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Abstract: Interpersonal relationships are building blocks of human social groups and
resulting social behavior. The dynamics of social groups can be critical in understanding
the origins of polarization, cooperation, and conflict. Social balance is a classical notion
that defines which configurations of pairwise relationships among three individuals are
favored. Previous studies have found that the principle of social balance, when applied
to all triads within a population, leads to two mutually antagonistic groups that are
internally friendly or one giant friendly group. However, this body of theory assumes
interpersonal relationships are binary—either friendly or unfriendly. Neutrality adds
another layer of complexity. We develop and analyze two models of social balance
with interpersonal relationships that are positive, negative, or neutral. We find that the
population almost never reaches a fully polarized or paradise state: even though the
overall frequencies of triad configurations reach an equilibrium, individuals continue
to update their interpersonal relationships over time. We also identify the equilibrium
triad frequencies, based on a mean-field analysis. Subsequently, we derive an effective
mapping between these two alternative models, which clarifies a nontrivial connection
between distinct social processes. We also find a phase transition when some parameters
are small, which characterizes the emergence of a giant component connected by active
(i.e., friendly or unfriendly) links; and we discuss how the critical regime is relevant in
a growing society. Our analysis helps fill a theoretical gap in the literature, and reveals
qualitatively new dynamics that arise from a theory of triadic social interactions.

Keywords: interpersonal relationships; balance theory; signed networks; complex
networks; triadic interactions

1. Introduction

Friends often know each other. This is certainly not a coincidence: we tend to meet new people through mutual
friends. Having common enemies also tends to make our bonds stronger. When two individuals get along, it is also
perhaps because one of them has noticed the other being on good terms with some other person, whether a stranger
or a friend of theirs; after all, reputations are critical in building new social relationships in most societies. In short,
our friendship circles grow and evolve not necessarily based on pairwise interactions but often through third parties;
therefore, the connections become correlated in one way or another.

Empirical friendship networks have been studied for decades [1]. Over the past few decades, the interplay
between networks and social dynamics has become a central theme in the study of social physics, as the amount of
available large-scale data has increased rapidly. For example, opinion dynamics on networks is a cornerstone of this
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research area [2—6]. In parallel with these directions, research has also shown how networks of interpersonal
relations develop and organize themselves, especially in online settings, which has focused scientific attention on
the dynamics of underlying (signed) social networks themselves—not just how information and opinions change
on them. Empirical examples include the study of the famous karate club network [7] and many other social and
online networks [8—14], also extending to international relations [15, 16], workplace environments [17], and even
fairy tales [18]. Signed networks also seem to play a role in ecological contexts, such as inter-species relationships
in plants [19] and social network structures in mammals [20], as well as in pet-related services [21]. The most
canonical theory overarching these studies is the so-called balance theory.

Balance theory, which dates back to the original work by psychologist Heider [22], posits how friendships
or enmities between three individuals should be structured. This basic theory has led to extensive theoretical and
empirical work on such triadic interactions. The theory is based on three fundamental premises: relationships are
mutual; in binary form (either friendly or unfriendly); and a group of three individuals formed by three mutual
relationships (i.e., a triad) is either balanced or imbalanced. The theory posits that a triad with an odd number of
friendships (one or three) is balanced, whereas one with an even number (zero or two) is imbalanced. The balanced
triads are assumed to be favored over the imbalanced ones, perhaps through some dynamic process that updates one
of the pairwise relationships from either friendly to unfriendly, or vice versa. In short, the theory of social balance
succinctly captures the intuition behind sayings like “a friend of a friend is also a friend” and “an enemy of a friend
is also an enemy”.

When the simple principle of social balance is extended to a complete graph, it predicts that a signed graph
is balanced either when all edges are friendly (paradise) or when it partitions the nodes into two subsets that are
internally friendly but mutually unfriendly (polarized state) [23,24]. This classical theory is based on a static
view, i.e., only considering whether or not, and how many of the triads, are balanced in a given network. More
recently, dynamical models of social balance have been introduced, where the number of imbalanced triads decreases
as link signs flip during every update event, until no imbalanced triads remain. Antal et al. explored two such
discrete dynamical models in their seminal work [25]. Particularly relevant to our study is the model of “local
triad dynamics”, where a randomly chosen triad is updated based on its sign configuration. In a finite population,
this process eventually achieves complete balance, regardless of initial conditions, producing either a paradise
state (everyone is friends with everyone else) or a polarized state (two subgroups are each internally friendly but
unfriendly to each other), although the time required to reach these equilibria can grow rapidly with population size.
Notably, a mean-field approximation alone cannot predict the long-term polarized outcome in a finite population,
because full polarization arises from symmetry breaking and it violates the mean-field assumption. Therefore,
researchers have applied the theory of random walks to characterize the long-term dynamical behavior, including
the absorption time for reaching balance.

Those previous models demonstrate dynamical pathways to complete balance, which is a satisfying result as it
provides a clear basis for understanding how balance can be achieved from random initial conditions. Nevertheless,
discrete models lack a mechanism that can describe gradual changes in the strengths of interpersonal relationships.
To this end, continuous models (both in time and state) have been proposed, which can account for incremental
changes in relationship strengths driven by the tendency to achieve higher overall balance [26-28]. Even in the
continuous setting, though, a fully balanced state is still the primary outcome, regardless of the model details.
In other words, even when links can assume any real value, these models are constrained in such a way that the
interactions end up in complete balance, i.e., they are still within the realm of classical social balance theory.

There has been an attempt to extend the classical framework of balance theory to ternary interpersonal
relationships—that is, relationships that can be either positive, negative, or inactive [29]. Extending balance theory
in this direction deserves more attention because triads with all three links active (either positive or negative) are
much less frequent in empirical data. For example, in political networks, such fully active triads comprise only a
few percent of all triads [29]. Moreover, from a theoretical perspective, adding neutral links to a signed networks
provides an analytical advantage by making the network a complete graph [29].

