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Abstract: With the advancement of technology and the digitalization of
manufacturing processes, optimized production of large-scale structural
components faces increasing challenges due to mass product customization,
workspace constraints, and the high cost of equipment such as CNC machines.
Arm-based robotic manufacturing systems, as a substitutive or complementary
alternative with strong potential, have gained significant attention as a means to
address current challenges in machining. This work presents a state-of-the-art
review of existing techniques and methods for optimizing robotic machining
performance, with a particular focus on research advances in posture optimization
of articulated robots. These advances are enabling the use of serial robotic arms in
material removal operations as a technically and economically viable alternative to
conventional machine tools. The document is structured as a comprehensive
knowledge recap and systematic analysis of the technical barriers and limitations
that affect dimensional quality in robotic machining—primarily due to the limited
mechanical stiffness inherent in robotic arms when performing cutting tasks. It
compiles and classifies a range of robot posture optimization tools. A SWOT matrix
is used to identify the key technical factors that influence the suitability of
optimization methods in different industrial contexts. Unlike previous reviews that
address posture or dynamics in isolation, this work (i) consolidates posture
optimization methods into a practical three-pillar framework (optimize—sense—
compensate), (ii) maps methods to a decision-oriented SWOT for industrial
selection, and (iii) extends the analysis to collaborative machining, including
posture—safety trade-offs under collaborative machining standards.
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1. Introduction

The manufacturing industry has a long history of growth and has consistently been the economic foundation
that supports wealth creation for society. The process removes material from the workpiece using a rotating cutter
that follows a programmed toolpath, and machining is a key manufacturing process. Common machining
operations such as milling, deburring, and drilling are widely used to produce parts for industries like
metalworking, energy, aerospace, and automotive. These processes are known for their high efficiency, accuracy,
and ability to create complex shapes. While CNC machines have long dominated machining tasks, growing
demands for flexibility and efficiency have opened the door to alternative solutions, such as robotic arms. Robotic
arms stand out for their flexibility and favourable workspace-to-floor-space ratio, and their relatively low
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acquisition and operating costs. These features make robotic arms an attractive option for machining applications
involving large-scale components with complex geometries and limited access for machining head [1,2].

As aresult, the use of robotic arms in real factory environments has steadily increased, particularly in flexible
and customized production. Companies aim to boost productivity, quality, and safety. But when robots are used
for very precise work, there are still technical and cost problems. Compared to conventional CNC machines, robots
are more flexible and can save labour, but they are less rigid, less accurate, and more expensive to set up. The main
benefits and drawbacks of robotic machining compared to CNC systems can be summarized in Table 1.

Table 1. Robots vs. CNC: Key Benefits and Risks.

Benefit Drawback
Continuous operation (24/7 production) High upfront cost for setup and integration
Flexible for different part geometries Lower mechanical stiffness than CNC machines
Safer for workers in hazardous tasks Lower accuracy, challenging for tight tolerances
Quick switching between tasks Complex programming and skills needed
Large working area possible Susceptible to vibrations and tool chatter
Real-time data tracking and control Higher maintenance, possible unexpected downtime
Easy installation with modular design Faster tool wear due to multiple orientations

These benefits and risks become especially clear when robots are used as milling tools in machining
applications. Arm robots with milling tools are useful when there is a high variety of parts, small batch sizes, or a
need for flexibility, since they can be easily reprogrammed for used in different tasks. Although they are less rigid
than conventional CNC machines, improvements in sensors, control, and algorithms allow them to reach
acceptable accuracy for light machining or softer materials. They are not ideal for very tight tolerances or heavy
material removal, but they work well for roughing, minor finishing, or flexible operations. To ensure quality,
vibration control, proper tooling, and frequent calibration are required. In short, their success depends on carefully
balancing benefits and risks according to production needs and part requirements. A comparison between robot
arms and CNC machines highlights their respective strengths and limitations is shown in Table 2.

Table 2. Comparative Technical Analysis of Robotic Arms and CNC Systems.

Aspect Robot Arm CNC Machine
Workspace Large, flexible, multiple positions Fixed, limited to enclosed area
Part Topology Complex shapes, multi-angle access Prismatic shapes, single orientation
Materials Metals, plastics, composites (less rigid) Wide range (hard metals)
Loading/Unloading Full automated (grippers, conveyors) Usually manual, semi-automated
Operator Training Higher, focus on programming and setup Lower, familiar setup and basic use
Adaptability High, reprogrammable for many tasks Limited, new part requires setup
Precision +0.05-0.2 mm, not for highest tolerances +0.01-0.02 mm, precise machining
Maintenance 5-12% of purchase price 8-15% of purchase price

Cost remains a decisive factor when selecting between robotic arms and CNC machining centers. A
meaningful comparison must consider not only the initial investment but also ongoing aspects such as
maintenance, flexibility, precision, and productivity. For industrial robots, market prices vary greatly depending
on payload capacity, reach, and precision. An entry-level new robot can cost around USD 25,000, while mid-range
models designed for light machining tasks range from USD 50,000 to 100,000, as reported in recent market
analyses [3]. For more demanding applications, requiring higher payloads, longer reach, or compensation systems,
costs can exceed USD 100,000—150,000 when sensors, advanced algorithms, and specific tooling are included [4].

In contrast, CNC machining centres show a broader range of initial investment. Low- to mid-range 3-axis
vertical models typically cost between USD 30,000 and 70,000, while 5-axis machines with larger travel, higher
rigidity, and advanced features often exceed USD 100,000-200,000, or more, depending on the manufacturer and
auxiliary systems such as cooling, chip removal, and control software [4,5]. When comparing equivalent setups, a
robotic arm equipped for basic milling in low-volume, high-flexibility environments may cost USD 50,000—
90,000, while a 3-axis CNC machine falls within USD 80,000-150,000. In more demanding scenarios, a robot
with advanced sensors and compensation reaches USD 120,000-200,000, whereas a 5-axis CNC with similar
performance usually costs USD 150,000-300,000 The decision between both technologies must balance cost with
technical performance. Robots stand out for their flexibility and ease of reprogramming, while CNC machines
provide greater rigidity and accuracy for tight tolerances. The optimal choice depends on investment capacity,
production volume, precision requirements, and the level of adaptability sought in the manufacturing plant. Unlike
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prior reviews that address posture or dynamics separately, this work integrates both viewpoints and delivers three
specific contributions: (i) a practical three-pillar framework (optimize—sense—compensate) to structure posture
optimization in robotic machining; (ii) a decision-oriented SWOT that maps methods to industrial selection
criteria; and (iii) an extension to collaborative machining that makes explicit the posture—safety trade-offs under
ISO 10218:2025 (The abbreviations and their definitions are listed in Table 3).

