], (20)
˙̂
Wi =Γi(z2,iS(x̂)− σiŴi), i = 1, . . . , n, (21)

where c1, c2 and σi are the positive design constants. Γi ∈ Rl×l > 0 denotes a diagonal adjustment matrix.
Selecting the total Lyapunov function as

V =Ve + Vπ1 + Vz1 + Vz2 + Vβ

=eTPe+
1

2
πT
1 π1 +

1

2
zT1 z1

+

(
1

2
zT2 z2 +

1

2

n∑
i=1

W̃T
i Γ−1

i W̃i

)
+

1

2
βTβ. (22)

Before conducting the stability analysis, it should be noted that due to the discontinuity of the sampled output
⌣
x1 at the triggering instants, the closed-loop system involving the variable π1 exhibits a jump set, rendering the
traditional continuous-time Lyapunov stability analysis methods inapplicable. To address the above issue, this paper
introduces the concept of a hybrid system model (see Definition 1), which is commonly used to analyze complex
systems involving both continuous dynamics and discrete events. The model typically consists of two types of
equations: (i) the differential equation that describes the system evolution over continuous time intervals; (ii) the
difference equation that characterizes the system behavior at discrete triggering instants.
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Definition 1. [31]: The hybrid system H(C,Ec(υ), D,Ed(υ)) is represented as a quadruple, where C ⊂ Rn is the
flow set, and the state υ ∈ Rn evolves continuously within this set according to the differential equation υ̇ = Ec(υ);
D ⊂ Rn represents the jump set, where the state υ ∈ Rn undergoes discrete updates via the differential inclusion
∆υ(t) ∈ Ed(υ). The vector fields Ec(υ) : Rn → Rn and Ed(υ) : Rn ⇒ Rn correspond to the flow map and the
set-valued map, respectively.

Lemma 2. [32]: If there is a function V (υ) such that the following relationships hold:

ℏa(||υ||) ⩽ V (υ) ⩽ℏb(||υ||), υ ∈ {C ∪D} (23)

∂V (υ)

∂υ
Ec(υ) <0, υ ∈ C (24)

∆V (υ) ⩽0, υ ∈ D (25)

where ℏ(·) is a class K∞ function, then the nonlinear hybrid system is ultimately bounded.

Define υ = [υT
1 , υ

T
2 ]

T ∈ R(l+6)n as the augmented error, with υ1 = [zT1 , e
T
1 , π

T
1 ]

T ∈ R3n and υ2 =

[zT2 , e
T
2 , β

T , W̃T
i ]T ∈ R(l+3)n, i = 1, . . . , n. Then, the hybrid system is defined as follows:

H(C,Ec(υ), D,Ed(υ)) =

{
υ̇ = Ec(υ), υ ∈ C

∆υ = Ed(υ), υ ∈ D
(26)

where Ec(υ) ∈ R(l+6)n and Ed(υ) ∈ R(l+6)n will be defined afterward.
Based on Lemma 1, the analysis of the system (26) is divided into the following two cases:

Case 1. Define the flow set C as

C =
{
υ ∈ R(l+6)n

∣∣∣|x1,i −
⌣
x1,i| < δx1

}
, (27)

where the set C characterizes the dynamic behavior of the error υ within the time interval defined by the adjacent
triggering instants tmx,i and tm+1

x,i , i.e., for all t ∈ [tmx,i, t
m+1
x,i ).

The evolution of the augmented error is described by υ̇i = Ec,i(υi) for i = 1, 2. The first n rows of Ec,i(υi)

describe the evolution of stabilizing errors, which are derived as{
ż1 = x̂2 +K1(x1f − x̂1),

ż2 = Γτ + ŴTS(x̂) +K2(x1f − x̂1)− ω̇2.
(28)

The rows from (n+ 1) to 2n describe the dynamics of the observer errors, as given in (11). The derivatives of
π1 and β, given by the rows (2n+ 1) to 3n, are expressed as follows:

π̇1 =ẋ1f = −π1/η1, (29)

β̇ =− β/ξ + ρ(·), (30)

where ρ(·) = −α̇1, and the value of ⌣
x1 stays constant in the set C.

