
 

 

 

Bulletin of Computational Intelligence 

https://www.sciltp.com/journals/bci 

 

 

Copyright: © 2026 by the authors. This is an open access article under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
Publisher’s Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 

Article 

Dynamic Response of SDoF System with Negative 
Stiffness—A Relevant Key-Point for Machine Learning 
Nikoleta Chatzikonstantinou and Triantafyllos Makarios * 
Institute of Structural Analysis and Dynamics of Structures, School of Civil Engineering, Aristotle University of Thessaloniki, 
GR-54124 Thessaloniki, Greece 
* Correspondence: makariostr@civil.auth.gr 

How To Cite: Chatzikonstantinou, N.; Makarios, T. Dynamic Response of SDoF System with Negative Stiffness—A Relevant Key-Point for 
Machine Learning. Bulletin of Computational Intelligence 2026, 2(1), 31–53. https://doi.org/10.53941/bci.2026.100003 

Received: 13 August 2025 
Revised: 6 November 2025 
Accepted: 25 November 2025 
Published: 8 January 2026 

Abstract: The present article deals with the role of the negative stiffness of 
structures and the identification of negative stiffness by Artificial Intelligence and 
Machine Learning (ML). Generally, structures have positive stiffness combined 
with damping during earthquake-induced oscillations, which leads to energy loss 
and causes a reduction in the amplitude of the vibration. However, when a structure 
falls into the nonlinear region of a structure, the appearance of negative stiffness is 
possible. If this occurs, then the mathematical solution of equation of motion is 
changed drastically. This is the exact point covered by the present article and a 
suitable procedure (namely the key-point) for ML is given. This paper aims to 
define and solve the mathematical equation of motion for a Single Degree of 
Freedom (SDoF) oscillator with damping and negative stiffness due to various 
dynamic loading conditions. The derived solutions indicate that, for every case of 
dynamic loading, oscillation with negative stiffness is absent, and the structure’s 
response increases exponentially. The abovementioned facts are verified by the 
presentation of a benchmark example that gives the exact values of response of a 
SDoF system with negative stiffness. 

 Keywords: machine learning; seismic resistance design; seismic isolation; negative 
stiffness; negative stiffness system; damping 

1. Introduction 

The dynamic behavior of a structure depends on its mechanical characteristics as well as the characteristics 
of the excitation. However, earthquake-induced resonance is inevitable at some point during the structure’s 
lifetime, potentially causing significant damage. As a result, structural engineers have investigated seismic 
isolation methods by designing seismic isolators that shift the structure’s fundamental period out of the range of 
earthquake frequencies, thereby avoiding resonance between the structure and seismic excitation. However, when 
seismic excitations have a long duration, it is crucial that structures also possess sufficient ductility. This can be 
achieved either by increasing the ductility of the structure itself or by installing supplemental damping systems in 
specific regions of the structure [1–3]. Moreover, seismic isolation often causes large displacements in the region 
of the structure’s seismic joints, thus it is crucial to be eliminated. 

At first sight, the application of negative stiffness systems in seismic isolation of civil engineer structures 
seems to be a bit obscure and even dangerous for the structure’s stability. This fact led many researchers to use 
negative stiffness systems so as to have limited impact on the structure’s stiffness, for example the negative 
stiffness is considered as 20% of the structure’s stiffness. The above consideration seems to provide many 
advantages, according to the relevant studies conducted [4,5]. Also, often the displacements of the negative 
stiffness system are too large, so in order to not have an unstable state of the system [6], a “temporary limitation” 
is used in order to eliminate the action of negative stiffness and the system gains its positive stiffness again. The 



Chatzikonstantinou and Makarios  Bull. Comput. Intell. 2026, 2(1), 31–53 

https://doi.org/10.53941/bci.2026.100003  32 

system has positive stiffness for a few seconds, and then it gains negative stiffness again for a few seconds. This 
procedure is going on until the earthquake incident comes to an end. 