These practical considerations in industry are mirrored by academic research, which increasingly recognizes
the potential of serial robots in machining and the development of advanced manufacturing systems. Reflecting
the growing interest in this line of research, the number of scientific contributions focused on robotic machining
operations has increased significantly over time. This trend is evident in the results of searches conducted in high-
prestige databases such as Web of Science and Scopus. The steady rise in publications over the past 10 years,
based on Scopus data, is shown in Figure 1.
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Figure 1. Time-based cumulative trend of scientific contributions on robotic machining (Scopus).

The inherently low stiffness of robotic arms is the most critical technical limitation identified in the scientific
literature. It continues to pose significant challenges that impact machining quality, particularly in terms of
dimensional accuracy, geometric precision, and surface finish. The main errors observed in robotic machining can
be classified into three major categories [6]:

e  Inaccuracies in absolute positioning: Deviation errors between the robot’s theoretical positions and the actual
position of the cutting edge of the machining tool.

e  Fluctuating deformations of the robot under alternating forces from the machining process: Deviation errors
in the actual cutting path resulting from the interaction between the machining forces and the mechanical
behaviour of the robotic arm.

e  Vibrations due to coupled frequency modes or regenerative chatter: Tool deviation errors caused by the
combined effect of cutting conditions and the vibration modes of the robotic arm.

The growing use of industrial robots in machining operations has driven the development of multiple
strategies to improve their accuracy, stability, and performance. Considering the limitations and barriers associated
with these systems—mainly due to their low structural stiffness, limited operational stability margin under
dynamic fluctuations, and vibrations caused by the excitation forces generated by the machining process itself—
the scientific literature identifies several key areas for improvement.

One such area includes state-of-the-art advancements in robot posture optimization, aimed at minimizing
dimensional deviation errors and surface quality issues. In this study, posture denotes the robot’s joint-space
configuration (arrangement of joints and links) together with the end-effector orientation relative to the workpiece
and robot base; it is distinct from the TCP position (Cartesian coordinates), tool-frame rotation (orientation) and
the Cartesian pose (both position and orientation). Based on recent literature [7,8], these advancements can be
classified according to their intended purpose, which facilitates their analysis and comparison:

https://doi.org/10.53941/jmem.2026.100013 3 of 19



Sebbe et al. J. Mech. Eng. Manuf. 2026

e  Posture optimization methods: These contribute to the proper selection of the manipulator and optimal use
of the robot’s structural capacity.

e  Acquisition of information about the machining process state: Aimed at understanding the robot’s dynamic
response in order to select the most favourable cutting conditions.

e  Compensation of force-induced deformations: Involves solutions focused on compensating for errors either
in real time (online) or offline.

As an example of posture optimization considering stiffness and error compensation, a notable contribution
is the integrated model that combines cutting-plane stiffness and posture accuracy, optimized using the Grey Wolf
Optimizer (GWO) algorithm [9]. Methods have also been proposed to enhance toolpaths by optimizing posture
and spindle speed, leading to a significant reduction in vibrations, such as the work by Hou et al. [10]. Xin et al.
demonstrated that posture-dependent stiffness directly influences stability and gives rise to Stability Boundary
Improvement Domains (SBID), which are useful for robot trajectory planning [11].

Regarding recent scientific advances in process monitoring, a growing trend focuses on developing advanced
methods for cutting force detection and prediction, such as the PSO-LSTM models introduced by Wu et al. for
real-time process monitoring [12]. To detect and suppress chatter, researchers have employed approaches based
on wavelet transforms and entropy features, such as the method proposed by Yang et al. [13], as well as active
actuators featured by Guo et al. to enhance dynamic stiffness [14]. Deformation compensation, significant
contributions include approaches based on nonlinear stiffness models and adjusted trajectory planning, enabling
offline and in some cases online compensation, as suggested by Klimchik et al. [15]. The development of
specialized actuators and controllers, such as those by Sahu et al., equipped with innovative technical capabilities
for vibration suppression and adaptive trajectory control, is driving a growing trend toward online compensation
solutions [16].

Table 3. List of Abbreviations.

Abbreviation Meaning
AE Acoustic Emission
Al Atrtificial Intelligence
CNC Computer Numerical Control
CAM Computer Aided Manufacturing
DOF Degree of Freedom
D-H Denavit-Hartenberg
DL Deep Learning
FEA Finite Element Analysis
FRFs Frequency Response Functions
GA-BPNN Genetic Algorithm—Backpropagation Neural Network
GWO Grey Wolf Optimizer
ISO International Organization for Standardization
LSTM Long Short-Term Memory
ML Machine Learning
MLP Multi-Layer Perceptron
MRR Material Removal Rates
MSA Matrix Structure Analysis
MSTMM Modified Stiffness Transmission Matrix Method
MTGP Multi-task Gaussian Process
PFISE Periodic Force-Induced Surface Errors
PSO Particle Swarm Optimization
RCSA Rigidity-Conditioned Stability Analysis
SBID Stability Boundary Improvement Domain
SeDANN Self-enhanced Dual Attention Neural Network
SFE Surface Form Errors
SLD Stability Lobe Diagram
SLE Surface Location Error
SQP Sequential Quadratic Programming
SWOT Strengths, Weaknesses, Opportunities, Threats
TCP Tool Centre Point
VIM Virtual Joint Modelling
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Dimensional deviation errors caused by the low stiffness, or posture-dependent compliance of the robot, can
be significantly reduced by optimizing the robot’s joint configuration. The literature reports various solution
approaches, ranging from stiffness modelling and identification to more recent advances involving global stiffness
indices. The proposed tools have demonstrated reductions of 30% to 40% in TCP (Tool Centre Point) deflection
and machining errors when the trajectory is replanned using the optimal posture [17,18]. The main reasons why
robot posture optimization methods are considered the first-choice solution for reducing deviation errors in robotic
machining are:

1. Ease of implementation and workshop-level adjustment. Posture Optimization Methods (POMs) can be
integrated into the same CAM software already used by operators, and can recalculate joint angles within
seconds. Schneider et al. [19] demonstrated the automatic generation of optimal postures directly from the
toolpath program; Souflas et al. [20] validated, using a digital twin, that the technician can regenerate the path
with a single dry run; and Liao et al. [21] achieved a final accuracy of 172 pm by adjusting the posture in situ.