The last (nl) rows describe the dynamics of the weight estimation error W̃i, based on (21), as follows:

˙̃Wi = − ˙̂
Wi = −Γi(z2,iS(x̂)− σiŴi). (31)

Case 2. The jump set D within the hybrid system (26) is characterized as

D =
{
υ ∈ R(l+6)n

∣∣∣|x1,i −
⌣
x1,i| ≥ δx1

}
, (32)

where this set defines the jump map of the error υ at the triggering instants, for all t = tmx,i.
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For ∀t = tmx,i, we can obtain

[
υ1(t

+)

υ2(t
+)

]
=

[
[zT1 (t), e

T
1 (t), (x1f (t)−

⌣
x1(t

+))
T
]
T

υ2(t)

]
. (33)

As a result, one gets

∆υ1(t) =[0T
n×1,0

T
n×1, (

⌣
x1(t)−

⌣
x1(t

+))T ]T , (34)

∆υ2(t) =[0T
n×1,0

T
n×1,0

T
n×1,0

T
i ]

T , i = 1, . . . , n, (35)

where the vector 0i is the l-dimensional zero column vector.

3.4. Stability Analysis

Theorem 1. Consider the n-link uncertain RM (1) with the dual ETMs (7) and (8). The designed state observer (10),
the virtual controller (19), the actual controller (20), and the adaptive law (21) can guarantee that all signals are
uniformly bounded under bounded initial conditions, and Zeno behavior is precluded.

Proof. To be consistent with the two cases in the controller design section, the stability analysis is also divided into
Cases 1 and 2.

In the Flow Set C (Case 1): The derivative of Ve has been provided in (14). Based on (29) and (30), V̇π1 and
V̇β are derived as follows:

V̇π1 =− 1

η1
πT
1 π1, (36)

V̇β =− 1

ξ
βTβ + βT ρ(·)

≤− (
1

ξ
− 1

2
)βTβ +

1

2
ρT (·)ρ(·). (37)

By differentiating Vz1 and combining (19) and (28), one gets

V̇z1 =zT1 (z2 + β + α1 +K1(x1f − x̂1))

≤− c1z
T
1 z1 +

1

2
βTβ + zT1 z2. (38)

According to (20) and (31), the time derivative of Vz2 is obtained as follows:

V̇z2 =zT2 (Γu+ ŴTS(x̂) +K2(x1f − x̂1)− ω̇2)

+ zT2 Γ(τ − u)−
n∑

i=1

W̃T
i Γ−1

i
˙̂
Wi

=zT2 Γ(τ − u) + zT2 (−z1 − c2z2 − z2)

−
n∑

i=1

W̃T
i (z2,iS(x̂)− σiŴi). (39)

Using Young’s inequality yields

zT2 Γ(τ − u) ≤ ∥z2∥∥Γ∥
√
nδ2τ ≤1

2
zT2 z2 +

n∂2
d

2
δ2τ , (40)

−
n∑

i=1

W̃T
i (z2,iS(x̂)− σiŴi) ≤

1

2
zT2 z2 +

n∑
i=1

σi

2
∥Wi∥2

−
n∑

i=1

σi − 1

2
W̃T

i W̃i. (41)
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Substituting (40) and (41) into (39), we get

V̇z2 ≤− zT1 z2 − c2z
T
2 z2 −

n∑
i=1

σi − 1

2
W̃T

i W̃i

+
n∂2

d

2
δ2τ +

n∑
i=1

σi

2
∥Wi∥2. (42)

Following the common procedure of the DSC stability analysis [24,25,33], the compact set Ψ1 is introduced
to support the subsequent proof: Ψ1 = {V (t) ≤ U1} ∈ R6n+nl with U1 being a positive constant. Since the set Ψ1

is compact, ||ρ(·)|| has a maximum value ρ∗.
Further, combining (14), (36)–(38), and (42) produces

V̇ ≤− (λmin(Q)− 5)∥e∥2 − (
1

η1
− 4||P ||2||K||2)πT

1 π1

− c1z
T
1 z1 − c2z

T
2 z2 −

n∑
i=1

(
σi − 1

2
− ||P ||2)W̃T

i W̃i

− (
1

ξ
− 1)βTβ + Ξ⃗

≤−AV + Ξ⃗, (43)

where

A =min

{
λmin(Q)− 5

λmax(P )
, 2[(1/η1)− 4||P ||2||K||2], 2c1, 2c2,

σi − 1− 2||P ||2

λmax(Γ
−1
i )

, 2[(1/ξ)− 1]

}
,

Ξ⃗ =Ξ +
1

2
ρ∗2 +

n∂2
d

2
δ2τ +

n∑
i=1

σi

2
∥Wi∥2.

