
 

 

 

Journal of Mechanical Engineering and Manufacturing 

https://www.sciltp.com/journals/jmem 

 

 

Copyright: © 2026 by the authors. This is an open access article under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
Publisher’s Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 

Review 

Posture Optimization Techniques for Enhanced Robotic 
Machining Performance: A Review 
Naiara Sebbe 1,2, Jose-Luis Lafuente 3, Clara Aibar 3 and Ivan Iglesias 4,* 
1 CIDEM, ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal 
2 Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 400,  

4200-465 Porto, Portugal 
3 Escuela de Arquitectura, Ingeniería y Diseño, Universidad Europea, 28670 Madrid, Spain 
4 Ingeniería de los procesos de fabricación, Escuela de Ingeniería Industrial, Universidade de Vigo, 36310 Vigo, Spain 
* Correspondence: ivan.iglesias@uvigo.es 

How To Cite: Sebbe, N.; Lafuente, J.-L.; Aibar, C.; et al. Posture Optimization Techniques for Enhanced Robotic Machining Performance: A 
Review. Journal of Mechanical Engineering and Manufacturing 2026. https://doi.org/10.53941/jmem.2026.100013 

Received: 9 July 2025 
Revised: 21 November 2025 
Accepted: 4 December 2025 
Published: 12 February 2026 

Abstract: With the advancement of technology and the digitalization of 
manufacturing processes, optimized production of large-scale structural 
components faces increasing challenges due to mass product customization, 
workspace constraints, and the high cost of equipment such as CNC machines. 
Arm-based robotic manufacturing systems, as a substitutive or complementary 
alternative with strong potential, have gained significant attention as a means to 
address current challenges in machining. This work presents a state-of-the-art 
review of existing techniques and methods for optimizing robotic machining 
performance, with a particular focus on research advances in posture optimization 
of articulated robots. These advances are enabling the use of serial robotic arms in 
material removal operations as a technically and economically viable alternative to 
conventional machine tools. The document is structured as a comprehensive 
knowledge recap and systematic analysis of the technical barriers and limitations 
that affect dimensional quality in robotic machining—primarily due to the limited 
mechanical stiffness inherent in robotic arms when performing cutting tasks. It 
compiles and classifies a range of robot posture optimization tools. A SWOT matrix 
is used to identify the key technical factors that influence the suitability of 
optimization methods in different industrial contexts. Unlike previous reviews that 
address posture or dynamics in isolation, this work (i) consolidates posture 
optimization methods into a practical three-pillar framework (optimize–sense–
compensate), (ii) maps methods to a decision-oriented SWOT for industrial 
selection, and (iii) extends the analysis to collaborative machining, including 
posture–safety trade-offs under collaborative machining standards. 

 Keywords: machining; posture optimization; robotic arm; SWOT 

1. Introduction 

The manufacturing industry has a long history of growth and has consistently been the economic foundation 
that supports wealth creation for society. The process removes material from the workpiece using a rotating cutter 
that follows a programmed toolpath, and machining is a key manufacturing process. Common machining 
operations such as milling, deburring, and drilling are widely used to produce parts for industries like 
metalworking, energy, aerospace, and automotive. These processes are known for their high efficiency, accuracy, 
and ability to create complex shapes. While CNC machines have long dominated machining tasks, growing 
demands for flexibility and efficiency have opened the door to alternative solutions, such as robotic arms. Robotic 
arms stand out for their flexibility and favourable workspace-to-floor-space ratio, and their relatively low 
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acquisition and operating costs. These features make robotic arms an attractive option for machining applications 
involving large-scale components with complex geometries and limited access for machining head [1,2]. 

As a result, the use of robotic arms in real factory environments has steadily increased, particularly in flexible 
and customized production. Companies aim to boost productivity, quality, and safety. But when robots are used 
for very precise work, there are still technical and cost problems. Compared to conventional CNC machines, robots 
are more flexible and can save labour, but they are less rigid, less accurate, and more expensive to set up. The main 
benefits and drawbacks of robotic machining compared to CNC systems can be summarized in Table 1. 

Table 1. Robots vs. CNC: Key Benefits and Risks. 

Benefit Drawback 
Continuous operation (24/7 production) High upfront cost for setup and integration 

Flexible for different part geometries Lower mechanical stiffness than CNC machines 
Safer for workers in hazardous tasks Lower accuracy, challenging for tight tolerances 

Quick switching between tasks Complex programming and skills needed 
Large working area possible Susceptible to vibrations and tool chatter 

Real-time data tracking and control Higher maintenance, possible unexpected downtime 
Easy installation with modular design Faster tool wear due to multiple orientations 

These benefits and risks become especially clear when robots are used as milling tools in machining 
applications. Arm robots with milling tools are useful when there is a high variety of parts, small batch sizes, or a 
need for flexibility, since they can be easily reprogrammed for used in different tasks. Although they are less rigid 
than conventional CNC machines, improvements in sensors, control, and algorithms allow them to reach 
acceptable accuracy for light machining or softer materials. They are not ideal for very tight tolerances or heavy 
material removal, but they work well for roughing, minor finishing, or flexible operations. To ensure quality, 
vibration control, proper tooling, and frequent calibration are required. In short, their success depends on carefully 
balancing benefits and risks according to production needs and part requirements. A comparison between robot 
arms and CNC machines highlights their respective strengths and limitations is shown in Table 2. 

Table 2. Comparative Technical Analysis of Robotic Arms and CNC Systems. 

Aspect Robot Arm CNC Machine 
Workspace Large, flexible, multiple positions Fixed, limited to enclosed area 

Part Topology Complex shapes, multi-angle access Prismatic shapes, single orientation 
Materials Metals, plastics, composites (less rigid) Wide range (hard metals) 

Loading/Unloading Full automated (grippers, conveyors) Usually manual, semi-automated 
Operator Training Higher, focus on programming and setup Lower, familiar setup and basic use 

Adaptability High, reprogrammable for many tasks Limited, new part requires setup 
Precision ±0.05–0.2 mm, not for highest tolerances ±0.01–0.02 mm, precise machining 

Maintenance 5–12% of purchase price 8–15% of purchase price 

Cost remains a decisive factor when selecting between robotic arms and CNC machining centers. A 
meaningful comparison must consider not only the initial investment but also ongoing aspects such as 
maintenance, flexibility, precision, and productivity. For industrial robots, market prices vary greatly depending 
on payload capacity, reach, and precision. An entry-level new robot can cost around USD 25,000, while mid-range 
models designed for light machining tasks range from USD 50,000 to 100,000, as reported in recent market 
analyses [3]. For more demanding applications, requiring higher payloads, longer reach, or compensation systems, 
costs can exceed USD 100,000–150,000 when sensors, advanced algorithms, and specific tooling are included [4]. 