2. Clearly favourable cost-to-benefit ratio. Compared to investing in a large-scale CNC machine tool, an
industrial robot typically costs only 30—60% of the initial investment, and posture optimization often requires
no additional hardware [22]. Ji and Wang [23] emphasize that even when accounting for structural
enhancements, the investment remains an order of magnitude cheaper than purchasing a dedicated machine
tool. Since POMs can deliver up to 40% improvement in dimensional accuracy, the overall economic return
is highly favourable.

3. Complementarity with process sensing and dimensional error compensation. By first minimizing static
deformation, the error bandwidth that sensing systems or active compensation algorithms need to correct is
greatly reduced. Klimchik et al. [15] showed that compensation algorithms converge faster and require
smaller actuator displacements when the trajectory is already posture-optimized. Several reviews recommend
this sequential approach: optimize posture, sense, and compensate [24].

Therefore, posture optimization in robotic machining is considered the first logical intervention, and the
proper selection of the optimization method is key to achieving significant improvement at marginal cost. It can
be applied and adjusted directly on the shop floor, and it lays the foundation for the integration of process sensing
and force-induced deformation compensation techniques, if needed.

2. Materials and Methods

This work analyses the existing scientific literature on advances in the field of robotic machining operations
to address two research questions: (1) What are the significant historical events and the current state of research?
(2) What new developments are emerging in research on posture optimization methods and techniques for robotic
machining of large-scale components?

Previous studies by Faisal et al. [25] and Sheikhnejad & Yigitcanlar [26] support the suitability of using
scientometric techniques, as these can visualize qualitative data and generate knowledge maps showing the
connections among diverse progress in the domain. Scientometric analysis is widely accepted and allows a deep
understanding of research trends, collaborative networks, and high-impact topics. For this reason, a search was
conducted in a prestigious scientific and technical literature database on robotic machining. The queries and results
were obtained from bibliographic repositories using the following keywords: serial-robot-based manufacturing,
robotic machining, steel, aluminium, titanium, composite materials, posture optimization methods, deviation
errors, and surface quality.

In parallel with industrial drivers, academic output on robotic machining has grown steadily, as illustrated in
Figure 2. The Scopus repository by Elsevier was selected for the bibliographic search. According to its most recent
datasheet (February 2025), Scopus contains over 100 million records, 31.2 thousand active serial titles (including
29.3 thousand peer-reviewed journals), and nearly 400 thousand books. This extensive coverage positions it as one
of the most comprehensive and high-quality sources of scientific literature, offering powerful search and analysis
tools that assist with the complex tasks of literature retrieval and review.

Given the scientific purpose of this work—to review the state of the art in the field of serial robotic machining
applied to material removal processes for the construction of large-scale structural components—the research
objectives focused on identifying scientific and technical innovations as well as literature trends in robotic machining.

The final search query used for this task employed the following TITLE-ABS-KEY sequence: “posture
optimization” AND (“robotic machining” OR “manufacturing”) AND “machining with a robotic arm”. The
literature search was conducted in February 2025, covering publications from March 2005 to February 2025. As
aresult, a total of 4532 publications were selected from the Scopus repository, including conference papers, journal
articles, review papers, book chapters, and other scholar literature.
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Publications lacking relevant information—such as those unrelated to the research topic or authored
anonymously—were excluded. The full records of the resulting publications were exported, including citations
and bibliographic data, abstracts, keywords, funding information, and other metadata.

Database: Scopus TITLE-ABS-KEY:

Search field: TITLE-ABS-KEY "postural optimization" AND ("robotic machining"
Language: English OR "manufacturing") AND "robot arm"
Range: 2005-2025 Total = 4,532 records

TITLE-ABS-KEY: Filtering, phase 1
"Aluminium" OR "CFRP" OR "Titanium" Remove duplicates &
Total = 1,028 records non-peer-review docs

Source type: Journals
Filtering, phase 2 Doc type: articles + reviews Filtering, phase 3
Lightweight materials Range: 2005-2025 Last decade focus
Total: 74 records

Included in review:
* Posture optimisation: 35 papers
 Force/FRF analysis: 25 papers
* Error compensation: 14 papers

Posture Optimization Techniques for
Enhanced Robotic Machining
Performance: A Review

Figure 2. Representative Flowchart of the Systematic Literature Review.

3. Results

Posture optimization in milling robots has emerged as an effective solution to address structural stiffness
issues. Although strategies such as the adoption of hybrid serial-parallel architectures [1,27] or the use of
alternative materials in robotic arms and joints have demonstrated improvements in the system’s overall stiffness
[28], they also introduce significant complexity in design, manufacturing, and control, which limits their practical
implementation in industrial settings, as noted by Guo et al. [14] and Ji & Wang, [23]. An alternative with lower
structural impact involves introducing redundant degrees of freedom [29,30], such as tool axis rotation in five-
degree-of-freedom systems, as proposed by Chen et al. [31].

Current research is primarily focused on six key areas of improvement: stiffness modelling, experimental
stiffness identification, selection of posture optimization indices, cutting force direction control, and trajectory-
based posture optimization.

3.1. Static Stiffness Modelling of the Robot

Structural stiffness determines a system’s ability to resist elastic deformation under external forces. Although
the forces involved in milling are dynamic and variable, static modelling has proven to be an acceptable
approximation when operating far from the robot’s natural frequencies, as noted by Cordes et al. [32]. Moreover,
factors such as backlash [33], friction [34], and variable damping [35] complicate the development of accurate
dynamic models. In this context, Virtual Joint Modelling (VIM) offers a balance between accuracy and simplicity.
This method treats joints as torsional springs and links as rigid bodies, and has evolved from models with 6 up to
36 stiffness parameters [36,37].

On the other hand, Finite Element Analysis (FEA) provides the most detailed modelling approach by
discretizing the robot into a mesh, where accuracy depends on boundary conditions, material properties, and mesh
quality [38]. However, its results are valid only for specific postures, which requires frequent recalibrations [15,39].
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Matrix Structural Analysis (MSA) models links as flexible beams and is more suitable for parallel robots and
applications where the structural frame is rigid. Although its accuracy is lower in systems with flexible joints, it
has been experimentally validated on Stewart-type platforms [40,41].

Therefore, as shown in the Table 4, Static stiffness modelling provides an essential foundation for predicting
deformation and optimizing machining accuracy. While VIM offers simplicity and adaptability, FEA ensures high
accuracy at the cost of computational intensity. MSA remains valuable for rigid and parallel mechanisms. The
reviewed studies collectively highlight the trend toward integrated stiffness optimization in motion planning and
toolpath generation.

Table 4. Static Stiffness Modelling of Industrial Robots.