The implementation of negative stiffness as a property of structures, in order to provide seismic isolation, is 
a subject that attracts more and more researchers lately. This is evident through the various studies conducted in 
order to form innovative seismic isolation devices with negative stiffness mechanisms. However, it is often 
observed that the proposed systems seem to be functional in experimental examination, but there is no theoretical 
definition of the response i.e., the mathematical equations of the system’s motion are not defined. Furthermore, in 
some cases, when a structure is investigated through pushover analysis, the stiffness becomes negative when the 
displacement exceeds a specific value. Indeed, in the studies of Makarios et al. [7–9], where several cases of real 
structures are examined, the results of the pushover analyses show that when the structures enter the Near Collapse 
(NC) state, a significant reduction of the system’s stiffness occurs, and a descending branch appears to the pushover 
curves. Consequently, it is crucial in order to fully understand the behavior of such systems, to investigate 
thoroughly these systems, analytically and mathematically, so as for the correct and efficient design of seismic 
isolation elements to be possible, that will eliminate structure’s oscillation due to dynamic loading. 

The consideration and analytical investigation of a Single Degree of Freedom (SDoF) oscillator with negative 
stiffness undergoing free oscillation is a simple yet effective approach to achieve a deeper understanding of 
negative stiffness systems. It is important to note that civil engineering structures typically possess multiple 
degrees of freedom; therefore, a SDoF simulation is only applicable in specific cases, such as water towers or 
single-story buildings, where columns are considered weightless. Studying the behavior of SDoF systems under 
dynamic loading enhances our understanding of the key parameters in dynamic problems and provides valuable 
insights for further investigation of more complex systems [10,11]. A mathematical investigation of a SDoF 
oscillator with negative stiffness and no damping was conducted in a previous study [12]. However, in reality, all 
dynamic systems dissipate energy during oscillation and this is the issue of the present study. In buildings, energy 
dissipation occurs through friction between the superstructure and the foundation, friction between structural 
elements and infill walls, and other mechanisms. Therefore, this paper focuses on the formulation and solution of 
the equation of motion for a SDoF oscillator with positive mass, negative stiffness, and damping. Moreover, 
Machine Learning (ML) techniques are applied in structural engineering aiming to enhance structural health 
monitoring [13], damage detection [14], structural performance [15], material modeling [16], finite element 
analysis [17] and vibroacoustic analysis [18]. The idea of implementing ML in structural engineering has gained 
interest through the last years due to the growing progress in ML techniques [19]. The concept of ML deals with 
a group of methodologies that can be used to detect patterns in data, in an automatic way and thus can be used to 
form prediction models as well as to help with decision making under complex conditions [20]. Given that, we 
can assume if certain parameters are known, it is possible to define the behavior of a structural system under 
dynamic excitations, even for the case where the system’s stiffness becomes negative. Specifically, artificial 
intelligence and ML can identify the phenomenon of negative stiffness through the capacity curve of the system 
as it results from the performance of the nonlinear pushover analysis. Indeed, the general procedure that can be 
applied by the Artificial Machine is the following: (i) firstl, artificial intelligence must ask for the capacity curve 
-such as given in Figure 1—of the structure until its collapse. (ii) The second step is to calculate the stiffness of 
the structure at each step analysis as it is given in Figure 1, (iii) the third step is to verify that stiffness has taken a 
negative value, namely 𝑘ே. If the last step is true, then it must inform us that there is an area with negative stiffness 
(Figure 1) and therefore we are falling in the theoretical gap, because any other common nonlinear response history 
analysis is incorrect and this is due to the change of the mathematical solution of the motion equation with negative 
stiffness where now the solution has exponential form (and not harmonic). 

The above-mentioned conclusion by Artificial intelligence is true because structures that exhibit negative 
stiffness in the nonlinear region cannot be subjected to strong dynamic loading, because the equation of motion of 
the oscillation has a completely different mathematic form. This gap is covered by the present study. The present 
work gives the exact mathematical solution of the response of a single degree of freedom oscillator with negative 
stiffness, when it is excited at its base by a group of excitations from many harmonic terms. The study demonstrates 
that the system with negative stiffness results in greater energy dissipation compared to a SDoF oscillator with 
positive stiffness. Furthermore, the response displacement increases exponentially over time, indicating the 
absence of mass oscillation. This above-mentioned procedure constitutes the key-point for a novel machine 
learning technique for negative stiffness systems. 
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Figure 1. Machine Learning can identify the areas with Negative Stiffness, using the Pushover Curve. Note that 
point i represents every point of the pushover curve for which the stiffness of the system is negative. 