A recent study has also found that neutrality plays a pivotal role in international relations and argues that the
traditional balance theory should be reformulated to accommodate this effect [30]. The “agentic zero” is a neutral
relationship between two parties, also referred to as the “Switzerland option”. The absence of ties may arise as
a strategic choice, or by a convention that discourages tension, or simply because forming ties is costly. While
the role of null ties is commonly addressed in studies using blockmodeling [31], they are, in the study of social
balance, often dismissed as “missing data” or sometimes treated as negative ties by assuming that a lack of a positive
sentiment implies a negative one [30]. It would seem preferable to extend the theory of social balance to incorporate
the possibility of neutral ties, including in dynamical theories of link formation and dissolution.
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When pairwise links are ternary (positive, negative, or neutral), we must consider ten possible configurations
of triads (see Figure 1) and develop a new, revised concept of balance suitable under this extended framework. One
model proposed in a previous study [29], which combines both theoretical and empirical approaches, is based on a
prescribed Hamiltonian, consisting of three-edge, two-edge, and one-edge interaction terms as well as a “chemical
potential” term. This means that it assumes energy levels a priori to determine the “stability” of all triads. However,
such notions of “social stability” would benefit from some mechanistic explanation, especially one that accounts for
how they arise from individual-level interactions and decision-making in a bottom-up manner. Therefore, in this
paper we aim to develop a theory of social balance with three-state interpersonal relationships, using a framework
based on microscopic, individual-level stochastic processes. This can be seen as a direct extension of the work by
Antal et al. [25] to accommodate neutral, as well as positive and negative, interpersonal relationships.

AT A
a'a A A

Figure 1. Ten types of triads in our extended social balance theory, where a third type of interpersonal relationships
is introduced in addition to the traditional friendly and unfriendly—namely, the neutral (or inactive) relationship.

Here, we develop two models of social balance that accommodate neutral relations. We study the equilibrium
states of these models using a mean-field analysis and associated approximations. As a result, we discover that
these alternative models can be mapped to each other, under certain parameter conditions. This is noteworthy
especially because it uncovers a nontrivial relationship between distinct social processes. Importantly, we find that
polarized communities generally do not arise in either of these models. This implies that polarization in the classical
case might be in part attributed to the binary representation of interpersonal relationships. As opposed to rapid
absorption into balance, we observe transient dynamics at the microscopic scale (constantly “rewiring” links), while
mesoscopic quantities fluctuate around equilibrium values. Quite different from the classical model, we also identify
a phase transition that characterizes the emergence of a giant component connected by active links at equilibrium.
We then highlight the tradeoff between these two regimes, one in which a giant component emerges and the other in
which it does not. On the one hand, forming a giant component, roughly of the size of the population, requires many
instances of activating an inactive link, which in real life should be costly—especially so when the population size is
significantly large. At the other end of the spectrum, a group of isolated individuals would not function properly as
a society. Therefore, the in-between scenario, i.e., the critical point of the phase transition, makes the best of both,
offering a robust advantage for societies to ensure both feasibility and marginal network connectivity, even when the
population size is large. Our results provide a basis for a qualitatively new, and empirically motivated, extension to
social balance, suggesting new directions for research at the interface of balance theory, complex networks, and
social dynamics.

2. Models
2.1. Focal-Link Model

We consider an undirected network of /V individuals fully connected via L = (J;' ) pairwise relationships. We
represent individuals and pairwise relationships by nodes and links, respectively. Each link is assigned a discrete
value at each timestep ¢, denoted x;;(t) € {—1,0, 1} (note that x;;(t) = x;;(¢) forall 4,5 € {1,..., N}). In this
ternary setting, triads Ag and Ag are the only balanced configurations, as in the classical setting.

During each update step, we randomly pick a focal link {¢, j} and an individual & so that all three individuals
are distinct. Then, we update, or “reassess,” x;; based on the current signs of x;; and x;. If both x;;, and x}; are
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zero, we set either x;; = 1 or x;; = —1 with equal probability €; we set it to zero with the remaining probability
1 — 2e. If exactly one of z;;, and xy; is positive (negative), we set x;; = 1 (z;; = —1) with probability §; we set it
to x;; = 0 with the remaining probability 1 — J. If both z;;, and x; are nonzero, we update x;; with probability n
in such a way that the updated triad is balanced; we set it to zero with the remaining probability 1 — 7. We randomly
and independently pick a focal link and associated triad, and then update (or reassess) the link, L times during a unit
time. This ensures that on average every link is updated once per unit time. Figure 2 illustrates the definition of the
above mentioned update events, each of which we refer to as an e-, J-, or n-event. The parameters are restricted to
the ranges € € (0,1/2] and 0,7 € [0, 1]. Note that we have omitted the case ¢ = 0 to avoid ill-posedness. Because
the update process focuses on link reassessment, we refer to this model as the focal-link model.

0 (prob:1-2e) 1
W +1 (prob:e) A — {(11 (me: 1) "
Ep— —1 (prob:¢€) Ep— (prob:n
+ 0 0 (prob:1-95) + + 0 (prob:1-n)
a +1 (prob: ) an +1 (prob :n)
_ 0 0 (prob:1-96) _ _ 0 (prob:1-n)
an —1 (prob:9) an +1 (prob:n)

Figure 2. Update rules for the focal-link model. The solid and dashed lines represent a focal and its neighboring

links, respectively. These update events are called either -, J-, or n-events, depending on the number of active
neighboring links within the chosen triad.

Let us briefly interpret the parameters of the focal-link model (see Table 1). In what follows, we call a link
inactive if it is zero; otherwise, active. Similarly, an active (inactive) triad has all three links active (inactive),
whereas a semi-active triad has one or two links active. Furthermore, given a chosen triad with a focal link, we
refer to the other two links forming the triad together as the neighboring links. The parameter € represents the
likelihood of activating a focal link after reassessing it—regardless of its current status—when both neighboring
links are inactive. It is therefore the probability that a focal link gets activated when it is reassessed based on the
current statuses of the two inactive neighboring links. The parameter § indicates the likelihood that a focal link
becomes active, with the same sign as that of the only active neighboring link. We refer to this process as (signed)
preferential link reassessment. In other words, § is the probability that the only active neighboring link activates the
focal link, i.e., how likely it “attracts” another active link. The parameter n represents the likelihood that two active
neighboring links—regardless of their signs—Ilead to a balanced triad by adjusting the sign of the focal link. That is,
with probability 1), a balanced state is favored over a relaxed one in which the focal link is inactive.