In contrast, CNC machining centres show a broader range of initial investment. Low- to mid-range 3-axis 
vertical models typically cost between USD 30,000 and 70,000, while 5-axis machines with larger travel, higher 
rigidity, and advanced features often exceed USD 100,000–200,000, or more, depending on the manufacturer and 
auxiliary systems such as cooling, chip removal, and control software [4,5]. When comparing equivalent setups, a 
robotic arm equipped for basic milling in low-volume, high-flexibility environments may cost USD 50,000–
90,000, while a 3-axis CNC machine falls within USD 80,000–150,000. In more demanding scenarios, a robot 
with advanced sensors and compensation reaches USD 120,000–200,000, whereas a 5-axis CNC with similar 
performance usually costs USD 150,000–300,000 The decision between both technologies must balance cost with 
technical performance. Robots stand out for their flexibility and ease of reprogramming, while CNC machines 
provide greater rigidity and accuracy for tight tolerances. The optimal choice depends on investment capacity, 
production volume, precision requirements, and the level of adaptability sought in the manufacturing plant. Unlike 
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prior reviews that address posture or dynamics separately, this work integrates both viewpoints and delivers three 
specific contributions: (i) a practical three-pillar framework (optimize–sense–compensate) to structure posture 
optimization in robotic machining; (ii) a decision-oriented SWOT that maps methods to industrial selection 
criteria; and (iii) an extension to collaborative machining that makes explicit the posture–safety trade-offs under 
ISO 10218:2025 (The abbreviations and their definitions are listed in Table 3). 

These practical considerations in industry are mirrored by academic research, which increasingly recognizes 
the potential of serial robots in machining and the development of advanced manufacturing systems. Reflecting 
the growing interest in this line of research, the number of scientific contributions focused on robotic machining 
operations has increased significantly over time. This trend is evident in the results of searches conducted in high-
prestige databases such as Web of Science and Scopus. The steady rise in publications over the past 10 years, 
based on Scopus data, is shown in Figure 1. 

 

Figure 1. Time-based cumulative trend of scientific contributions on robotic machining (Scopus). 

The inherently low stiffness of robotic arms is the most critical technical limitation identified in the scientific 
literature. It continues to pose significant challenges that impact machining quality, particularly in terms of 
dimensional accuracy, geometric precision, and surface finish. The main errors observed in robotic machining can 
be classified into three major categories [6]: 
• Inaccuracies in absolute positioning: Deviation errors between the robot’s theoretical positions and the actual 

position of the cutting edge of the machining tool. 
• Fluctuating deformations of the robot under alternating forces from the machining process: Deviation errors 

in the actual cutting path resulting from the interaction between the machining forces and the mechanical 
behaviour of the robotic arm. 

• Vibrations due to coupled frequency modes or regenerative chatter: Tool deviation errors caused by the 
combined effect of cutting conditions and the vibration modes of the robotic arm. 
The growing use of industrial robots in machining operations has driven the development of multiple 

strategies to improve their accuracy, stability, and performance. Considering the limitations and barriers associated 
with these systems—mainly due to their low structural stiffness, limited operational stability margin under 
dynamic fluctuations, and vibrations caused by the excitation forces generated by the machining process itself—
the scientific literature identifies several key areas for improvement. 

One such area includes state-of-the-art advancements in robot posture optimization, aimed at minimizing 
dimensional deviation errors and surface quality issues. In this study, posture denotes the robot’s joint-space 
configuration (arrangement of joints and links) together with the end-effector orientation relative to the workpiece 
and robot base; it is distinct from the TCP position (Cartesian coordinates), tool-frame rotation (orientation) and 
the Cartesian pose (both position and orientation). Based on recent literature [7,8], these advancements can be 
classified according to their intended purpose, which facilitates their analysis and comparison: 
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• Posture optimization methods: These contribute to the proper selection of the manipulator and optimal use 
of the robot’s structural capacity. 

• Acquisition of information about the machining process state: Aimed at understanding the robot’s dynamic 
response in order to select the most favourable cutting conditions. 

• Compensation of force-induced deformations: Involves solutions focused on compensating for errors either 
in real time (online) or offline. 
As an example of posture optimization considering stiffness and error compensation, a notable contribution 

is the integrated model that combines cutting-plane stiffness and posture accuracy, optimized using the Grey Wolf 
Optimizer (GWO) algorithm [9]. Methods have also been proposed to enhance toolpaths by optimizing posture 
and spindle speed, leading to a significant reduction in vibrations, such as the work by Hou et al. [10]. Xin et al. 
demonstrated that posture-dependent stiffness directly influences stability and gives rise to Stability Boundary 
Improvement Domains (SBID), which are useful for robot trajectory planning [11]. 

Regarding recent scientific advances in process monitoring, a growing trend focuses on developing advanced 
methods for cutting force detection and prediction, such as the PSO-LSTM models introduced by Wu et al. for 
real-time process monitoring [12]. To detect and suppress chatter, researchers have employed approaches based 
on wavelet transforms and entropy features, such as the method proposed by Yang et al. [13], as well as active 
actuators featured by Guo et al. to enhance dynamic stiffness [14]. Deformation compensation, significant 
contributions include approaches based on nonlinear stiffness models and adjusted trajectory planning, enabling 
offline and in some cases online compensation, as suggested by Klimchik et al. [15]. The development of 
specialized actuators and controllers, such as those by Sahu et al., equipped with innovative technical capabilities 
for vibration suppression and adaptive trajectory control, is driving a growing trend toward online compensation 
solutions [16]. 

Table 3. List of Abbreviations. 

Abbreviation Meaning 
AE Acoustic Emission 
AI Artificial Intelligence 

CNC Computer Numerical Control 
CAM Computer Aided Manufacturing 
DOF Degree of Freedom 
D-H Denavit-Hartenberg 
DL Deep Learning 

FEA Finite Element Analysis 
FRFs Frequency Response Functions 

GA-BPNN Genetic Algorithm—Backpropagation Neural Network 
GWO Grey Wolf Optimizer 
ISO International Organization for Standardization 

LSTM Long Short-Term Memory 
ML Machine Learning 

MLP Multi-Layer Perceptron 
MRR Material Removal Rates 
MSA Matrix Structure Analysis 

MSTMM Modified Stiffness Transmission Matrix Method 
MTGP Multi-task Gaussian Process 
PFISE Periodic Force-Induced Surface Errors 
PSO Particle Swarm Optimization 

RCSA Rigidity-Conditioned Stability Analysis 
SBID Stability Boundary Improvement Domain 

SeDANN Self-enhanced Dual Attention Neural Network 
SFE Surface Form Errors 
SLD Stability Lobe Diagram 
SLE Surface Location Error 
SQP Sequential Quadratic Programming 

SWOT Strengths, Weaknesses, Opportunities, Threats 
TCP Tool Centre Point 
VJM Virtual Joint Modelling 
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Dimensional deviation errors caused by the low stiffness, or posture-dependent compliance of the robot, can 
be significantly reduced by optimizing the robot’s joint configuration. The literature reports various solution 
approaches, ranging from stiffness modelling and identification to more recent advances involving global stiffness 
indices. The proposed tools have demonstrated reductions of 30% to 40% in TCP (Tool Centre Point) deflection 
and machining errors when the trajectory is replanned using the optimal posture [17,18]. The main reasons why 
robot posture optimization methods are considered the first-choice solution for reducing deviation errors in robotic 
machining are: 
1. Ease of implementation and workshop-level adjustment. Posture Optimization Methods (POMs) can be 

integrated into the same CAM software already used by operators, and can recalculate joint angles within 
seconds. Schneider et al. [19] demonstrated the automatic generation of optimal postures directly from the 
toolpath program; Souflas et al. [20] validated, using a digital twin, that the technician can regenerate the path 
with a single dry run; and Liao et al. [21] achieved a final accuracy of 172 µm by adjusting the posture in situ. 