From the inequality (43), it follows that V̇ (t) < 0 on V (t) = U1 provided that A > Ξ⃗/U1. Therefore, the set
Ψ1 is positively invariant. That is, if V (tmx ) ≤ U1, then V (t) ≤ U1 holds for all t ∈ [tmx , tm+1

x ), indicating that the
variables e1, e2, z1, z2, π1, and W̃i(i = 1, . . . , n) are bounded. Based on the coordinate transformation, it can be
further shown that all signals remain bounded within the flow set C.

In the Jump Set D (Case 2): Due to the fact that e1, e2, z1, z2, and W̃i(i = 1, . . . , n) stay invariant for all
t = tmx,i, they still maintain boundedness in the set D. According to (22), (34) and (35), it follows that

∆(Ve + Vz1 + Vz2 + Vβ) = 0, (44)

∆Vπ1(t) =Vπ1(t
+)− Vπ1(t)

=
1

2
πT
1 (t

+)π1(t
+)− 1

2
πT
1 (t)π1(t)

⩽− Vπ1(t) + ℓ, (45)

where ℓ denotes the upper bound of Vπ1 in the set C.
Then, we can get

∆V (t) ⩽ −Vπ1(t) + ℓ, ∀t = tmx,i. (46)

From (46), we conclude that when Vπ1(t
m
x,i) > ℓ, ∆V (tmx,i) < 0 holds. Therefore, provided that Vπ1(t

m
x,i) > ℓ

is ensured, it follows from Lemma 1 that all signals are bounded in the jump set D. To satisfy the aforementioned
prerequisite, the upper bound of Vπ1 in the set C should be appropriately reduced, which can be achieved by
properly tuning the design parameters such as control gains and filter gains.

Next, we prove that the proposed dual ETMs do not exhibit Zeno behavior. Define µ1,i(t) = x1,i(t)−
⌣
x1,i(t)

for t ∈ [tmx,i, t
m+1
x,i ), and ℘i(t) = ui(t)− τi(t) for t ∈ [tm̄τ,i, t

m̄+1
τ,i ), whose derivatives are given by

d

dt
|µ1,i(t)| =sign(x1,i(t)−

⌣
x1,i(t))ẋ1,i(t) ⩽ |ẋ1,i|, (47)
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d

dt
|℘i(t)| =sign(ui(t)− τi(t))u̇i(t) ⩽ |u̇i|. (48)

Since all signals of the system are bounded, there exist positive constants λ̄x,i and λ̄u,i such that |ẋ1,i| ⩽ λ̄x,i

and |u̇i| ⩽ λ̄u,i hold. Due to µ1,i(t
m
x,i) = 0 and ℘i(t

m̄
τ,i) = 0, we can obtain that tm+1

x,i − tmx,i ⩾ δx1/λ̄x,i > 0 and
tm̄+1
τ,i − tm̄τ,i ⩾ δτ/λ̄u,i > 0. Thus, Zeno behavior is precluded. To sum up, the proof of Theorem 1 is completed.