2. Analytical and Numerical Investigation of the SDoF System with Damping and Negative Stiffness 

2.1. Free Vibration with Damping (c ≠ 0, 𝑘ே < 0) 

Assume the SDoF oscillator of Figure 2 that due to force F reaches at the point C, where it possesses damping 
and negative stiffness 𝑘ே  and assume that it performs free vibration. Note that Figure 2 is representative of 
numerous analyses carried out, in which the occurrence of negative stiffness was prominently observed. Moreover, 
in the current study it was decided to present only the part that deals with the system’s behavior when stiffness 
becomes negative, in order to highlight the necessity of the modification of the existing algorithms that calculate 
the response in non-linear region. Thus, the software programs that are used to conduct pushover analyses need to 
check in every step of the procedure if the stiffness of the system is negative or not. In case that the system’s 
stiffness is positive, the calculations are conducted as usual. However, if the system’s stiffness becomes negative, 
then the mathematical equations presented in this study should be applied for as long as the negative stiffness 
occurs. This approach represents the central objective of this work. 

Starting from point C of the Capacity Curve of Figure 2, we are writing the equation of motion of the system 
as following: 𝑚 ∙ 𝑢ሷ ሺ𝑡ሻ + 𝑐 ∙ 𝑢ሶ ሺ𝑡ሻ + 𝑘ே ∙ 𝑢ሺ𝑡ሻ = 0 (1)

where 𝑘ே is negative, so we re-write Equation (1) using the absolute value |𝑘ே| and setting the negative sign 
outside the brackets in order to form a mathematically correct equation: 𝑚 ∙ 𝑢ሷ ሺ𝑡ሻ + 𝑐 ∙ 𝑢ሶ ሺ𝑡ሻ − |𝑘ே| ∙ 𝑢ሺ𝑡ሻ = 0    (2)

 

 
(a) (b) 

Figure 2. (a) SDoF system with positive mass m, damping c and (from point C has) negative stiffness kN. (b) Capacity 
Curve of SDoF system. 
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By dividing the two parts of the equation by mass m we get: 

𝑢ሷ ሺ𝑡ሻ + 𝑐𝑚 ∙ 𝑢ሶ ሺ𝑡ሻ − |𝑘ே|𝑚 ∙ 𝑢ሺ𝑡ሻ = 0 (3)

We consider the ratio 𝑝ଶ of two positive quantities as a positive quantity too. |𝑘ே|𝑚 = 𝑝ଶ (4)

By Differential Calculus it is known that the solution of Equation (3) shall be of an exponential form, i.e.: 𝑢ሺ𝑡ሻ = 𝑒ఒ∙௧ (5)

where λ is defined by: 

𝜆ଵ,ଶ = − 𝑐𝑚 ± ටቀ 𝑐𝑚ቁଶ + 4 ∙ 𝑝ଶ2  
(6)

Note that there is only one case to take into consideration in order to calculate λ, as the discriminant Δ is 
always positive defined, so there are two real and discreet roots 𝜆ଵ and 𝜆ଶ. In this case the two partial solutions 𝑢ଵሺ𝑡ሻ and 𝑢ଶሺ𝑡ሻ are: 𝑢ଵሺ𝑡ሻ = 𝑒ఒభ∙௧ (7)

𝑢ଶሺ𝑡ሻ = 𝑒ఒమ∙௧ (8)