The focal-link model consists of only three parameters and essentially three types of events (namely, e-, J-,
and n-events), and therefore is developed to be as concise as possible. Nevertheless, in exchange for simplicity, it
suffers an apparent limitation: every update is based purely on reassessment of a focal link, without accounting
for the current sign of the focal link. This model can produce somewhat unrealistic behavior when the results are
interpreted in a social context. In particular, the focal-link model allows for a positive link to turn negative and
vice versa in a single update event, even when the triad is not fully active (i.e., when the triad includes at least
one inactive link). We call such events irrational updates (see Figure 3 for an example; see also the horizontal
transitions in the middle two rows in Figure S1). In a real-life social scenario, by contrast, it seems more reasonable
for the inactive link in such a triad to become active and produce a balanced triad. To address the deficiency of
irrational updates in the focal-link model, we next develop an alternative model, called the focal-triad model.

Table 1. Description of the parameters.

Model Parameter Description
€ Random reassessment
Focal-link 0 Preferential reassessment (signed)
n Tendency toward balance
é Random activation
K Social contagion
Focal-triad ! .. g
Ko Social isolation
i Tendency toward balance
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Figure 3. An example of an irrational update via a j-event, in which A4 transitions to A3 under the focal-link
model. The dashed and solid lines represent the focal-link and its neighboring links, respectively. The focal link flips
sign as a result of a preferential reassessment event. We call this type of event irrational because it is a complete
reversal of link’s sign that does not produce a balanced triad. Such irrational updates can also occur between triads
Aj and Ag, between Az and Ay, and between A4 and A5 in the focal-link model (see Supplemenatry Materials
Figure S1). The focal-triad model removes the possibility of irrational updates to a focal triad (see Figure 4).

1-2¢

0 0

1= (x5 + ) = (K + k)
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+,<)0 l—A]+K)

S A /X
A-A - A-A

1—1\7 1—)](1—K)0 1-x, 0 -1 -x)

Figure 4. Update rules for the focal-triad model. In contrast to the focal-link model (Figure 2), the focal-triad

T+

model directly specifies the probabilities of transitioning between different types of triads using four parameters: €,
K1, k2, and 7). Note that k1 + k2 < 1 is required. The parameter p corresponds to the propensity for friendly links
in Ref. [25]; in this paper, we fix p = 1/3. Irrational updates do not occur within any focal triad in the focal-triad
model, whereas they can occur in the focal-link model (cf. Supplemenatry Materials Figure S1).

2.2. Focal-Triad Model

Now we develop our second model, where updates are based on triads as opposed to links—i.e., it is defined
directly through the transition probabilities among the ten triad types. Figure 4 illustrates the definition of our second
model, where four parameters, € € (0,1/2], k1, k2 € [0, 1], and 7 € [0, 1], are introduced. In each update event, we
pick a focal triad at random and change one of its link signs based on the transition probabilities specified in the
diagram. We iterate this event L times, which constitutes a unit time. We call this model the focal-triad model.

In line with our expectation, the focal-triad model, by design, successfully reduces the frequency of such
irrational updates (see Section 3.2.3 and S5 in Supplemenatry Materials for details), although it comes at the cost of
an increased number of model parameters. Finally, we note that horizontal transitions at the bottom row should not
be dismissed because all those triads are fully active, hence the classical balance theory holds (see Figure 4).

Whereas the focal-link model has the advantage of fewer parameters, the focal-triad model allows for a more
comprehensible interpretation of its parameters. In particular, € is the probability of activating a fully inactive triad;
k1 is the probability of further activating a triad that is only partially active (semi-active), a process we refer to as
social contagion; ko is the probability of inactivating a fully or semi-active triad, a process we call social isolation;
and 7 is the probability that an imbalanced triad favors transitioning to balance over inactivating one of its active
links (see Table 1 for a complete list). In addition, this model formulation removes the possibility of an irrational
update occurring in any focal triad.
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3. Results
3.1. Equilibrium States

Figure 5 shows the time evolution of the frequencies of all types of triads, obtained by stochastic simulations, in
both the focal-link and focal-triad models (dashed lines). Both models reach an equilibrium state after a sufficiently
long period of time. Notably, the stationary values do not depend on the initial conditions; we suspect that there is
only one stable equilibrium state that the system ends up in, irrespective of (non-pathological) initial conditions.
To study this rigorously, we develop a mean-field theory by extending the method used in a previous study [25]
(see Supplemenatry Materials for details). Our analytical treatment is as follows: we first derive closed-form rate
equations from the stochastic process; under certain parameter conditions, we identify approximate equilibrium
rescaled frequencies of all types of triads; and we confirm the results by solving the rate equations numerically and
comparing them to stochastic simulations. We apply this method in both the focal-link and focal-triad models.
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Figure 5. Time-series frequencies of all types of triads: stochastic process (solid, fluctuating), rate equations (solid,
smooth), time-averaged data (dashed, straight). The results show that the symmetry ansatz, Equation (1), holds
approximately at equilibrium in both models, given these parameter regimes. Parameters: (a) e = 0.0005, § = 0.5,
n = 0.5 (focal-link model), (b) ¢ = 0.0015, k1 = 0.5, k2 = 0.5, = 0.5 (focal-triad model). Initially, most links
are inactive, with a small equal fraction of positive and negative links. Note that in the stochastic models, a unit time
consists of L update events. Since updating a link causes /N — 2 triads to be updated as well, each triad is updated
three times on average per unit time (L(N — 2)/ (1;7 ) = 3). Therefore, we have rescaled time as ¢ — 3t in the rate
equations to maintain consistency with stochastic simulations.