4. Simulation Results

To examine the effectiveness of the proposed control method, this paper considers the following two-link RM:

M(q) =

[
ϕ1 + 2ϕ2 cos(q2) ϕ3 + ϕ2 cos(q2)

ϕ3 + ϕ2 cos(q2) ϕ4

]
, (49)

C(q, q̇) =

[
−ϕ2 sin(q2)q̇2 −2ϕ2 sin(q2)q̇2
ϕ2 sin(q2)q̇1 0

]
, (50)

G(q) =

[
ϕ5 cos(q1) + ϕ6 cos(q1 + q2)

ϕ6 cos(q1 + q2)

]
, (51)

where ϕ1 = (m1 + m2)l
2
1 + m2l

2
2 + J1, ϕ2 = m2l1l2, ϕ3 = m2l

2
2, ϕ4 = ϕ3 + J2, ϕ5 = (m1 + m2)l1 g, and

ϕ6 = m2l2 g. For i = 1, 2, mi = mo,i + ∆mi, li = lo,i + ∆li, and Ji = Jo,i + ∆Ji denote the ith link
masses, lengths and inertia values, respectively. mo,i, lo,i and Jo,i are the nominal values, where mo,1 = 1.2 kg,
mo,2 = 0.8 kg, lo,1 = 1.0 m, lo,2 = 0.7 m, Jo,1 = 5.2 kg · m2 and Jo,2 = 5.2 kg · m2. ∆mi, ∆li and ∆Ji are the
uncertain parameters.

To better reflect the actual situation, we introduce the following expressions for the friction and the process fault:

F (q, q̇) =

[
0.5q̇1 + 1.2 sin(2q1) + 0.5 cos(q̇1)

0.3q̇2 + 2.4 sin(q1)− 0.5 cos(q̇2)

]
, (52)

φ(q, q̇) =

[
4 sin(q1q2) + 8 cos(q1q̇2)− 2

2 cos(q1q2)− 6 sin(q̇1q̇2) + 4

]
, (53)

γ1(t− 10) =

{
0, t < 10

1− e−8(t−10), t ≥ 10
(54)

γ2(t− 10) =

{
0, t < 10

1− e−10(t−10). t ≥ 10
(55)

The FLS employs the following set of membership functions:

µF l
i
(xi) = exp

(
− (xi + 5− l)

2

4

)
, (56)

where l = 1, . . . , 9 and i = 1, . . . , 4.
The design parameters and initial conditions of the controller are listed in Table 1. The simulation results

are displayed in Figures 1–8. The torque inputs under ETM are shown in Figure 1, and their amplitudes remain
within a reasonable range. Figure 2 depicts the norms of the adaptive laws. Figures 3 and 4 illustrate the trajectories
of the observer errors e1 and e2, respectively, demonstrating that the designed observer effectively estimates the
joint velocity of the RM. Figures 5 and 6 show the triggering moments and intervals for the system output, while
Figures 7 and 8 present those for the system input. The above results verify the effectiveness of the proposed
control method.

Table 1. Design Parameters and Initial Conditions.

x1(0) = [0, 0]T , x2(0) = [0, 1]T , x̂1(0) = [0.5, 0.5]T , x̂2(0) = [0, 0]T ,
x1f (0) = [0.2, 0.2]T , ω2(0) = [0, 0]T , Ŵ1(0) = Ŵ2(0) = 09×1,
c1 = 0.05, c2 = 100, η1 = 0.1, ξ = 2.5, r1 = 2, r2 = 2,
K1 = diag{50, 50}, K2 = diag{100, 100},
Γ1 = 50 I9×9, Γ2 = 50 I9×9, δx1 = 0.4, δτ = 1.6.
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Figure 1. Torque inputs τ1 and τ2.
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Figure 2. Norms of adaptive laws.
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Figure 3. Observer errors e11 and e12.
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Figure 4. Observer errors e21 and e22.
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Figure 5. Interevent times of x1,1.
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Figure 6. Interevent times of x1,2.
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Figure 7. Interevent times of τ1.
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Figure 8. Interevent times of τ2.

5. Conclusions

This paper has proposed an effective control protocol with input and output triggering for an uncertain RM. To
tackle the challenge caused by the discontinuity of the sampled output, a first-order filter was designed to generate a
continuously differentiable filtered version. Then, considering that the velocity signal could not be measured, a
fuzzy state observer was designed, which achieved excellent state estimation without requiring the RM information.
In addition, the Lyapunov stability theorem of the hybrid system was used to prove the boundedness of the system
signals. Finally, the derived control protocol was verified by the two-link RM. In future work, we will further
investigate the effectiveness of the proposed control method for RMs under general sensor fault models.
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