Author Main Purpose Method or Model Key Findings
Chen et al. [31], To 1MProve pose planmng Finite Element Analyslls (FEA) Demonstrated pose optimization
for increased stiffness for posture-based stiffness . .
2021 . o . improves machining accuracy
during milling evaluation

Experimental and simulation-
based stability analysis
considering kinematic
redundancy

Demonstrated that redundancy
control improves milling stability
by avoiding critical postures

To enhance stability in
robotic milling through
redundancy optimization

Cordes et al.
[32], 2019

Optimization reduces vibration
and improves tool-path

To optimize robot

Liuetal, [34], redundancy for smoother

Global optimization algorithm

2023 milling motions applied to 6R robot smoothness
To model joint stiffness and . . . . . o
Lehmann et al. identify parameters Experimental identification Provided quantitative joint
[35],2013 yp using the clamping method stiffness parameters

accurately
To develop stiffness models
using Matrix Structural

Validated on Stewart-type

Klimehik, et al. platforms; effective for parallel

[36], 2018

Analytical formulation of MSA
for robot manipulators

Analysis (MSA) mechanisms
Klimehik et al. To assess robot performance V1rtua} Joint Modell.lng (VIM) Found trade-offs between model
. S with multiple stiffness complexity and computational
[37], 2017 in machining .
parameters efficiency

To optimize tool posture

Lietal. [39], considering joint loads

Combined static and FEA-based Improved surface quality and

2023 and stiffness posture optimization reduced tool deflection
Khan et al. [40], To'de'velc')p real-time DPSO algorithm applied to Improved accuracy and
optimization for robot . . . . .
2020 . inverse kinematics computational efficiency
motion control
To generate optimized Region-based optimization

Liao et al. [41],
2020

Improved machining accuracy and

toolpaths considering algorithm integrating stiffness reduced deflection errors

stiffness distribution modelling

3.2. Static Stiffness Identification of the Robot

Since manufacturers typically do not provide stiffness parameters for robots, these must be identified
experimentally [42]. Among the most commonly used methods are the immobilization of individual joints under load
and the selection of postures with high inverse condition numbers to maximize stiffness sensitivity in joint space
[9,11]. Zhang et al. proposed combining dexterity indices with conditioning metrics to define optimal measurement
configurations [43], while Chen et al. developed joint transmission models based on both local and global parameters
[19]. Traditionally, a constant stiffness coefficient has been assigned to each joint; however, in practice, this value
varies nonlinearly with the joint angle [44]. Emerging methods such as variable stiffness modelling in spatial meshes
[45] and the use of Reconfigurable Rotary Stiffness-Enhanced Actuators (RRSEAns) have been proposed to better
capture these dynamics [46], though they are not yet widely adopted due to their complexity.

As shown in the Table 5, accurate identification and modelling of static stiffness is essential for posture
optimization in robotic milling processes. While VIM provides a good balance between accuracy and complexity,
FEA and MSA models offer value in specific scenarios. The future integration of variable-stiffness models holds
promise for improved adaptability, though current strategies still favor the assumption of constant stiffness due to
its practical effectiveness.
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Table 5. Static Stiffness Identification of Industrial Robots.

Author Main Purpose Method or Model Key Findings
To improve accuracy in- . oL delling and stiffness Ide‘:ntlﬁed’optlmal postures with
Song etal.  robotic side milling sensitivity analvsis usine inverse higher stiffness and accuracy;
[9], 2024 through posture Y analy & confirmed effectiveness for accuracy
o condition numbers AR
optimization compensation in milling
To analyze how robot . L
Xinetal.  structural modes affect Experimental modal and stability Founc?l that stiffness distribution .
. . . strongly influences chatter suppression
[11],2022  regenerative chatter domain analysis e
. . and stability limits
during milling
Achieved accurate stiffness estimation
. To estimate stiffness Semi-analytical formulation  without full FEA; confirmed the need
Nigus [42], . . . . . . .
2014 parameters for a parallel combining analytical and for experimental identification since
kinematic machine numerical modelling manufacturers rarely provide
stiffness data
To develop a calibration  Integration of dexterity indices
Zhang et al. method accounting for with conditioning metrics for Improved accuracy and repeatability
[43],2024  pose uncertainty and optimal measurement in stiffness-based pose compensation
stiffness errors configurations
Abrajan & To examine nonlinear Dynamic modelling and Demonstrated that stiffness varies
Kelly [44], stiffness variation with ~ experimental validation of joint nonlinearly with joint angle, challenging
2018 joint angle compliance constant-stiffness assumptions
. To design actuators with Development and control O.f 4 Enabled real-time stiffness adaptation
Qian et al. adjustable stiffness Reconfigurable Rotary Series to load and posture; highlighted
[45], 2022 J o Elastic Actuator (RRSEA) with . posture; ighlig
characteristics . . potential for adaptive robotic systems
nonlinear stiffness
Guot ot S i et At it machiing i
[46], 2015 ) and stiffness-oriented control efficiency

during machining optimization

3.3. Selection of Indices and Posture

Posture optimization in robotic milling critically depends on the selection of indices that accurately represent
the system’s stiffness, stability, and dynamic capabilities. One of the most widely adopted approaches involves
the use of stiffness ellipsoids at the tool-workpiece contact point. These ellipsoids enable the visualization and
quantification of directional stiffness, helping to guide the selection of postures that offer optimal rigidity [46,47].
The strategy typically involves maximizing the ellipsoid radii in the cutting direction, thereby reducing elastic
deformation induced by the tool.

Another common technique is the analysis of the Frequency Response Function (FRF), which evaluates the
system’s dynamic behaviour across different postures and identifies the configurations offering greater stability
against chatter. This analysis has been applied to accurately predict stability regions in the frequency vs. depth-of-
cut domain [48].

Additionally, composite indices have been developed that integrate kinematic, dynamic, and stiffness-related
aspects into a unified optimization model. For example, recent studies have combined criteria such as trajectory
smoothness, milling width, and proximity to singularities to generate optimal postures using sequential quadratic
programming algorithms [49].

Bio-inspired optimization algorithms, such as the Grey Wolf Optimizer (GWO), have also been implemented
to identify postures that simultaneously maximize stiffness in the cutting plane and positional accuracy of the
system [19,50]. The choice of performance index is critical, as it determines the trade-offs accepted between
stiffness, stability, accuracy, and kinematic feasibility [51,52].

Finally, statistical prediction methods, such as multi-output Gaussian Process Regression, have been explored
to estimate the dynamic behaviour of untested postures. This enables generalization of identification results and
supports real-time optimization in production environments [53].