The general solution of the initial differential Equation (3) is defined: 𝑢ሺ𝑡ሻ = 𝛢 ∙ 𝑢ଵሺ𝑡ሻ + 𝛣 ∙ 𝑢ଶሺ𝑡ሻ = 𝛢 ∙ 𝑒ఒభ∙௧ + 𝛣 ∙ 𝑒ఒమ∙௧  (9)

where Α and Β are arbitrary constants that will be defined later. As it is shown the extracted general solution does 
not depict a harmonic oscillation but shows clearly that the SDoF system with damping has exponential 
displacement for every time step which is given by the following equation: 𝑢ሺ𝑡ሻ = 𝛢 ∙ 𝑒ఒభ∙௧ + 𝛣 ∙ 𝑒ఒమ∙௧ 

Because it is known that: 

𝛥 = ቀ 𝑐𝑚ቁଶ + 4 ∙ 𝑝ଶ > 0 

At this point, it is useful to define system’s damping c as a function of the critical damping, 𝑐 = 𝜁 ∙ 𝑐௖௥ 
where ζ is a damping ratio with a range of values, either greater or minor than one. 𝑐 = 𝜁 ∙ 𝑐௖௥ = 2𝜁𝑚𝑝  (10)

The two real and discreet roots are given by: 

𝜆ଵ,ଶ = − 𝑐𝑚 ± ටቀ 𝑐𝑚ቁଶ + 4 ∙ 𝑝ଶ2 = −2𝜁𝑝2 ± ඥሺ2𝜁𝑝ሻଶ + 4𝑝ଶ2 = −𝜁𝑝 ± 𝑝 ඥ𝜁ଶ + 1  (11)

In order to calculate constants Α and Β, we assume that at the beginning of time (i.e., when t=0) the system 
possesses an initial velocity 𝑢ሶ ሺ0ሻ ≠ 0 (or 𝑢ሶ ଴ ≠ 0) and an initial displacement 𝑢ሺ0ሻ ≠ 0 (or 𝑢଴ ≠ 0). By using 
these initial conditions, we get the following expressions: 

𝛢 = 𝜆ଶ ∙ 𝑢ሺ0ሻ − 𝑢ሶ ሺ0ሻ𝜆ଶ − 𝜆ଵ  

𝛣 = 𝑢ሶ ሺ0ሻ − 𝜆ଵ ∙ 𝑢ሺ0ሻ𝜆ଶ − 𝜆ଵ  
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Thus, Equation (9) is fully defined and describes a non-periodical motion, which means that the parameter p 
is not possible to describe an eigenfrequency: 

𝑢ሺ𝑡ሻ = 𝜆ଶ ∙ 𝑢ሺ0ሻ − 𝑢ሶ ሺ0ሻ𝜆ଶ − 𝜆ଵ ∙ 𝑒ఒభ∙௧ + 𝑢ሶ ሺ0ሻ − 𝜆ଵ ∙ 𝑢ሺ0ሻ𝜆ଶ − 𝜆ଵ ∙ 𝑒ఒమ∙௧  (12)

The velocity of mass is given by: 

𝑢ሶ ሺ𝑡ሻ = 𝜆ଵ ∙ 𝜆ଶ ∙ 𝑢ሺ0ሻ − 𝑢ሶ ሺ0ሻ𝜆ଶ − 𝜆ଵ ∙ 𝑒ఒభ∙௧ + 𝜆ଶ ∙ 𝑢ሶ ሺ0ሻ − 𝜆ଵ ∙ 𝑢ሺ0ሻ𝜆ଶ − 𝜆ଵ ∙ 𝑒ఒమ∙௧ (13)

And the acceleration of mass 𝑢ሷ ሺ𝑡ሻ by: 

𝑢ሷ ሺ𝑡ሻ = 𝜆ଵଶ ∙ 𝜆ଶ ∙ 𝑢ሺ0ሻ − 𝑢ሶ ሺ0ሻ𝜆ଶ − 𝜆ଵ ∙ 𝑒ఒభ∙௧ + 𝜆ଶଶ ∙ 𝑢ሶ ሺ0ሻ − 𝜆ଵ ∙ 𝑢ሺ0ሻ𝜆ଶ − 𝜆ଵ ∙ 𝑒ఒమ∙௧ (14)

Figures 3–5 show the plots of the displacement, velocity and acceleration of a SDoF oscillator with mass m 
= 120 t, negative stiffness kN = −100 kN/m, initial conditions 𝑢଴ =  0.03 m,𝑢ሶ ଴ =  0.07 m/s and damping ratio ζ 
= 0.05, which performs free vibration. Note that despite damping, the system does not oscillate, and the 
displacement, velocity and acceleration are increasing exponentially by time. 