Let Ay, denote the type-k triad (k = 0, ..., 9), where the numbering is the same as in Figure 1. We represent
its corresponding frequencies by ny, which equilibrate eventually. In Supplemenatry Materials we derive rate
equations that govern the time evolution of these ten variables. The mean-field predictions, obtained by numerically
solving the rate equations, are in fact consistent with stochastic simulations, even in a relatively small population
of size N = 512 (see Figure 5), confirming the validity of our analytical approach. This is important in particular
because there is no guarantee that a mean-field approach using rate equations works as intended; indeed, it fails to
predict the qualitative long-term behavior of a finite population (which includes a completely balanced outcome)
in traditional models of social balance with binary relations [25]. In fact, the mean-field theory also fails in the
classical scenarios (e.g., ¢ = 1/2 and 6 = n = 1 in the focal-link model; é = 1/2, k; = 7 = 1, and k3 = 0 in the
focal-triad model), in agreement with the prior work. However, these classical scenarios appear to be the only cases
in which the mean-field approximation fails in our models, i.e., measure-zero cases in the full parameter space.

To predict equilibrium triad frequencies, we should identify the stationary state of the rate equations. Without
simplifying them further, however, it is almost certainly not possible to obtain analytical expressions because there
are ten highly nonlinear coupled differential equations. Therefore, we develop an approximation method that can
significantly reduce the complexity of the ODE system, given certain conditions on the parameters.

3.2. Mean-Field Analysis

We analyze the equilibrium frequencies using the rate equations derived in Supplemenatry Materials. Let
ri = ny/no denote the rescaled triad densities, where the index goes over k = 1,...,9. At equilibrium, when a
majority of links are inactive—which we call the activation-limited regime—we assume sign symmetry in frequency,
i.e., exchanging positive and negative links does not affect the frequencies of the triads that transform into each
other under the exchange, that is,

ny =mng, N3 =ns, nNg=T"ng, N7=TNg. (D
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This ansatz is based on the observation that transition probabilities between different types of triads are arranged in
a symmetric way. These probabilities can be derived from the focal-link model, whereas the focal-triad model is
directly specified by them (see Supplemenatry Materials Figure S1 for the focal-link model and Figure 4 for the
focal-triad model). We expect Equation (1) to be approximately true in the activation-limited regime because (i) the
transition probabilities between triad types are defined in a horizontally symmetric way (left-right symmetric) except
in the bottom row of triads; and (ii) most links are inactive so the bottom row triads are infrequent. Consequently,
we expect, in the activation-limited regime, that

ng > Ny, Ng > Nz, N4, N5 > Ne, N7, N8, Ny, ()

i.e., there will be a hierarchy of equilibrium triad densities in which less frequent types of triads are most often
generated from triads of more frequent types. We should also expect a hierarchy of relaxation times: ng reaches
equilibrium faster than n; and ns; ny and ng reach equilibrium faster than ng, n4, and ns; and ns, ng, and ns reach
equilibrium faster than ng, n7, ng and ng.

Let pg/ denote the probability that a link changes its sign from o to ¢’ due to an update event. Since we assume
sign symmetry at equilibrium, we also expect that the following relations hold:

+ — 0 — +. (3)

These originate from the assumption that triad frequencies are symmetric with respect to positive and negative
signs. Provided that we have pg/ for all ¢ # o either derived from the model or by definition (see Supplemenatry
Materials), Equations (1) and (3), taken together, imply that

2713 = Ny, 377,6 =nr. (4)

These equations hold in both the focal-link and focal-triad models, which suggests that the mean-field system can
effectively be described by only four variables—namely, ng, n1, ns, and ng—in the activation-limited regime (see
Supplemenatry Materials for details).

To summarize, our aim is to identify approximate solutions to the rate equations when a majority of links
are inactive, assuming sign symmetry at equilibrium. Symmetry conditions in equilibrium triad frequencies and
transition probabilities, as well as the hierarchy conditions in frequency and timescale, follow immediately from the
assumption on sign symmetry at equilibrium in the activation-limited regime. In Supplemenatry Materials we show
that this approach indeed yields reasonably good approximate solutions in a self-consistent way.

3.2.1. Focal-Link Model: Scaling Behavior

Next we analyze approximate equilibrium frequencies and their scaling behavior. First, the activation-limited
regime requires ¢ < 1/2. Then, we find that r; approximately satisfies the following quadratic equation (see
Supplemenatry Materials for details):

4(1 — 2€)r7 + 3(1 — 2e — 26)r; — 9e = 0, 5)

whose positive solution is

6e
(1 —2¢—238) + /(1 — 2¢ — 26)2 + 16(1 — 2¢)e

(6)

T =

Notice that Equation (5) does not depend on 7. This implies that in the activation-limited regime, 1 does not affect
equilibrium frequencies of top row triads, namely, ng, n1, or no, up to leading order. In other words, when most
links are zero, the classical balance theory contributes only a negligible amount to the equilibrium frequencies of
triads of type Ag, A1, and As—those in which more than half the links that form a triad are inactive.

We also expand Equation (5) in power series of €, which leads to the following expression (see Supplemenatry
Materials for a derivation):

255 +O(€) §<1/2,

’[‘ ey
I [t [3(2“2‘” +14 25?;1} e+ 0(e)  5>1/2.

)
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Notably, Equation (7) implies that as ¢ — 0, 1 tends to

0 5<1/2,

T1 =y 3(26—1
@D 5> 12,

®)

implying a phase transition at 6 = 1/2 in the small-¢ limit. Note that the power-series expansion fails when § = 1/2;
however, Equation (5) is sufficient to derive the limiting behavior as ¢ — 0 in the critical case.

Naively, Equation (8) can be inferred by directly substituting ¢ = 0 into Equation (5). However, it is instructive
to expand the quadratic equation in power series of €, as in Equation (7), to obtain the limiting behavior. In fact, it
is instrumental in deriving a nontrivial asymptotic mapping of parameters between the focal-link and focal-triad
models (Section 3.2.3).