2. Clearly favourable cost-to-benefit ratio. Compared to investing in a large-scale CNC machine tool, an 
industrial robot typically costs only 30–60% of the initial investment, and posture optimization often requires 
no additional hardware [22]. Ji and Wang [23] emphasize that even when accounting for structural 
enhancements, the investment remains an order of magnitude cheaper than purchasing a dedicated machine 
tool. Since POMs can deliver up to 40% improvement in dimensional accuracy, the overall economic return 
is highly favourable. 

3. Complementarity with process sensing and dimensional error compensation. By first minimizing static 
deformation, the error bandwidth that sensing systems or active compensation algorithms need to correct is 
greatly reduced. Klimchik et al. [15] showed that compensation algorithms converge faster and require 
smaller actuator displacements when the trajectory is already posture-optimized. Several reviews recommend 
this sequential approach: optimize posture, sense, and compensate [24]. 
Therefore, posture optimization in robotic machining is considered the first logical intervention, and the 

proper selection of the optimization method is key to achieving significant improvement at marginal cost. It can 
be applied and adjusted directly on the shop floor, and it lays the foundation for the integration of process sensing 
and force-induced deformation compensation techniques, if needed. 

2. Materials and Methods 

This work analyses the existing scientific literature on advances in the field of robotic machining operations 
to address two research questions: (1) What are the significant historical events and the current state of research? 
(2) What new developments are emerging in research on posture optimization methods and techniques for robotic 
machining of large-scale components? 

Previous studies by Faisal et al. [25] and Sheikhnejad & Yigitcanlar [26] support the suitability of using 
scientometric techniques, as these can visualize qualitative data and generate knowledge maps showing the 
connections among diverse progress in the domain. Scientometric analysis is widely accepted and allows a deep 
understanding of research trends, collaborative networks, and high-impact topics. For this reason, a search was 
conducted in a prestigious scientific and technical literature database on robotic machining. The queries and results 
were obtained from bibliographic repositories using the following keywords: serial-robot-based manufacturing, 
robotic machining, steel, aluminium, titanium, composite materials, posture optimization methods, deviation 
errors, and surface quality. 

In parallel with industrial drivers, academic output on robotic machining has grown steadily, as illustrated in 
Figure 2. The Scopus repository by Elsevier was selected for the bibliographic search. According to its most recent 
datasheet (February 2025), Scopus contains over 100 million records, 31.2 thousand active serial titles (including 
29.3 thousand peer-reviewed journals), and nearly 400 thousand books. This extensive coverage positions it as one 
of the most comprehensive and high-quality sources of scientific literature, offering powerful search and analysis 
tools that assist with the complex tasks of literature retrieval and review. 

Given the scientific purpose of this work—to review the state of the art in the field of serial robotic machining 
applied to material removal processes for the construction of large-scale structural components—the research 
objectives focused on identifying scientific and technical innovations as well as literature trends in robotic machining. 

The final search query used for this task employed the following TITLE-ABS-KEY sequence: “posture 
optimization” AND (“robotic machining” OR “manufacturing”) AND “machining with a robotic arm”. The 
literature search was conducted in February 2025, covering publications from March 2005 to February 2025. As 
a result, a total of 4532 publications were selected from the Scopus repository, including conference papers, journal 
articles, review papers, book chapters, and other scholar literature. 
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Publications lacking relevant information—such as those unrelated to the research topic or authored 
anonymously—were excluded. The full records of the resulting publications were exported, including citations 
and bibliographic data, abstracts, keywords, funding information, and other metadata. 

 

Figure 2. Representative Flowchart of the Systematic Literature Review. 

3. Results 

Posture optimization in milling robots has emerged as an effective solution to address structural stiffness 
issues. Although strategies such as the adoption of hybrid serial-parallel architectures [1,27] or the use of 
alternative materials in robotic arms and joints have demonstrated improvements in the system’s overall stiffness 
[28], they also introduce significant complexity in design, manufacturing, and control, which limits their practical 
implementation in industrial settings, as noted by Guo et al. [14] and Ji & Wang, [23]. An alternative with lower 
structural impact involves introducing redundant degrees of freedom [29,30], such as tool axis rotation in five-
degree-of-freedom systems, as proposed by Chen et al. [31]. 

Current research is primarily focused on six key areas of improvement: stiffness modelling, experimental 
stiffness identification, selection of posture optimization indices, cutting force direction control, and trajectory-
based posture optimization. 

3.1. Static Stiffness Modelling of the Robot 

Structural stiffness determines a system’s ability to resist elastic deformation under external forces. Although 
the forces involved in milling are dynamic and variable, static modelling has proven to be an acceptable 
approximation when operating far from the robot’s natural frequencies, as noted by Cordes et al. [32]. Moreover, 
factors such as backlash [33], friction [34], and variable damping [35] complicate the development of accurate 
dynamic models. In this context, Virtual Joint Modelling (VJM) offers a balance between accuracy and simplicity. 
This method treats joints as torsional springs and links as rigid bodies, and has evolved from models with 6 up to 
36 stiffness parameters [36,37]. 

On the other hand, Finite Element Analysis (FEA) provides the most detailed modelling approach by 
discretizing the robot into a mesh, where accuracy depends on boundary conditions, material properties, and mesh 
quality [38]. However, its results are valid only for specific postures, which requires frequent recalibrations [15,39]. 



Sebbe et al.   J. Mech. Eng. Manuf. 2026  

https://doi.org/10.53941/jmem.2026.100013  7 of 19  

Matrix Structural Analysis (MSA) models links as flexible beams and is more suitable for parallel robots and 
applications where the structural frame is rigid. Although its accuracy is lower in systems with flexible joints, it 
has been experimentally validated on Stewart-type platforms [40,41]. 

Therefore, as shown in the Table 4, Static stiffness modelling provides an essential foundation for predicting 
deformation and optimizing machining accuracy. While VJM offers simplicity and adaptability, FEA ensures high 
accuracy at the cost of computational intensity. MSA remains valuable for rigid and parallel mechanisms. The 
reviewed studies collectively highlight the trend toward integrated stiffness optimization in motion planning and 
toolpath generation. 