In summary, as shown in the Table 6, posture optimization in robotic milling is evolving from simple
geometric approaches toward multi-domain strategies that integrate dynamics, stiffness, and vibratory behaviour.
The combination of mechanical indices with advanced optimization techniques enables the selection of postures
that enhance process stability, surface quality, and machining precision.
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Table 6. Posture Optimization in Robotic Milling.

Author Main Purpose Method or Model Key Findings
Chen et al Tp optimiz§ posturq Comprehensive Qeformatior} index Achi§v§d' posture conﬁguratigns
[19] 2021’ considering spindle weight and sequential quadratic minimizing deformation while
i and cutting force effects programming maintaining kinematic feasibility

To optimize robot posture Static stiffness-based optimization Maximizing stiffness ellipsoid in

Guo et al. S . . . the cutting direction reduces elastic
considering stiffness in using . .
[46], 2015 . - . . deformation and improves
robotic machining stiffness ellipsoids .
machining accuracy
. To refine workspace and .. . Enabled quantitative representation
Kito et al. . . Minimum volume enclosing Lo .
posture selection using . . of directional stiffness and safe
[47], 2021 L . ellipsoid method in task space .
ellipsoid metrics workspace evaluation
To pr.edlct dynamic Frequency Response Function Accurately predicted stability
Deng et al. behaviour and chatter (FRF) analysis considering pose regions in the frequency—depth-of-
[48],2023  stability across different Y £p cut domain; improved
and feedrate .
robot postures chatter suppression
Liu et al To estimate deflection in ~ Composite modelling integrating Developed deflection estimation
[49] 202'2 industrial robots with kinematic, stiffness, and dynamic approach enabling multi-objective
’ flexible joints parameters optimization of posture
Mirialili et To develop a metaheuristic ~ Grey Wolf Optimizer (GWO)  Enhanced convergence speed and
al. [ SJO] 2014 optimization algorithm  applied to multi-objective posture precision in stiffness and
) ’ inspired by social hierarchy problems accuracy optimization
Lei et al. To predict posture- Multi-task Gaussian Process Enabled real-time prediction of

stiffness and vibration

[51],2023 dependent tool tip dynamics Regression (GPR) model characteristics across postures

To define and optimize a
Zhang etal. comprehensive stiffness
[52],2019 performance index for
robotic milling
. To optimize layout and  Statistical modelling and stiffness- Demonstrated effective prediction
Tian et al. . . R . . .
operational posture in  based optimization using Gaussian of untested postures and improved
[53], 2017 L - .
robotic grinding systems Process Regression surface quality

Analytical modelling combined Proposed a global stiffness
with performance index performance index for posture
optimization evaluation and control

3.4. Cutting Force Direction and Its Relationship with Performance

The direction of the cutting force during robotic milling has a direct impact on system performance, as it
interacts with the robot’s directional stiffness. Since industrial robots exhibit anisotropic stiffness, forces applied
in certain directions result in greater deformations than in others, affecting both surface quality and the dynamic
stability of the process [30,54].

Recent studies have shown that, for specific robot postures, maximum stiffness does not always align with
the primary cutting direction, which can trigger conditions prone to chatter or geometric inaccuracies. To address
this issue, models have been proposed that integrate the cutting force direction with the orientation of the stiffness
ellipsoid in Cartesian space. By aligning the main cutting direction with the axis of maximum stiffness, structural
deformation is minimized and milling performance is enhanced [13,55].

Additionally, certain low-frequency vibration modes, induced by the robot’s structural configuration, may
coincide with the tool’s excitation frequencies in specific postures. In such cases, the cutting direction can either
suppress or amplify these modes, affecting the critical depth of cut and, consequently, machining efficiency
[11,56]. Active approaches have also been proposed, such as using contact actuators that apply counteracting
forces opposite to the cutting force to neutralize unwanted deformations and suppress vibrations. These systems
effectively modify the interaction between the cutting force and the robot’s directional stiffness, improving
dynamic behaviour without requiring posture reconfiguration [57,58].

In summary, as shown in the Table 7, the relationship between cutting force direction and the directional
stiffness of the robotic system is a critical factor in posture optimization. Orienting the cutting process along
structurally favourable directions enhances stability, accuracy, and milling efficiency, while active solutions can
complement this strategy when reorientation is not feasible.
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Table 7. Cutting Force Direction and Its Relationship with Robotic Milling Performance.

Author Main Purpose Method or Model Key Findings
. To study influence of structural Experimental modal analysis Revgaled'that 'certam postures
Xin et al. . amplify vibration modes when
modes on chatter and and frequency domain . L . .
[11], 2022 - . e . cutting direction aligns with low-
stability boundaries stability evaluation .
stiffness axes
Yane et al To detect early chatter under Dynamic signal analysis and Found that misalignment between
[l 3]g ) 023' varying postures and posture-dependent cutting direction and maximum

cutting parameters chatter prediction stiffness axis increases chatter risk
To optimize workpiece Demonstrated that aligning the task
Yeetal. placement to minimize contour with the robot’s stiffest direction
[54], 2021 errors due to posture-dependent reduces contour errors and improves

Task-dependent placement
optimization using stiffness
mapping and error modelling

stiffness dimensional accuracy
Quetal. To optimize feed direction and Pr.oﬁ.le—e.rror.—oriente.d Achic?vefi minimall proﬁle error by
[55], 2023 posture for ﬁeg—form surface 'optlmlzat.lon '1nteg.rat1ng', al1gnlqg feed d.1rect10n Wlth
’ milling stiffness ellipsoid orientation maximum stiffness axis
. S . Cor}togr-e'rror-based Showed that posture reorientation
Linetal. To minimize contour errors via optimization of tool mitigates vibration amplification and
[56],2022 end-effector pose optimization orientation and

. . improves machining precision
cutting direction p gp

Active counterforce application
reduces deformation and improves
dynamic stability without
posture changes

Pene et al To improve toolpath smoothness  Path optimization using
[ 57]g 2020’ and reduce deformation through smoothness-oriented control
’ active compensation with counteracting actuators

To enhance posture optimization Sequential quadratic
Chen & . . ) . .
Ding [58] using sequential quadratic =~ programming with integrated
& > programming under varying stiffness—force
2023 . . . .
cutting loads interaction modelling

Validated that active optimization of
cutting direction improves stability
and surface quality

3.5. Posture and Trajectory Optimization

The joint optimization of the robot’s posture and the toolpath is one of the most effective strategies to improve
robotic milling performance. This approach not only avoids low-stiffness configurations but also reduces vibration,
enhances machining quality, and increases process efficiency [59]. Unlike traditional methods that optimize only
the geometric trajectory, modern approaches incorporate mechanical parameters, such as directional stiffness and
dynamic stability, into the planning process [57]. For instance, a model has been proposed that simultaneously
optimizes posture by considering both trajectory smoothness and milling width, using sequential quadratic
programming. This approach has been shown to improve surface finish and reduce total machining time [39].