Subsequently, we can obtain approximate expressions for all 75, based on the hierarchy of relaxation times.
More specifically, r3 (hence r4 and r5) can be identified using 71 (Equation (6)); similarly, r¢ (hence r7, rg, and r9)
can be identified using r3, r4, and r5. In practice, however, obtaining r3 requires solving a cubic equation whose
solution is complicated and therefore anything but useful to write down in explicit form. Thus, we use symbolic
computations in PYTHON to determine all remaining rescaled frequencies, from r3 through r9 (see Supplemenatry
Materials for details). Combining our mean-field analysis and computational results, we find that the equilibrium
triad frequencies r, in the activation-limited regime depend upon parameters in the following way:

T1:T2:O(€a,

r3 =15 = 0(e®Y), 1y = 0(e?®), ©)
re =19 = O(e3%), 17 =r1rg = 0(e3%),
where the exponent o changes as
1 0~ 0,
a(d)=41/2 §=1/2, (10)
0 d=~1,

and the value of « drops sharply around 6 = 1/2 (see Figure 6). In fact, the §-dependence (Equation (10)) exhibits a
crossover phenomenon in the power-law e-scaling, when the exponent suddenly drops from 1 to 1/2 as § approaches
1/2 from below. The drastic change in the power-law exponent « around 6 = 1/2 in all variables strongly signifies
the phase transition at § = 1/2, which is already implied by Equation (8). We will demonstrate later that this
transition actually corresponds to the emergence of a giant component connected by active links. We finally note
that the e-scaling identified in Equation (9) is consistent with the assumption that the frequencies of triads located
lower in Figure 1 can be disregarded compared to those located higher, confirming post-hoc that our approach is
self-consistent in the activation-limited regime.

(%) (c) —e— Focal-link
10 =29y — = Focal-triad
3 X e X P k=0
10 —1 \
10 a.—.a.—-z:m:r_ﬂ--»_x% — k=1
“ = = Y — k=2
1076 e Rt — k=3
107 T k=4
10 k=5
k=6
(e) (6 — k=7
10° 10 {Ersoorrnorrzoet| — k=8
S O o o2 o Vo k=9
10 ol B 1
\ 10 ¢
=10 I B v S I E;
—6 1 T &
10 o A o3
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10 -2 ¢
10 6‘2/3
0 10* 10’ 10 10° 10 10’ 10 10° 10t 107 10" - 22
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Figure 6. ¢- or é- scaling of r; and ny at equilibrium, obtained numerically from solving the rate equations in the

subcritical (a,d), critical (b,e), and supercritical (c,f) regimes. Parameters: § = 0.4, n = 0.5 (focal-link model, (a,d)),
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6 = 0.5, 7 = 0.5 (focal-link model, (b,e)), § = 0.6, n = 0.5 (focal-link model, (c,f)), k1 = 0.4, ko = 0.6,
7 = 0.5 (focal-triad model, (a,d)), k1 = 0.5, k2 = 0.5, 7 = 0.5 (focal-triad model, (b,e)), and k1 = 0.6, k2 = 0.4,
7 = 0.5 (focal-triad model, (c,f)). These power-law behaviors can be consistently expressed in the hierarchical
forms described by Equations (9) and (15). Some triads have nearly identical frequencies, causing some lines to
overlap, as implied by Equation (1).

3.2.2. Focal-Triad Model: Scaling Behavior

We can likewise identify equilibrium rescaled frequencies in the focal-triad model. Using the same method,
we find that r; approximately satisfies the following quadratic equation (see Supplemenatry Materials):

Akor? 4 3(kg — k1)1 — 3€ = 0, (an

whose positive solution is

6¢
3(%2 — Iil) + \/9(/62 — H1)2 + 48K2€A.

12)

T =

We also expand r; in powers of € (see Supplemenatry Materials for a derivation), giving

ry = Tt T OE) F1 < R, (13)
Mwom) 4 1L O®E@) 1> ko

Equation (13) implies that a phase transition similar to the one identified in the focal-link model arises when k1 = Ko
(provided k2 # 0):

0 < Ko,
ﬁ%{ e (14)

3(k1—kK2)
BT K1 > Ka.

Further numerical results show the following scaling behavior with respect to parameters, clearly reminiscent of
Equation (9):

rs =15 = 0(%), ry=0(), (15)
)

where
1 K1 K Ka,
B(6) =41/3 K1 = Ka, (16)
O R1 > K2,

and (3 changes drastically when k1 = k2 (see Figure 6). We note that the derived quadratic equation does not predict
the critical exponent 3 = 1/3 (e.g., Equation (12) implies that 1 increases in the order of (é)l/ 2
which is inconsistent with the numerical results in Figure 6).

Finally, we note that Equations (9) and (10) (or Equations (15) and (16)) demonstrate that the results are
consistent with the assumption that equilibrium triad frequencies are hierarchically ordered, if 6 < 1/2 (or
R < 1/2). This implies that the activation-limited approximation maintains self-consistency within the subcritical
and critical regimes.

when k1 = Ko,

3.2.3. Asymptotic Mapping between the Focal-Link and Focal-Triad Models

Although developed from different philosophies, the strikingly similar scaling behaviors between the focal-link
and focal-triad models suggest an underlying connection between them. In fact, comparing the asymptotic behaviors
captured by Equations (7) and (13) suggests the following mapping between § and k1, K2 in the limit €, ¢ — 0:

(SNI%(KZl,K)Q), (17)

9 of 16



Goto et al. J. Soc. Phys. 2025, 1(1), 1

where

meg:%+@3£3 (18)
Note that we have identified the above mapping by comparing Equations (7) and (13) in the subcritical regime
since the supercritical regime does not align with the activation-limited regime. In the same spirit, though less
significantly, € ~ 3¢ is also obtained, constraining the relative rate at which e and € tend to zero.