Table 4. Static Stiffness Modelling of Industrial Robots. 

Author  Main Purpose Method or Model Key Findings 

Chen et al. [31], 
2021 

To improve pose planning 
for increased stiffness  

during milling 

Finite Element Analysis (FEA) 
for posture-based stiffness 

evaluation 
Demonstrated pose optimization 

improves machining accuracy 

Cordes et al. 
[32], 2019 

To enhance stability in 
robotic milling through 

redundancy optimization 

Experimental and simulation-
based stability analysis 
considering kinematic 

redundancy 

Demonstrated that redundancy 
control improves milling stability 

by avoiding critical postures 

Liu et al. [34], 
2023 

To optimize robot 
redundancy for smoother 

milling motions 

Global optimization algorithm 
applied to 6R robot 

Optimization reduces vibration 
and improves tool-path 

smoothness 

Lehmann et al. 
[35], 2013 

To model joint stiffness and 
identify parameters 

accurately 

Experimental identification 
using the clamping method 

Provided quantitative joint 
stiffness parameters 

Klimchik, et al. 
[36], 2018 

To develop stiffness models 
using Matrix Structural 

Analysis (MSA) 

Analytical formulation of MSA 
for robot manipulators 

Validated on Stewart-type 
platforms; effective for parallel 

mechanisms 

Klimchik et al. 
[37], 2017 

To assess robot performance 
in machining 

Virtual Joint Modelling (VJM) 
with multiple stiffness 

parameters 

Found trade-offs between model 
complexity and computational 

efficiency 

Li et al. [39], 
2023 

To optimize tool posture 
considering joint loads  

and stiffness 

Combined static and FEA-based 
posture optimization 

Improved surface quality and 
reduced tool deflection 

Khan et al. [40], 
2020 

To develop real-time 
optimization for robot 

motion control 

DPSO algorithm applied to 
inverse kinematics 

Improved accuracy and 
computational efficiency 

Liao et al. [41], 
2020 

To generate optimized 
toolpaths considering 
stiffness distribution 

Region-based optimization 
algorithm integrating stiffness 

modelling 

Improved machining accuracy and 
reduced deflection errors 

3.2. Static Stiffness Identification of the Robot 

Since manufacturers typically do not provide stiffness parameters for robots, these must be identified 
experimentally [42]. Among the most commonly used methods are the immobilization of individual joints under load 
and the selection of postures with high inverse condition numbers to maximize stiffness sensitivity in joint space 
[9,11]. Zhang et al. proposed combining dexterity indices with conditioning metrics to define optimal measurement 
configurations [43], while Chen et al. developed joint transmission models based on both local and global parameters 
[19]. Traditionally, a constant stiffness coefficient has been assigned to each joint; however, in practice, this value 
varies nonlinearly with the joint angle [44]. Emerging methods such as variable stiffness modelling in spatial meshes 
[45] and the use of Reconfigurable Rotary Stiffness-Enhanced Actuators (RRSEAns) have been proposed to better 
capture these dynamics [46], though they are not yet widely adopted due to their complexity. 

As shown in the Table 5, accurate identification and modelling of static stiffness is essential for posture 
optimization in robotic milling processes. While VJM provides a good balance between accuracy and complexity, 
FEA and MSA models offer value in specific scenarios. The future integration of variable-stiffness models holds 
promise for improved adaptability, though current strategies still favor the assumption of constant stiffness due to 
its practical effectiveness. 
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Table 5. Static Stiffness Identification of Industrial Robots. 

Author Main Purpose Method or Model Key Findings 

Song et al. 
[9], 2024 

To improve accuracy in 
robotic side milling 

through posture 
optimization 

Kinematic modelling and stiffness 
sensitivity analysis using inverse 

condition numbers 

Identified optimal postures with 
higher stiffness and accuracy; 

confirmed effectiveness for accuracy 
compensation in milling 

Xin et al. 
[11], 2022 

To analyze how robot 
structural modes affect 

regenerative chatter  
during milling 

Experimental modal and stability 
domain analysis 

Found that stiffness distribution 
strongly influences chatter suppression

and stability limits 

Nigus [42], 
2014 

To estimate stiffness 
parameters for a parallel 

kinematic machine 

Semi-analytical formulation 
combining analytical and 

numerical modelling 

Achieved accurate stiffness estimation 
without full FEA; confirmed the need 
for experimental identification since 

manufacturers rarely provide  
stiffness data 

Zhang et al. 
[43], 2024 

To develop a calibration 
method accounting for 
pose uncertainty and  

stiffness errors 

Integration of dexterity indices 
with conditioning metrics for 

optimal measurement 
configurations 

Improved accuracy and repeatability 
in stiffness-based pose compensation 

Abrajan & 
Kelly [44], 

2018 

To examine nonlinear 
stiffness variation with  

joint angle 

Dynamic modelling and 
experimental validation of joint 

compliance 

Demonstrated that stiffness varies 
nonlinearly with joint angle, challenging 

constant-stiffness assumptions 

Qian et al. 
[45], 2022 

To design actuators with 
adjustable stiffness 

characteristics 

Development and control of a 
Reconfigurable Rotary Series 

Elastic Actuator (RRSEA) with 
nonlinear stiffness 

Enabled real-time stiffness adaptation 
to load and posture; highlighted 

potential for adaptive robotic systems 

Guo et al. 
[46], 2015 

To optimize robot posture 
for stiffness enhancement 

during machining 

Static stiffness modelling 
combined with multi-objective 

optimization 

Achieved higher machining precision 
and stiffness-oriented control efficiency 

3.3. Selection of Indices and Posture 

Posture optimization in robotic milling critically depends on the selection of indices that accurately represent 
the system’s stiffness, stability, and dynamic capabilities. One of the most widely adopted approaches involves 
the use of stiffness ellipsoids at the tool–workpiece contact point. These ellipsoids enable the visualization and 
quantification of directional stiffness, helping to guide the selection of postures that offer optimal rigidity [46,47]. 
The strategy typically involves maximizing the ellipsoid radii in the cutting direction, thereby reducing elastic 
deformation induced by the tool. 

Another common technique is the analysis of the Frequency Response Function (FRF), which evaluates the 
system’s dynamic behaviour across different postures and identifies the configurations offering greater stability 
against chatter. This analysis has been applied to accurately predict stability regions in the frequency vs. depth-of-
cut domain [48]. 

Additionally, composite indices have been developed that integrate kinematic, dynamic, and stiffness-related 
aspects into a unified optimization model. For example, recent studies have combined criteria such as trajectory 
smoothness, milling width, and proximity to singularities to generate optimal postures using sequential quadratic 
programming algorithms [49]. 