Another relevant strategy is the prediction of the Frequency Response Function (FRF) across multi-posture
trajectories. This method allows forecasting the system’s stability along the entire toolpath, enabling the avoidance
of chatter-prone regions and the automatic selection of cutting parameters and optimal posture for each segment
[60,61]. Recent studies have also explored the joint optimization of posture and spindle speed. Coordinated
adjustment of both parameters has led to significant reductions in peak acceleration and vibration amplitude,
improving surface quality even along complex trajectories [62].

Furthermore, the use of Al-based prediction models has enabled the estimation of the system’s dynamic
performance at unmeasured points. For example, Gaussian Process Regression (GPR) has proven effective in predicting
the robot’s stiffness and modal behaviour along the toolpath, facilitating intelligent real-time planning [51,63].

In summary, as shown in the Table 8, the simultaneous optimization of posture and trajectory transforms
robotic milling into an adaptive and intelligent process, capable of anticipating dynamic issues and automatically
adjusting operational parameters. This strategy represents a key step toward the robust automation of complex
manufacturing processes using industrial robots.
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Table 8. Posture and Trajectory Optimization in Robotic Milling.

Author Main Purpose Method or Model Key Findings
Sequential quadratic
programming combining
trajectory smoothness and
milling width

To optimize tool posture
considering joint load and
stiffness in surface milling

Significantly improved surface
finish and reduced total
machining time

Li et al. [39],
2023

Enabled real-time estimation of
dynamic response across
trajectories; supported
intelligent planning
Integrated toolpath and posture Improved machining stability and

Multi-task Gaussian Process
Regression for
dynamic prediction

Lei et al. To predict posture-dependent
[51], 2023 tool tip dynamics

To achieve constant load and

Liao et al. stiffness-matched toolpath optimization using stiffness uplfo.rn.l surface quality by
[59], 2024 lanning in surface millin matching and maintaining constant load and
P £ g load balancing stiffness along trajectory

Stiffness and smoothness

To generate optimized toolpaths Increased stability and tool life

&}z)e]n ;[);i for robotic flank milling based on op tlmlzatlon;ﬁ?}? el integrated through stiffness-oriented

’ stiffness and smoothness posture planning trajectory generation
Sousa et al To analyze cutting forces and Review and modelling of Hilfilélg%i(:igheéﬁggﬂ?fréise()f
[61] 2020' their impact on cutting-force r?cjlic tiongin tra‘egto

’ process planning estimation techniques p n i trajectory

optimization

Cao ct al To coordinate posture and Integrated optimization of Ijﬁigf;ii?ikl?fucjel.eri?;lo;;j:g
[62], 2 01'7 spindle speed for improved spindle dynamics and surface P ualit ’alorll)

’ milling performance robot posture quairty J

complex paths
To review advances in . Provided foundations for real-
. . . Survey of multi-sensor . . S .
multifunctional sensing and Al- . . time adaptive optimization using
- systems and Al integration . .
based monitoring sensor data and machine learning

Majumder et
al. [63], 2019

3.6. Advanced Optimization Methods

Advanced optimization methods in robotic milling are designed to address complex problems involving
multiple interrelated variables such as posture, stiffness, dynamic stability, precision, and surface quality. As
requirements for accuracy and efficiency increase, classical solutions based on kinematic analysis or empirical
testing become insufficient. As a result, there is growing adoption of global optimization algorithms, artificial
intelligence (Al) techniques, and predictive models.

One of the most prominent approaches involves the use of evolutionary algorithms, such as the Grey Wolf
Optimizer (GWO) and Particle Swarm Optimization (PSO), to identify optimal postures that simultaneously
maximize stiffness and accuracy. These bio-inspired algorithms have demonstrated strong capability in navigating
non-convex search spaces, where deterministic methods often fail. For example, robot positional errors have been
reduced to below 0.05° after applying dual compensation based on GWO-optimized postures [40,41].

In dynamic prediction, techniques such as Multitask Gaussian Process Regression (MTGP) have been used
to estimate Frequency Response Functions (FRFs) at unmeasured postures. This significantly reduces the number
of tests needed to plan an optimal toolpath while maintaining the accuracy of the dynamic model [51].

Moreover, active compensation methods have been developed using actuators or adaptive vibration filters.
For instance, inertial active damping systems can dynamically modify the robot’s stiffness in real time, enhancing
stability under aggressive cutting conditions or high-speed operations [64]. Strategies have also been explored that
combine predictive modelling with the simultaneous optimization of multiple variables, such as posture, spindle
speed, and feed direction. These strategies are implemented through hybrid algorithms, including objective
function regression combined with heuristic search techniques [10,16].

Taken together, as shown in the Table 9, these advanced optimization methods mark the transition of robotic
milling toward a process intelligence paradigm—systems that not only execute programmed tasks, but also adapt
their dynamic parameters in real time to maximize performance under changing conditions. This approach
represents a fundamental step toward robotic autonomy in demanding industrial environments.
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Table 9. Advanced Optimization Methods in Robotic Milling.

Author Main Purpose Method or Model Key Findings
Hou et al To jointly optimize robot ' Hybriq global’optimization Improvefl maphining gtability and
[10], 202 5 posture and spindle speed for integrating heuristic search and reduced vibration amplitude through
’ enhanced performance objective function regression coordinated parameter optimization
Sahu et al To enhance robotic milling D‘evelopment of agtive Signiﬁcgntly reduced Vibration‘
[16], 202 4 performance through damping control targeting low- levels and improved surface quality
’ active damping frequency modes in flexible configurations
Dual Particle Swarm Achieved high accuracy and

To improve real-time inverse

Khan et al. Kinematics and posture Optimization (DPSO) convergence efficiency; positional
[40], 2020 cs ancp algorithm applied to 6-DOF  errors reduced below 0.05° after
optimization . .
robotic systems dual compensation
Liao et al To generate optimized Region-based toolpath Improved machining precision and
[41]. 2 026 toolpaths considering stiffness  optimization with stiffness  toolpath adaptability using stiffness-
’ for freeform surface milling integration aware optimization
Lei ot al To predict dynamic behaviour ~Multitask Gaussian Process Enabled accurate dynamic
[51],2 02'3 of robotic systems at Regression (MTGP) for estimation with fewer experimental
’ unmeasured postures FRF prediction tests; facilitated intelligent planning
To evaluate feasibility of Implementation of inertial Demonstrated re al-time m(?dlﬁcatlon
Ozsoy et al. . . . . . . of structural stiffness and improved
[64]. 2022 robotically assisted active active damping and adaptive dvnamic stability under
’ vibration control in milling vibration filtering Y vy

high-speed operations

4. Discussion

First, we note that this work has contributed to expanding the candidate’s comprehensive understanding of
the general issues affecting dimensional quality in robotic machining, particularly those arising from the limited
mechanical stiffness properties of articulated robotic arms used for high material removal rate milling tasks. As a
result of the conducted literature review, it is clear that current research spans multiple areas, including stiffness
modelling, posture optimization, deformation compensation, and vibration suppression. A thorough analysis of
this body of knowledge has led to the identification of four key research areas, which serve as guidance for
selecting an appropriate optimization strategy:

1. Static stiffness modelling and identification: This is fundamental for posture optimization and involves
approaches such as the Virtual Joint Modelling (VIM), Finite Element Analysis (FEA), and Matrix Structural
Analysis (MSA) [30,38]. The exploration of variable stiffness modelling is highlighted as a promising
direction to enhance system adaptability [39].

2. Posture optimization and selection of representative indices: This area focuses on correlating the robot’s
stiffness with its operational posture, considering cutting forces and other process parameters. The goal is to
develop methodologies that improve flexibility and efficiency in robotic machining [49,54].

3. Acquisition of dynamic process information: Characterizing and analysing milling conditions is essential for
vibration control and precision improvement. Methods such as Rigidity-Conditioned Stability Analysis
(RCSA) and the Modified Stiffness Transmission Matrix Method (MSTMM) are assessed for their
effectiveness under dynamic conditions [55-57,60,63].

4. Hybridization of the above techniques: This refers to the integrated application of the previously mentioned
models and techniques, adapted to the specific requirements of the machining process and the mechanical
characteristics of serial robots [7,10].

The growing integration of industrial robots in subtractive manufacturing operations requires not only
maximizing the robot arm’s capability relative to the technical demands of the process, or selecting the most
suitable machining conditions based on the characteristics of the manufacturing system, but also carefully choosing
the most appropriate optimization strategies according to the production context.

Based on a graphical and structural comparison of six advanced optimization methods, it becomes evident
that no single universal solution exists for all machining processes. Instead, the choice should be primarily guided
by the nature of process, application environment, and operational constraints. The SWOT matrix synthesising
these findings, shown in Table 10, illustrates the current approaches.
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Table 10. SWOT—Optimization Methods in Robotic Machining.

Strengths ‘Weaknesses
v' High computational cost in real-time applications.
v" High potential to improve dimensional accuracy, surfacev’” Complexity in modelling robot dynamics and

quality, and process stability. stiffness.

v" Enables adaptation to variable machining conditions. v" Requires expert knowledge for tuning and

v" Reduces trial-and-error in process planning. implementation.

v Facilitates integration with Al and predictive models. v" Limited standardization across platforms and robot

brands.
Opportunities Threats

v Integration with Industry 4.0, digital twins, and smartv” Resistance to adoption due to conservative industrial
manufacturing environments. practices.

v' Development of hybrid algorithms (Al + physics-basedv” Risk of overfitting in data-driven models without
models). sufficient experimental validation.

v Increased demand for flexible automation in aerospace,v” Hardware limitations in low-end industrial robots
energy, and large-component sectors. (e.g., limited sensors or DOFs).

v Growth of open-source tools and collaborative roboticsv” Uncertainties in  machining of novel or
platforms. heterogeneous materials.

The SWOT matrix highlights that a well-chosen robot posture optimization technique stands out as a core
strength of the robotic machining process. By minimizing elastic deformations and posture-induced errors, it
ensures high dimensional accuracy. This presents a tangible opportunity to deploy production cells centred around
serial robots—an approach whose technical maturity has already been validated in industry.

However, this advantage is balanced by the weakness of its technical complexity in implementation, and it
faces the critical threat of high development and integration costs. These costs will only be manageable if the
optimization strategy is planned from the system design phase, ensuring that integration challenges are addressed
proactively rather than reactively.

The most prominent trend in conventional milling processes—typical in the automotive industry or general
metal manufacturing—highlights the effectiveness of posture optimization considering stiffness and error
compensation, as shown in Figure 3. This approach combines technological maturity with proven results in
improving stability and surface quality. Although its technical implementation can be demanding, particularly in
terms of modelling and sensing, its cost-effectiveness is evident in highly repetitive production environments,
where the initial investment is justified [9,15].

On the other hand, weld seam overstock removal, common in petrochemical or energy sectors, presents a
highly demanding scenario, where cutting forces are elevated and unstable vibrations severely compromise
structural integrity and efficiency. In such cases, methods like chatter suppression using transforms and active
actuators emerge as particularly effective solutions. Their ability to adapt dynamic stiffness in real time represents
a significant advancement. Despite their cost and complexity, they enable operation under aggressive conditions
without compromising quality.

SWOT Comparison of Optimization Methods in Robotic Machining
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Figure 3. Representative Flowchart of the Systematic Literature.
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In high-precision applications such as metal-CFRP drilling, PSO-LSTM models can anticipate cutting-force
dynamics and proactively tune parameters, which is valuable in non-recoverable processes. Their main limitations
are data dependence, computational cost, hyperparameter sensitivity, and vulnerability to noise/overfitting. In
contrast, GWO is data-agnostic and effective in non-convex search, but may exhibit poor local refinement and
become trapped in local optima, limiting consistent discovery of global solutions. In practice, hybrid pipelines—
using GWO to explore promising regions and PSO-LSTM to refine real-time force prediction—mitigate individual
weaknesses and align with the threats and opportunities identified in the SWOT.

This reflection reinforces the idea that the selection of optimization techniques must go beyond their
technological sophistication, prioritizing their suitability for real process conditions and their integration potential.
The key lies in balancing the added value in quality and productivity with implementation feasibility and return
on investment, depending on the sector, material, and specific operation.

Future Research and Interests

Since Colgate et al. defined the collaborative robot in 1996 and Universal Robots released the URS5 in 2008,
collaborative robotics has matured into a viable alternative for machining tasks that once required complete cell
isolation [65]. Collaborative robots are typically lighter and less rigid than conventional industrial arms, which
exacerbates posture-dependent compliance and dimensional errors. Consequently, posture optimization is not
merely beneficial but essential in cobots machining, as it directly mitigates the increased compliance associated
with lightweight designs. The logical next step would be to transfer this know-how to the collaborative domain,
where human-robot proximity demands the preservation of dimensional quality without compromising safety or
the flexibility that cobots offer. It must be emphasized that collaborative robots are usually lighter and less rigid
than industrial arms, which makes them even more prone to stiffness-related errors.