Equation (17) may be crucial because § determines the strength of signed preferential reassessment, whereas &
facilitates social contagion or isolation, which activates or deactivates links regardless of the signs. This perhaps
implies that since link signs, once activated, are constantly getting “mixed,” it does not matter whether or not focal
and neighboring links exhibit sign correlation via single updates when it comes to equilibrium triad frequencies
because such one-time correlation vanishes in the long run. In short, this mapping suggests the strength of preferential
reassessment is analogous to the balance between social contagion and social isolation. To examine if the asymptotic
mapping works, we compared time-series data obtained from solving the rate equations corresponding to each
model, given that 0 = & and € = 3¢ are satisfied, and that € is small. Figure 7 shows that equilibrium values are in
excellent agreement between these two models, suggesting that they can indeed be mapped to each other via i. Note
that this only works up to the critical point; equilibrium triad frequencies do not align beyond the subcritical regime.

The hallmark of the focal-triad model is the absence of intentional irrational updates, meaning that the focal
triad never undergoes an irrational update event. However, irrational events can still happen incidentally: when a
link flips its sign from positive to negative and vice versa, irrational updates may occur in a non-focal triad in which
that link is also involved. Therefore, the actual number of irrational updates, whether intentional or incidental, is
contingent on the equilibrium triad frequencies of each model. In Supplemenatry Materials Section S5, we show that
the focal-triad model indeed substantially reduces the chance of such events in the activation-limited (or subcritical)
regime. Note that this does not extend to the regime where most links are active, because irrational updates rarely
occur in that scenario.

We have so far discussed how these two models are comparable, especially within the activation-limited
regime. This correspondence extends to the supercritical regime, where a majority of links are active. Figure 8
shows how the equilibrium triad frequencies change with respect to ¢ (or &), focusing on the following four triad
categories: inactive, semi-active, balanced, and unbalanced. Notably, Figure 8c shows that when 7 (or 7)) is close to
one, the semi-active triad frequencies increase with ¢ (or /) in the subcritical regime, and they decrease after § (or
k) surpasses the critical value. By contrast, all other triad frequencies—those of inactive, balanced, and unbalanced
triads—change monotonically, either decreasing or increasing with § (or <), across all panels. Again, these results
suggest that although the supercritical regime is beyond the asymptotic mapping we have identified earlier, the two
models exhibit similar behavior across all investigated regimes.

— Focal-link
————— Focal-triad

no

ni

na
n3

— m

ns

ne

triad frequency, ny
=

n

— ng

ng

0 100 200 300 400 500
time, ¢
Figure 7. Time-series data compared between the focal-link and focal-triad models under the identified mapping
(colors as in Figure 5). The equilibrium frequencies demonstrate an excellent agreement between them. Parameters:
e = 0.0001, € = 0.0003, § = k1 = 0.4, k2 = 0.6, n = 73 = 0.5. The above choice of parameter values satisfies
both & = ¢ and € = 3e. Note that some triads have nearly identical frequencies, causing some lines to overlap, as
implied by Equation (1).
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Focal-link
2 I Focal-triad
=} =} . .
g g inactive
& & iacti
15 S semiactive
$— $—
— A balanced
unbalanced

Figure 8. Equilibrium frequencies of inactive (three neutral links, no), semi-active (including one or two neutral
links, m1 4+ n2 + n3 + n4 + ns), balanced (ns + ng), and imbalanced (n7 + ng) triads, obtained by numerically
evolving the rate equations for a sufficiently long period of time. Parameters: (a) n = #) = 0.01, (b) n = ) = 0.5,
and (¢) 7 = 7 = 0.99. Notably, the effect of § and & on the aggregated frequencies of the semi-active triads (A4
through As) becomes non-monotonic, when 7 and 7 are close to one, respectively. Note that in the focal-triad model,
the equilibrium frequencies of semi-active triads are non-monotonic in 4 for all 7), whereas in the focal-link model,
the non-monotonicity appears and becomes pronounced as 7 increases to one. In contrast, the frequencies of inactive,
balanced, and imbalanced triads either increase or decrease monotonically with & (or &), regardless of the values of 7 (or
7)). Balanced and imbalanced triads are almost identically frequent across all these parameter regimes, making the blue
lines and circles overlaid with the red ones. We set ¢ = 10™° in the focal-link model, whereas in the focal-triad model,
¢=3x107% k1 =6, ke = 1 — K1 so that & = §. To avoid numerical instability, we imposed &, 4 < 1 in all panels.

Nonetheless, an important difference between these two models arises in the supercritical regime. In the
focal-link model, the non-monotonic effect of § is pronounced only when 7 is close to 1, whereas in the focal-triad
model, such effect is present regardless of the value of 7). The origin of this difference is not yet fully understood. In
Supplemenatry Materials Figure S3, we also show how the equilibrium triad frequencies change when both § and 7
(or & and 1) change continuously, given a small fixed € (or €).

3.3. Intuitions for §- and k-Transitions

We have analyzed the transition at § = 1/2 (or equivalently # = 1/2) using the mean-field approximation.
Here we provide a simple intuition for why and how it occurs (see Figure 9 for an illustration). Let us begin with
the focal-link model. Pick a A; generated through an e-event that occurs with a small probability. Then, consider
updating one of its inactive links through a §-event. When ¢ is fixed at some value, the qualitative behavior of the
system changes at 6 = 1/2. If 6 > 1/2, the likely outcome is that O(N) A; triads are generated (as well as O(1)
As) per d-event because most triads should be of type A at the time of the update event, provided that € < 1/2.
This also applies for A,. Since n1 and no increase on the order of IV every time the above event occurs, the top row
triads A; and As as well as Ag quickly disappear; hence, the process is exponential. If § < 1/2, on the other hand,
the likely outcome is that O(1) A; and A, triads are generated per J-event, which does not increase but rather
maintains their overall frequencies (see Figure 9a).

(@) (b)

+ 0 + 0
1 + 0 . 1 1
Generates O(N) triads A >k >k

5 >E/v 0 Y‘
N + +
6< E A Generates O(1) triads A (A_ /%'Kl Q‘ (A_

0 0

0
Figure 9. Illustration of the intuitions for the transition at § = 1/2 in (a) the focal-link model, and # = 1/2 in (b)

the focal-triad model.