Bio-inspired optimization algorithms, such as the Grey Wolf Optimizer (GWO), have also been implemented 
to identify postures that simultaneously maximize stiffness in the cutting plane and positional accuracy of the 
system [19,50]. The choice of performance index is critical, as it determines the trade-offs accepted between 
stiffness, stability, accuracy, and kinematic feasibility [51,52]. 

Finally, statistical prediction methods, such as multi-output Gaussian Process Regression, have been explored 
to estimate the dynamic behaviour of untested postures. This enables generalization of identification results and 
supports real-time optimization in production environments [53]. 

In summary, as shown in the Table 6, posture optimization in robotic milling is evolving from simple 
geometric approaches toward multi-domain strategies that integrate dynamics, stiffness, and vibratory behaviour. 
The combination of mechanical indices with advanced optimization techniques enables the selection of postures 
that enhance process stability, surface quality, and machining precision. 
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Table 6. Posture Optimization in Robotic Milling. 

Author Main Purpose Method or Model Key Findings 

Chen et al. 
[19], 2021 

To optimize posture 
considering spindle weight 

and cutting force effects 

Comprehensive deformation index 
and sequential quadratic 

programming 

Achieved posture configurations 
minimizing deformation while 

maintaining kinematic feasibility 

Guo et al. 
[46], 2015 

To optimize robot posture 
considering stiffness in 

robotic machining 

Static stiffness-based optimization 
using  

stiffness ellipsoids 

Maximizing stiffness ellipsoid in 
the cutting direction reduces elastic 

deformation and improves 
machining accuracy 

Kito et al. 
[47], 2021 

To refine workspace and 
posture selection using 

ellipsoid metrics 

Minimum volume enclosing 
ellipsoid method in task space 

Enabled quantitative representation
of directional stiffness and safe 

workspace evaluation 

Deng et al. 
[48], 2023 

To predict dynamic 
behaviour and chatter 

stability across different 
robot postures 

Frequency Response Function 
(FRF) analysis considering pose 

and feedrate 

Accurately predicted stability 
regions in the frequency–depth-of-

cut domain; improved  
chatter suppression 

Liu et al. 
[49], 2022 

To estimate deflection in 
industrial robots with  

flexible joints 

Composite modelling integrating 
kinematic, stiffness, and dynamic 

parameters 

Developed deflection estimation 
approach enabling multi-objective 

optimization of posture 

Mirjalili et 
al. [50], 2014 

To develop a metaheuristic 
optimization algorithm 

inspired by social hierarchy 

Grey Wolf Optimizer (GWO) 
applied to multi-objective posture 

problems 

Enhanced convergence speed and 
precision in stiffness and  

accuracy optimization 

Lei et al. 
[51], 2023 

To predict posture-
dependent tool tip dynamics 

Multi-task Gaussian Process 
Regression (GPR) model 

Enabled real-time prediction of 
stiffness and vibration 

characteristics across postures 

Zhang et al. 
[52], 2019 

To define and optimize a 
comprehensive stiffness 
performance index for  

robotic milling 

Analytical modelling combined 
with performance index 

optimization 

Proposed a global stiffness 
performance index for posture 

evaluation and control 

Tian et al. 
[53], 2017 

To optimize layout and 
operational posture in 

robotic grinding systems 

Statistical modelling and stiffness-
based optimization using Gaussian 

Process Regression 

Demonstrated effective prediction 
of untested postures and improved 

surface quality 

3.4. Cutting Force Direction and Its Relationship with Performance 

The direction of the cutting force during robotic milling has a direct impact on system performance, as it 
interacts with the robot’s directional stiffness. Since industrial robots exhibit anisotropic stiffness, forces applied 
in certain directions result in greater deformations than in others, affecting both surface quality and the dynamic 
stability of the process [30,54]. 

Recent studies have shown that, for specific robot postures, maximum stiffness does not always align with 
the primary cutting direction, which can trigger conditions prone to chatter or geometric inaccuracies. To address 
this issue, models have been proposed that integrate the cutting force direction with the orientation of the stiffness 
ellipsoid in Cartesian space. By aligning the main cutting direction with the axis of maximum stiffness, structural 
deformation is minimized and milling performance is enhanced [13,55]. 

Additionally, certain low-frequency vibration modes, induced by the robot’s structural configuration, may 
coincide with the tool’s excitation frequencies in specific postures. In such cases, the cutting direction can either 
suppress or amplify these modes, affecting the critical depth of cut and, consequently, machining efficiency 
[11,56]. Active approaches have also been proposed, such as using contact actuators that apply counteracting 
forces opposite to the cutting force to neutralize unwanted deformations and suppress vibrations. These systems 
effectively modify the interaction between the cutting force and the robot’s directional stiffness, improving 
dynamic behaviour without requiring posture reconfiguration [57,58]. 

In summary, as shown in the Table 7, the relationship between cutting force direction and the directional 
stiffness of the robotic system is a critical factor in posture optimization. Orienting the cutting process along 
structurally favourable directions enhances stability, accuracy, and milling efficiency, while active solutions can 
complement this strategy when reorientation is not feasible. 
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Table 7. Cutting Force Direction and Its Relationship with Robotic Milling Performance. 

Author Main Purpose Method or Model Key Findings 

Xin et al. 
[11], 2022 

To study influence of structural 
modes on chatter and  
stability boundaries 

Experimental modal analysis 
and frequency domain 

stability evaluation 

Revealed that certain postures 
amplify vibration modes when 

cutting direction aligns with low-
stiffness axes 

Yang et al. 
[13], 2023 

To detect early chatter under 
varying postures and  
cutting parameters 

Dynamic signal analysis and 
posture-dependent  
chatter prediction 

Found that misalignment between 
cutting direction and maximum 

stiffness axis increases chatter risk 

Ye et al. 
[54], 2021 

To optimize workpiece 
placement to minimize contour 
errors due to posture-dependent 

stiffness 

Task-dependent placement 
optimization using stiffness 

mapping and error modelling 

Demonstrated that aligning the task 
with the robot’s stiffest direction 

reduces contour errors and improves 
dimensional accuracy 

Qu et al. 
[55], 2023 

To optimize feed direction and 
posture for free-form surface 

milling 

Profile-error-oriented 
optimization integrating 

stiffness ellipsoid orientation 

Achieved minimal profile error by 
aligning feed direction with 

maximum stiffness axis 

Lin et al. 
[56], 2022 

To minimize contour errors via 
end-effector pose optimization 

Contour-error-based 
optimization of tool 

orientation and  
cutting direction 

Showed that posture reorientation 
mitigates vibration amplification and 

improves machining precision 

Peng et al. 
[57], 2020 

To improve toolpath smoothness 
and reduce deformation through 

active compensation 

Path optimization using 
smoothness-oriented control 
with counteracting actuators 

Active counterforce application 
reduces deformation and improves 

dynamic stability without  
posture changes 

Chen & 
Ding [58], 

2023 

To enhance posture optimization 
using sequential quadratic 

programming under varying 
cutting loads 

Sequential quadratic 
programming with integrated 

stiffness–force  
interaction modelling 

Validated that active optimization of 
cutting direction improves stability 

and surface quality 

3.5. Posture and Trajectory Optimization 

The joint optimization of the robot’s posture and the toolpath is one of the most effective strategies to improve 
robotic milling performance. This approach not only avoids low-stiffness configurations but also reduces vibration, 
enhances machining quality, and increases process efficiency [59]. Unlike traditional methods that optimize only 
the geometric trajectory, modern approaches incorporate mechanical parameters, such as directional stiffness and 
dynamic stability, into the planning process [57]. For instance, a model has been proposed that simultaneously 
optimizes posture by considering both trajectory smoothness and milling width, using sequential quadratic 
programming. This approach has been shown to improve surface finish and reduce total machining time [39]. 