As illustrated in Figure 4, the expected research trends in collaborative robotic machining focus on
synchronising posture optimisation with safety standards, improving dynamic modelling, integrating trajectory
and spindle planning, employing digital twins for real-time validation, and advancing multimodal Al interfaces
for seamless human—robot cooperation. For this reason, posture optimization in cobots is not only relevant but
essential, as it directly mitigates the increased compliance issues associated with their lightweight design, and the
key priority research lines identified were:

1. Synchronizing posture optimization with collaborative safety standards. The 2025 update of ISO 10218
consolidates and strengthens requirements previously outlined in ISO/TS 15066. Meeting these force and
energy limits while pursuing maximum stiffness will require algorithms that re-optimize posture in real time:
every time the operator enters the cell, the cobot must switch from an “optimal machining posture” to a “safe
posture” without degrading precision beyond acceptable thresholds.

2.  Enhancing dynamic modelling specific to cobots. Compared to traditional robot-CNC cells, collaborative
machining imposes even stricter stiffness limits. Here, multimodal prediction using PSO-LSTM is
particularly relevant, as neural networks can anticipate force peaks before contact sensors trigger, enabling
early compensation or feed rate reduction. Additionally, studies incorporating redundant axes (e.g., seventh
linear axes, mobile platforms) show that the workspace can be expanded without compromising dimensional
quality if posture is re-optimized based on stiffness utilization and adaptive filtering [66—68]. This knowledge
is transferable to mobile cobots now emerging in aerostructure repair or modular construction.

3. Integrating posture-trajectory-spindle planning in industrial cobots. Recent methods that jointly optimize
posture and spindle speed to minimize vibration and chatter [69,70], as well as potential field-based models
that adjust both robot configuration and workpiece position [65,71], naturally fit into collaborative cells.
These approaches reduce noise and cycle time—critical factors for human coexistence—and could limit
reprogramming to selecting a new optimization parameter set instead of rewriting toolpaths.

4. Digital twins and low-cost sensors to lower the adoption barrier. One of the main threats identified in the SWOT
matrix (Table 4) is the cost of integration. Recent literature shows that a “light digital twin,” fed by in-process
measurements, can keep VIM or FRF models up to date at a fraction of the cost of full strain gauge setups
[72,73]. This approach closes the loop between cutting force direction optimization strategies and ISO 10218
safety requirements, offering a virtual layer where safe and efficient postures can be validated before execution.

5. Multimodal Al and adaptive interfaces for smooth cooperation. Breaking the traditional “human leader—robot
follower” hierarchy requires voice, gesture, and vision interfaces to feed the optimization loop. The operator
could state the goal (e.g., “re-machine this edge”) and the system would adjust posture in seconds to maximize
stiffness and minimize risk. Optimized MLPs (GA-BPNN, SeDANN) already exceed 90% accuracy in
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vibration mode classification [74,75]; the next step is fusing this predictive capability with dynamic models
to transparently reconfigure the cell.

Safety & ISO Dynamic Modelling Integrated Al &
Compliance & Prediciive Algorithr Adaptive Human-
(1SO 10218/TS 1506 (PSO-LSTM, Neural Robot Interfaces

Update) Prediction, Adaptive for Cognitive Coopertan
Fiitering

Digital Twins & Low-Cost Sensors
for Real-Time Validation
and Cost Reduction (Light-Titm Twin /eting

Multimodal AI & Adaptive Human—Robot(Vison)
for Cognitive Cooperation ~Human-Centred accsracy

Figure 4. Future Trends in Robotic Posture Optimisation for Collaborative Machining.

5. Conclusions

The review of more than 4532 publications from 2005 to 2025 confirms that robot posture optimization is
the most effective and cost-efficient intervention to mitigate the inherent low stiffness of serial manipulators during
milling, drilling, and deburring of large parts. Experiments evidence shows typical reductions of 40% in tool centre
point deflection and form errors when the toolpath is replanned using the optimal posture calculated via advanced
global search techniques and updated stiffness models.

The state of the art converges on four technological pillars: accurate modelling and identification of static
and dynamic stiffness, development of indices combining directional stiffness and vibrational stability,
simultaneous planning of posture-trajectory-spindle speed, and the use of artificial intelligence algorithms to
predict and compensate dynamic phenomena in real time. The maturity of evolutionary methods (PSO, GWO),
statistical models based on Gaussian processes, and lightweight digital twin architectures demonstrates that posture
optimization can now be integrated into standard CAM environments without requiring additional hardware and
is compatible with continuous production cycles.

The SWOT matrix built for six representative techniques underscores that posture optimization considering
stiffness and posture-induced errors is currently the option with the best balance between precision gain and
technological risk—especially in aerospace and automotive sectors, where there is a track record of industrial
deployment. Joint posture and spindle speed optimization appears as the second most robust alternative, adding
systematic improvement in surface quality at a manageable integration cost. In contrast, methods such as predictive
force detection and active chatter suppression offer clear opportunities for high-demand processes but require
significant investment in sensors, actuators, and technical training.

Extending these methods to collaborative robotics opens a high-impact scenario: human-robot proximity
imposes strict safety constraints per ISO 10218:2025, but it also adds flexibility and ease of reconfiguration. Real-
time posture re-optimization, powered by digital twins and multimodal neural networks, enables micrometer-level
tolerances to be maintained without exceeding the force and energy thresholds defined for safe interaction. Early
trials with mobile cobots and seventh-axis platforms show that it is possible to expand the workspace, reduce cycle
times, and preserve dimensional quality if the optimal posture is recalculated each time the workpiece setup or
human presence changes.

Beyond synthesizing the state of the art, this review contributes a unified three-pillar framework (optimize—
sense—compensate) and a decision-oriented SWOT that together act as a practical roadmap for industrial method
selection. By explicitly extending posture optimization to collaborative machining and articulating posture—safety
trade-offs, the work provides actionable guidance for deploying robot-based cells under ISO 10218:2025.

The research agenda must still overcome three decisive challenges: (1) establishing public, validated
databases of stiffness parameters for a wide range of commercial robots; (2) developing posture re-optimization
algorithms capable of complying with collaborative safety constraints while operating within industrial cycle
times; and (3) rigorously evaluating the total cost of ownership of these solutions compared to large-format CNC
machine tools. Closing these gaps would position posture optimization as the cornerstone enabling collaborative
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robotics to enhance precision outcomes without sacrificing the flexibility or cost-efficiency demanded by advanced
manufacturing.
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