In the focal-triad model, the intuition is slightly different, due to structural differences underlying these models.
A key observation in this case is the probability influx between adjacent triads in the diagram (Figure 4), and the
overall behavior of the system is primarily governed by the flow between A; and A4 and between A and Ay
(see Figure 9b). When social contagion is equally as strong as social isolation, i.e., k1 = ko, the upstream and
downstream flows balance out exactly between those two rows in Figure 1. This is because, given é < 1/2, if the
downward flow becomes more dominant than the upward one, i.e., k1 > k2, O(N) Ay (Ay) triads, in addition to
O(1) A, triads, will be generated from a Ay (A1) triad, much more than a Ay triad generates O(IN) Ay or As
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triads. Since this process is recursive, the frequency of inactive links diminishes, again, exponentially. If x4 is less
than ks, the instance of A; (or As) turning into Ay is less likely to occur than the other way around. Therefore,
A; or A, triads generated by é-events do not lead to an exponential, chain reaction that generates O(N) Ay triads.
Note that once most triads are of type Az, Ay, or Az, the lowest downstream flows, the so-called social balance
effect, causes them to transition to bottom row triads, give that k; > Ko.

3.4. Largest Connected Component

A more intuitive way to understand the dynamics of our models is to focus on active links, instead of ten
different types of triads, and to consider them as social networks evolving via triadic interactions. One of the
fundamental quantities that characterize static social networks is the size of the largest connected component. In
network science, a weakly connected component of an undirected graph refers to a set of nodes in which any two
of them are connected through one or more undirected edges in that graph [32]. To avoid unnecessary wordiness,
however, we refer to it as a connected component hereafter, and we are primarily interested in the size of the largest
connected component. When it spans most of the network, it is called a giant connected component. More precisely,
a giant connected component is a connected component whose size grows proportional to the number of nodes [32].
Here we focus on the largest positively connected component, i.e., the largest component connected by positive
links, so that the largest connected component size is meaningful in social contexts and therefore provides more
plausible insight.

To see how this quantity changes with parameters, we measured the size of the largest positively connected
component averaged over a sufficiently long period of time, for different values of € and § (or € and &; see Figure 10).
In both models, the largest connected component size, denoted S, dramatically increases at 6 = 1/2 (k = 1/2) for
small € (€)—roughly from O(1) to O(N). This implies that the phase transition we have identified in our mean-field
analysis corresponds to the emergence of a giant connected component in the population. On the other hand, along
the e-axis (€é-axis), the decrease in the size of the largest connected component is quite gradual until the parameter
becomes very small; in other words, S approaches zero increasingly as € — 0.

(@) (b)
1.00 1.00

1.00 0.75 1.00 0.75
0.75 0.75
0.50 0.50 © 0.50 0.50 »
0.25 0.25 0.25 0.25
0.00 0.00

1.0 1.0 7020

~ . -40
10740 ¢ e 10740

0.0 0.0

Figure 10. The largest connected component size in networks of size N = 512, obtained by time-averaging the data
over the last half of 2000 Monte Carlo simulation steps, and rescaled by the network size IV, in (a) the focal-link
model and (b) the focal-triad model. The - and é-axes are in logarithmic scale. Both the vertical axis and colorbar
represent the size of the largest connected component. A giant (positively) connected component emerges at § = 1/2
and £ = 1/2. This corresponds to the phase transition identified using the mean-field analysis in Section 3.2.
Parameters: n = 0.5, 7 = 0.5.

3.5. The Critical Regime: Connected but Not Demanding

We have identified the emergence of a giant connected component in both models by time-averaging simulation
data, and it is well-predicted by the mean-field analysis as well as more intuitive arguments. However, a key question
remains: what does the emergence of a giant connected component imply in the context of social networks and
human behavior? How is it relevant to any real social systems? Here we provide a simple insight regarding why the
critical regime is the only scenario that is both attainable and functional in real social situations.

We focus this discussion on the focal-link model. As € tends to zero, a phase transition occurs at § = 1/2 in the
rescaled size of the largest connected component size, rapidly increasing from 0 to 1. We define individual cognitive
load by the per-capita number of “activation events” during a unit time. By activation event we refer to any update
event that changes the sign of a link from O to either 1 or —1. This means that two unacquainted or “mutually
neutral” individuals become either friends with or enemies of each other. Getting to know someone requires a
nontrivial amount of time and effort, imposing some natural limit to the number of well-developed mutually friendly
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(or unfriendly) relationships an individual can maintain. In other words, activating a link is costly [30]. We explore
how much per-capita cognitive load is required in our framework, particularly in the large-/V limit, provided the
equilibrium triad frequencies identified in Section 3.1.

Let £ be the mean individual cognitive load per unit time. Counting all instances of activating inactive links
and dividing the number by population size N lead to

£=25 (o +17) (19)
where L = (g ) represents the total number of links and p° is the density of neutral links (see Supplemenatry
Materials for notations and expressions for pg ). The prefactor accounts for the fact that each link update involves
two individuals. Assuming that ¢ < 1/2, we substitute Equation (9) into Equation (19) to find an approximate
formula for £. When § = 1/2, £ scales as O(eN ), which means that setting ¢ = O(N) ensures that £ be bounded
even when the population size N increases. When § > 1/2, on the other hand, £ grows as O(N), which becomes
unbounded as N tends to infinity, regardless of how we set € or any other parameters. When ¢ < 1/2, however,
the expected size of the largest connected component size is O(1), according to Figure 10. Therefore, the critical
regime is the only scenario where individual cognitive load can be bounded—when ¢ is set to decrease on the
order of 1/N—and a giant connected component can still emerge in the limit of a large population size. A similar
argument applies for the focal-triad model. This suggests that only the regime where § = 1/2 and e = O(N 1)
produces a (constantly evolving) society that can prevent individual cognitive load from increasing limitlessly while
still achieving decent inter-individual connectivity in a growing population.