Another relevant strategy is the prediction of the Frequency Response Function (FRF) across multi-posture 
trajectories. This method allows forecasting the system’s stability along the entire toolpath, enabling the avoidance 
of chatter-prone regions and the automatic selection of cutting parameters and optimal posture for each segment 
[60,61]. Recent studies have also explored the joint optimization of posture and spindle speed. Coordinated 
adjustment of both parameters has led to significant reductions in peak acceleration and vibration amplitude, 
improving surface quality even along complex trajectories [62]. 

Furthermore, the use of AI-based prediction models has enabled the estimation of the system’s dynamic 
performance at unmeasured points. For example, Gaussian Process Regression (GPR) has proven effective in predicting 
the robot’s stiffness and modal behaviour along the toolpath, facilitating intelligent real-time planning [51,63]. 

In summary, as shown in the Table 8, the simultaneous optimization of posture and trajectory transforms 
robotic milling into an adaptive and intelligent process, capable of anticipating dynamic issues and automatically 
adjusting operational parameters. This strategy represents a key step toward the robust automation of complex 
manufacturing processes using industrial robots. 
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Table 8. Posture and Trajectory Optimization in Robotic Milling. 

Author Main Purpose Method or Model Key Findings 

Li et al. [39], 
2023 

To optimize tool posture 
considering joint load and 
stiffness in surface milling 

Sequential quadratic 
programming combining 
trajectory smoothness and 

milling width 

Significantly improved surface 
finish and reduced total 

machining time 

Lei et al. 
[51], 2023 

To predict posture-dependent 
tool tip dynamics 

Multi-task Gaussian Process 
Regression for  

dynamic prediction 

Enabled real-time estimation of 
dynamic response across 

trajectories; supported  
intelligent planning 

Liao et al. 
[59], 2024 

To achieve constant load and 
stiffness-matched toolpath 
planning in surface milling 

Integrated toolpath and posture 
optimization using stiffness 

matching and  
load balancing 

Improved machining stability and 
uniform surface quality by 

maintaining constant load and 
stiffness along trajectory 

Chen et al. 
[60], 2024 

To generate optimized toolpaths 
for robotic flank milling based on

stiffness and smoothness 

Stiffness and smoothness 
optimization model integrated 

with  
posture planning 

Increased stability and tool life 
through stiffness-oriented 

trajectory generation 

Sousa et al. 
[61], 2020 

To analyze cutting forces and 
their impact on  

process planning 

Review and modelling of 
cutting-force  

estimation techniques 

Highlighted the importance of 
incorporating cutting-force 

prediction in trajectory 
optimization 

Cao et al. 
[62], 2017 

To coordinate posture and 
spindle speed for improved 

milling performance 

Integrated optimization of 
spindle dynamics and  

robot posture 

Reduced peak acceleration and 
vibration amplitude; improved 

surface quality along  
complex paths 

Majumder et 
al. [63], 2019 

To review advances in 
multifunctional sensing and AI-

based monitoring 

Survey of multi-sensor 
systems and AI integration 

Provided foundations for real-
time adaptive optimization using 
sensor data and machine learning 

3.6. Advanced Optimization Methods 

Advanced optimization methods in robotic milling are designed to address complex problems involving 
multiple interrelated variables such as posture, stiffness, dynamic stability, precision, and surface quality. As 
requirements for accuracy and efficiency increase, classical solutions based on kinematic analysis or empirical 
testing become insufficient. As a result, there is growing adoption of global optimization algorithms, artificial 
intelligence (AI) techniques, and predictive models. 

One of the most prominent approaches involves the use of evolutionary algorithms, such as the Grey Wolf 
Optimizer (GWO) and Particle Swarm Optimization (PSO), to identify optimal postures that simultaneously 
maximize stiffness and accuracy. These bio-inspired algorithms have demonstrated strong capability in navigating 
non-convex search spaces, where deterministic methods often fail. For example, robot positional errors have been 
reduced to below 0.05° after applying dual compensation based on GWO-optimized postures [40,41]. 

In dynamic prediction, techniques such as Multitask Gaussian Process Regression (MTGP) have been used 
to estimate Frequency Response Functions (FRFs) at unmeasured postures. This significantly reduces the number 
of tests needed to plan an optimal toolpath while maintaining the accuracy of the dynamic model [51]. 

Moreover, active compensation methods have been developed using actuators or adaptive vibration filters. 
For instance, inertial active damping systems can dynamically modify the robot’s stiffness in real time, enhancing 
stability under aggressive cutting conditions or high-speed operations [64]. Strategies have also been explored that 
combine predictive modelling with the simultaneous optimization of multiple variables, such as posture, spindle 
speed, and feed direction. These strategies are implemented through hybrid algorithms, including objective 
function regression combined with heuristic search techniques [10,16]. 

Taken together, as shown in the Table 9, these advanced optimization methods mark the transition of robotic 
milling toward a process intelligence paradigm—systems that not only execute programmed tasks, but also adapt 
their dynamic parameters in real time to maximize performance under changing conditions. This approach 
represents a fundamental step toward robotic autonomy in demanding industrial environments. 
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Table 9. Advanced Optimization Methods in Robotic Milling. 

Author Main Purpose Method or Model Key Findings 

Hou et al. 
[10], 2025 

To jointly optimize robot 
posture and spindle speed for 

enhanced performance 

Hybrid global optimization 
integrating heuristic search and 
objective function regression 

Improved machining stability and 
reduced vibration amplitude through 
coordinated parameter optimization 

Sahu et al. 
[16], 2024 

To enhance robotic milling 
performance through  

active damping 

Development of active 
damping control targeting low-

frequency modes 

Significantly reduced vibration 
levels and improved surface quality 

in flexible configurations 

Khan et al. 
[40], 2020 

To improve real-time inverse 
kinematics and posture 

optimization 

Dual Particle Swarm 
Optimization (DPSO) 

algorithm applied to 6-DOF 
robotic systems 

Achieved high accuracy and 
convergence efficiency; positional 
errors reduced below 0.05° after  

dual compensation 

Liao et al. 
[41], 2020 

To generate optimized 
toolpaths considering stiffness 
for freeform surface milling 

Region-based toolpath 
optimization with stiffness 

integration 

Improved machining precision and 
toolpath adaptability using stiffness-

aware optimization 

Lei et al. 
[51], 2023 

To predict dynamic behaviour 
of robotic systems at  
unmeasured postures 

Multitask Gaussian Process 
Regression (MTGP) for  

FRF prediction 

Enabled accurate dynamic 
estimation with fewer experimental 
tests; facilitated intelligent planning 

Ozsoy et al. 
[64], 2022 

To evaluate feasibility of 
robotically assisted active 

vibration control in milling 

Implementation of inertial 
active damping and adaptive 

vibration filtering 

Demonstrated real-time modification 
of structural stiffness and improved 

dynamic stability under  
high-speed operations 

4. Discussion 

First, we note that this work has contributed to expanding the candidate’s comprehensive understanding of 
the general issues affecting dimensional quality in robotic machining, particularly those arising from the limited 
mechanical stiffness properties of articulated robotic arms used for high material removal rate milling tasks. As a 
result of the conducted literature review, it is clear that current research spans multiple areas, including stiffness 
modelling, posture optimization, deformation compensation, and vibration suppression. A thorough analysis of 
this body of knowledge has led to the identification of four key research areas, which serve as guidance for 
selecting an appropriate optimization strategy: 
1. Static stiffness modelling and identification: This is fundamental for posture optimization and involves 

approaches such as the Virtual Joint Modelling (VJM), Finite Element Analysis (FEA), and Matrix Structural 
Analysis (MSA) [30,38]. The exploration of variable stiffness modelling is highlighted as a promising 
direction to enhance system adaptability [39]. 

2. Posture optimization and selection of representative indices: This area focuses on correlating the robot’s 
stiffness with its operational posture, considering cutting forces and other process parameters. The goal is to 
develop methodologies that improve flexibility and efficiency in robotic machining [49,54]. 

3. Acquisition of dynamic process information: Characterizing and analysing milling conditions is essential for 
vibration control and precision improvement. Methods such as Rigidity-Conditioned Stability Analysis 
(RCSA) and the Modified Stiffness Transmission Matrix Method (MSTMM) are assessed for their 
effectiveness under dynamic conditions [55–57,60,63]. 

4. Hybridization of the above techniques: This refers to the integrated application of the previously mentioned 
models and techniques, adapted to the specific requirements of the machining process and the mechanical 
characteristics of serial robots [7,10]. 
The growing integration of industrial robots in subtractive manufacturing operations requires not only 

maximizing the robot arm’s capability relative to the technical demands of the process, or selecting the most 
suitable machining conditions based on the characteristics of the manufacturing system, but also carefully choosing 
the most appropriate optimization strategies according to the production context. 

Based on a graphical and structural comparison of six advanced optimization methods, it becomes evident 
that no single universal solution exists for all machining processes. Instead, the choice should be primarily guided 
by the nature of process, application environment, and operational constraints. The SWOT matrix synthesising 
these findings, shown in Table 10, illustrates the current approaches. 
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Table 10. SWOT—Optimization Methods in Robotic Machining. 

Strengths Weaknesses 

 High potential to improve dimensional accuracy, surface
quality, and process stability. 
 Enables adaptation to variable machining conditions. 
 Reduces trial-and-error in process planning. 
 Facilitates integration with AI and predictive models. 

 High computational cost in real-time applications. 
 Complexity in modelling robot dynamics and

stiffness. 
 Requires expert knowledge for tuning and

implementation. 
 Limited standardization across platforms and robot 

brands. 
Opportunities Threats 

 Integration with Industry 4.0, digital twins, and smart
manufacturing environments. 
 Development of hybrid algorithms (AI + physics-based

models). 
 Increased demand for flexible automation in aerospace,

energy, and large-component sectors. 
 Growth of open-source tools and collaborative robotics

platforms. 

 Resistance to adoption due to conservative industrial
practices. 
 Risk of overfitting in data-driven models without 

sufficient experimental validation. 
 Hardware limitations in low-end industrial robots 

(e.g., limited sensors or DOFs). 
 Uncertainties in machining of novel or

heterogeneous materials. 

The SWOT matrix highlights that a well-chosen robot posture optimization technique stands out as a core 
strength of the robotic machining process. By minimizing elastic deformations and posture-induced errors, it 
ensures high dimensional accuracy. This presents a tangible opportunity to deploy production cells centred around 
serial robots—an approach whose technical maturity has already been validated in industry. 

However, this advantage is balanced by the weakness of its technical complexity in implementation, and it 
faces the critical threat of high development and integration costs. These costs will only be manageable if the 
optimization strategy is planned from the system design phase, ensuring that integration challenges are addressed 
proactively rather than reactively. 

The most prominent trend in conventional milling processes—typical in the automotive industry or general 
metal manufacturing—highlights the effectiveness of posture optimization considering stiffness and error 
compensation, as shown in Figure 3. This approach combines technological maturity with proven results in 
improving stability and surface quality. Although its technical implementation can be demanding, particularly in 
terms of modelling and sensing, its cost-effectiveness is evident in highly repetitive production environments, 
where the initial investment is justified [9,15]. 

On the other hand, weld seam overstock removal, common in petrochemical or energy sectors, presents a 
highly demanding scenario, where cutting forces are elevated and unstable vibrations severely compromise 
structural integrity and efficiency. In such cases, methods like chatter suppression using transforms and active 
actuators emerge as particularly effective solutions. Their ability to adapt dynamic stiffness in real time represents 
a significant advancement. Despite their cost and complexity, they enable operation under aggressive conditions 
without compromising quality. 

 
Figure 3. Representative Flowchart of the Systematic Literature. 
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In high-precision applications such as metal–CFRP drilling, PSO-LSTM models can anticipate cutting-force 
dynamics and proactively tune parameters, which is valuable in non-recoverable processes. Their main limitations 
are data dependence, computational cost, hyperparameter sensitivity, and vulnerability to noise/overfitting. In 
contrast, GWO is data-agnostic and effective in non-convex search, but may exhibit poor local refinement and 
become trapped in local optima, limiting consistent discovery of global solutions. In practice, hybrid pipelines—
using GWO to explore promising regions and PSO-LSTM to refine real-time force prediction—mitigate individual 
weaknesses and align with the threats and opportunities identified in the SWOT. 

This reflection reinforces the idea that the selection of optimization techniques must go beyond their 
technological sophistication, prioritizing their suitability for real process conditions and their integration potential. 
The key lies in balancing the added value in quality and productivity with implementation feasibility and return 
on investment, depending on the sector, material, and specific operation. 