4. Discussion

We have developed and analyzed two dynamic models of social balance where interpersonal relationships
assume three possible states. One of our key findings is that, contrary to the classical case with a finite population,
polarization does not occur in these extended models, except in measure-zero cases that correspond to the classical
scenario (see also Supplemenatry Materials Figure S5, which shows that initial complete balance can collapse into
transient dynamics in near-classical yet distinct settings). Mean-field theory successfully predicts equilibrium triad
frequencies in both models, which is not the case for traditional models with a finite population where interpersonal
relationship states are binary. There is also an asymptotic mapping between these two alternative models, admitting
one-to-one correspondence at the level of equilibrium triad frequencies. Subsequently, we have identified the
emergence of a giant component connected by active links when a (normalized) parameter exceeds a critical value.
Using our mean-field analysis, we have also interpreted the critical regime in terms of per-capita cognitive load:
the critical regime can both achieve nontrivial inter-individual connectedness and keep individual cognitive load
bounded at the same time, even as the population size grows infinitely.

When all the (normalized) parameters are set to their maximum values, both of our models recover the classical
scenario, in which case they eventually reach fully balanced states (paradise or full polarization) regardless of
initial conditions, in agreement with previous studies. Otherwise, however, transient dynamics dominate: the
population almost never reaches a fully polarized or paradise state, and even though triad frequencies reach stable
equilibria, any given link between a pair of individuals continues to stochastically switch signs over—that is, a
dynamic steady state. Therefore, although it is natural to extend traditional models of social balance to accommodate
neutral links, this extension can completely alter the long-term dynamical outcomes. This basic finding hints at
something more fundamental to balance theory: the binary representation of interpersonal relationships may underlie
societal polarization caused via social balance. When divided societies occur, it may be due to significantly strong
inter-individual connectivity as well as the tendency to simplify situations, such as favoring friends or enemies over
more nuanced, complex, and yet, sometimes, unsettling relationships between two individuals.

Neutrality may alternatively be seen as a key to preventing polarization in a society. Today, many societies are
suffering from deep and seemingly irreversible polarization [33—37]. The recent surge of studies on polarization
underscores the urgency to pin down its causes and consequences, and to identify effective measures to preempt
or counteract persistent partisanship [38—41]. Previous studies have proposed several key factors, such as wealth
redistribution [42] and attraction to self-oriented ideologies [43]. Our study shows that neutral ties—and dynamical
updates that account for neutral ties—can also prevent polarization in the realm of balance theory, as prior empirical
work has suggested [30,44].

One of the salient features of our models is that the emergence of a giant connected component is characterized
by a phase transition. The critical regime in fact suggests that individual cognitive load at equilibrium remains
bounded, yet a large connected society could emerge. On the one hand, it should hardly be considered a society
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when people are isolated and barely engage in groups. On the other hand, humans can maintain only a limited
number of meaningful connections—also known as Dunbar’s number. When properly adjusted, the tradeoff between
these two factors results in a sweet spot—the critical regime—that can achieve the right balance between them,
leading to sustainable societies. Some complex systems even exhibit self-organized criticality [45,46]. Although
whether this applies to social systems remains an active area of study, our results suggest a clear advantage of being
close to the critical regime within the frameworks of balance theory with ternary interpersonal relationships.

One possible application of this study is to compare the equilibrium proportions of different triad configurations
identified in our model to those in real-world social networks, at least in terms of the orders of magnitude of those
frequencies. Prior empirical studies have analyzed signed networks involving neutral ties, including in online,
social, and political settings [29,30]. Extending those data and approaches would help us to understand real-world
networks in the context of neutral links. An alternative but coarser approach would be to compare our models to
data at the level of network characteristics. Emergent network properties and structures in the critical regime in our
models could be explored further, as some nontrivial network properties have been associated with criticality and
documented in some empirical social networks [3,45,46]. This may reveal how triadic interactions govern the way
social networks form and reorganize themselves over time.

There is substantial overlap between indirect reciprocity and social balance at a conceptual level. In simple terms,
indirect reciprocity is a mechanism for the emergence of cooperation by conditioning behavior on the reputations of
others and updating reputations based on their behavior toward third parties [47-51]. Traag et al. have extended the
notion of balance to directed interpersonal relationships, i.e., gossiping, and have found that different mechanisms of
gossip lead to balance or imbalance, where homophilic interactions are better suited for achieving cooperation [52].
Oishi et al. have also developed a model that bridges social balance and indirect reciprocity where people can have
different opinions of each other (i.e., private assessment); they found that a balanced (frozen) state can only be achieved
when the underlying network is almost fully connected if not too sparse [53]. In retrospect, those results suggested a
fundamental character of social balance theory: social balance is not robust to structural changes in the models. Our
models and analysis derive the same conclusion: when relationships are ternary, networks are not fully connected, and
consequently dynamics are more intricate, making globally balanced states unlikely to occur.

Both of our models have their own shortcomings, which are partly compensated by each other. In the focal-link
model, the current status of a link is ignored during an update, which seems unrealistic in some social settings. In
the focal-triad model, the parameter that governs the transitions between the bottom-row triads has little impact on
the overall equilibrium triad frequencies. Although we have focused our analysis on equilibrium triad densities and
network connectivity, exploring network structures could be an interesting avenue for future research, including
degree distributions, network topologies, and connected component size distributions.

Our models can be extended in several directions. First, each update currently concerns only three individuals.
While this aligns with the dynamical model introduced in Ref. [25], called the local triad dynamics, it contrasts the
other model introduced in the same paper called the constrained triad dynamics, in which every update considers all
the triads that involve a focal link to be updated. Given that the constrained dynamics promotes overall balance
more effectively, taking into account all the triads that are attached to a focal link may contribute more to polarized
outcomes (i.e., full balance) than considering only a single triad. Flipping multiple links in a single update may
also change the results significantly, as this would allow for instantaneous transitions between triads that do not
directly correspond via a single-link flip and thus are currently prohibited. Extending our models in this direction
would require some nontrivial reformulation; and it may require empirical study on whether simultaneous multi-link
updates are plausible, especially since this possibility has not been addressed in prior models of social balance even
in binary settings [16,25,51,53,54]. Furthermore, individual intrinsic differences in behavior, attitude, or belief
are missing in all these models, which could possibly account for more realistic phenomena, such as localized
polarization. All of these directions for future work will enrich our understanding of a comprehensive theory of
social balance, especially in the presence of neutral links.
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