Future Research and Interests 

Since Colgate et al. defined the collaborative robot in 1996 and Universal Robots released the UR5 in 2008, 
collaborative robotics has matured into a viable alternative for machining tasks that once required complete cell 
isolation [65]. Collaborative robots are typically lighter and less rigid than conventional industrial arms, which 
exacerbates posture-dependent compliance and dimensional errors. Consequently, posture optimization is not 
merely beneficial but essential in cobots machining, as it directly mitigates the increased compliance associated 
with lightweight designs. The logical next step would be to transfer this know-how to the collaborative domain, 
where human-robot proximity demands the preservation of dimensional quality without compromising safety or 
the flexibility that cobots offer. It must be emphasized that collaborative robots are usually lighter and less rigid 
than industrial arms, which makes them even more prone to stiffness-related errors. 

As illustrated in Figure 4, the expected research trends in collaborative robotic machining focus on 
synchronising posture optimisation with safety standards, improving dynamic modelling, integrating trajectory 
and spindle planning, employing digital twins for real-time validation, and advancing multimodal AI interfaces 
for seamless human–robot cooperation. For this reason, posture optimization in cobots is not only relevant but 
essential, as it directly mitigates the increased compliance issues associated with their lightweight design, and the 
key priority research lines identified were: 
1. Synchronizing posture optimization with collaborative safety standards. The 2025 update of ISO 10218 

consolidates and strengthens requirements previously outlined in ISO/TS 15066. Meeting these force and 
energy limits while pursuing maximum stiffness will require algorithms that re-optimize posture in real time: 
every time the operator enters the cell, the cobot must switch from an “optimal machining posture” to a “safe 
posture” without degrading precision beyond acceptable thresholds. 

2. Enhancing dynamic modelling specific to cobots. Compared to traditional robot-CNC cells, collaborative 
machining imposes even stricter stiffness limits. Here, multimodal prediction using PSO-LSTM is 
particularly relevant, as neural networks can anticipate force peaks before contact sensors trigger, enabling 
early compensation or feed rate reduction. Additionally, studies incorporating redundant axes (e.g., seventh 
linear axes, mobile platforms) show that the workspace can be expanded without compromising dimensional 
quality if posture is re-optimized based on stiffness utilization and adaptive filtering [66–68]. This knowledge 
is transferable to mobile cobots now emerging in aerostructure repair or modular construction. 

3. Integrating posture-trajectory-spindle planning in industrial cobots. Recent methods that jointly optimize 
posture and spindle speed to minimize vibration and chatter [69,70], as well as potential field-based models 
that adjust both robot configuration and workpiece position [65,71], naturally fit into collaborative cells. 
These approaches reduce noise and cycle time—critical factors for human coexistence—and could limit 
reprogramming to selecting a new optimization parameter set instead of rewriting toolpaths. 

4. Digital twins and low-cost sensors to lower the adoption barrier. One of the main threats identified in the SWOT 
matrix (Table 4) is the cost of integration. Recent literature shows that a “light digital twin,” fed by in-process 
measurements, can keep VJM or FRF models up to date at a fraction of the cost of full strain gauge setups 
[72,73]. This approach closes the loop between cutting force direction optimization strategies and ISO 10218 
safety requirements, offering a virtual layer where safe and efficient postures can be validated before execution. 

5. Multimodal AI and adaptive interfaces for smooth cooperation. Breaking the traditional “human leader–robot 
follower” hierarchy requires voice, gesture, and vision interfaces to feed the optimization loop. The operator 
could state the goal (e.g., “re-machine this edge”) and the system would adjust posture in seconds to maximize 
stiffness and minimize risk. Optimized MLPs (GA-BPNN, SeDANN) already exceed 90% accuracy in 
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vibration mode classification [74,75]; the next step is fusing this predictive capability with dynamic models 
to transparently reconfigure the cell. 

 

Figure 4. Future Trends in Robotic Posture Optimisation for Collaborative Machining. 

5. Conclusions 

The review of more than 4532 publications from 2005 to 2025 confirms that robot posture optimization is 
the most effective and cost-efficient intervention to mitigate the inherent low stiffness of serial manipulators during 
milling, drilling, and deburring of large parts. Experiments evidence shows typical reductions of 40% in tool centre 
point deflection and form errors when the toolpath is replanned using the optimal posture calculated via advanced 
global search techniques and updated stiffness models. 

The state of the art converges on four technological pillars: accurate modelling and identification of static 
and dynamic stiffness, development of indices combining directional stiffness and vibrational stability, 
simultaneous planning of posture-trajectory-spindle speed, and the use of artificial intelligence algorithms to 
predict and compensate dynamic phenomena in real time. The maturity of evolutionary methods (PSO, GWO), 
statistical models based on Gaussian processes, and lightweight digital twin architectures demonstrates that posture 
optimization can now be integrated into standard CAM environments without requiring additional hardware and 
is compatible with continuous production cycles. 

The SWOT matrix built for six representative techniques underscores that posture optimization considering 
stiffness and posture-induced errors is currently the option with the best balance between precision gain and 
technological risk—especially in aerospace and automotive sectors, where there is a track record of industrial 
deployment. Joint posture and spindle speed optimization appears as the second most robust alternative, adding 
systematic improvement in surface quality at a manageable integration cost. In contrast, methods such as predictive 
force detection and active chatter suppression offer clear opportunities for high-demand processes but require 
significant investment in sensors, actuators, and technical training. 

Extending these methods to collaborative robotics opens a high-impact scenario: human-robot proximity 
imposes strict safety constraints per ISO 10218:2025, but it also adds flexibility and ease of reconfiguration. Real-
time posture re-optimization, powered by digital twins and multimodal neural networks, enables micrometer-level 
tolerances to be maintained without exceeding the force and energy thresholds defined for safe interaction. Early 
trials with mobile cobots and seventh-axis platforms show that it is possible to expand the workspace, reduce cycle 
times, and preserve dimensional quality if the optimal posture is recalculated each time the workpiece setup or 
human presence changes. 

Beyond synthesizing the state of the art, this review contributes a unified three-pillar framework (optimize–
sense–compensate) and a decision-oriented SWOT that together act as a practical roadmap for industrial method 
selection. By explicitly extending posture optimization to collaborative machining and articulating posture–safety 
trade-offs, the work provides actionable guidance for deploying robot-based cells under ISO 10218:2025. 

The research agenda must still overcome three decisive challenges: (1) establishing public, validated 
databases of stiffness parameters for a wide range of commercial robots; (2) developing posture re-optimization 
algorithms capable of complying with collaborative safety constraints while operating within industrial cycle 
times; and (3) rigorously evaluating the total cost of ownership of these solutions compared to large-format CNC 
machine tools. Closing these gaps would position posture optimization as the cornerstone enabling collaborative 
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robotics to enhance precision outcomes without sacrificing the flexibility or cost-efficiency demanded by advanced 
manufacturing. 
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