 

Figure 3. Displacements of the mass of the SDoF oscillator with damping and negative stiffness due to free vibration. 

 

Figure 4. Velocities of the mass of the SDoF oscillator with damping and negative stiffness due to free vibration. 
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Figure 5. Accelerations of the mass of the SDoF oscillator with damping and negative stiffness due to free vibration. 

Since the equations of displacement 𝑢ሺ𝑡ሻ, velocity 𝑢ሶ ሺ𝑡ሻ and acceleration 𝑢ሷ ሺ𝑡ሻ are defined it is possible to 
calculate the elastic force 𝑃௘, the damping force 𝑃ௗ and the inertial force 𝑃௔ of the SDoF system respectively. Indeed: 𝑃௘ = −|𝑘ே| 𝑢ሺ𝑡ሻ (15)

𝑃ௗ = 𝑐 𝑢ሶ ሺ𝑡ሻ (16)

𝑃௔ = 𝑚 𝑢ሷ ሺ𝑡ሻ (17)

Note that the above three forces are constantly in equilibrium according to D’Alembert’s principle. 𝑃௔ + 𝑃ௗ + 𝑃௘ = 0   (18)

𝑚 ∙ 𝑢ሷ ሺ𝑡ሻ + 𝑐 ∙ 𝑢ሶ ሺ𝑡ሻ = |𝑘ே| ∙ 𝑢ሺ𝑡ሻ (19)

This means that in every time moment t of the negative-stiffness-SDoF mass motion, the elastic force 𝑃௘ is 
competitive to the sum of the other two forces (i.e., inertial force 𝑃௔ and damping force 𝑃ௗ). Figure 6 shows the 
plots of the elastic force 𝑃௘, damping force 𝑃ௗ and inertial force 𝑃௔, respectively, for a SDoF system with mass 𝑚 = 120 t, negative stiffness 𝑘ே = −100 kN/m, initial conditions 𝑢଴ =  0.03 m , 𝑢ሶ ଴ =  0.07 m/s and damping 
ratio ζ = 0.05. Observe that for every time moment t the sum of the inertial force 𝑃௔ and damping force 𝑃ௗ is 
equal to the elastic force 𝑃௘, which means that in every time moment t the three forces are in equilibrium state. 

 

Figure 6. Plot of the elastic force, damping force and inertial force of the SDoF system with damping and negative 
stiffness due to free vibration. 
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2.2. Response of the SDoF System with Damping and Negative Stiffness Due to Harmonic Loading (c ≠ 0, 𝑘ே < 0) 

We consider again the SDoF system of Figure 7 with damping c and negative stiffness 𝑘ே which now is 
loaded with a dynamic harmonic load 𝐹 = 𝐹௢ ∙ sinሺ𝛺𝑡ሻ. 

 

Figure 7. SDoF system with positive mass m, damping c and (from the point C has) negative stiffness kN loaded 
with a dynamic harmonic load F. 

Starting from point C of the Capacity Curve of Figure 7, we are writing the equation of motion of the system 
as following: 𝑚 ∙ 𝑢ሷ ሺ𝑡ሻ + 𝑐 ∙ 𝑢ሶ ሺ𝑡ሻ + 𝑘ே ∙ 𝑢ሺ𝑡ሻ = 𝐹௢ ∙ sinሺ𝛺𝑡ሻ (20)

However, as 𝑘ே  is negative, we need to rewrite Equation (20) using the absolute value |𝑘ே|  and 
considering the negative sign outside the brackets, in order to form a mathematically correct equation: 𝑚 ∙ 𝑢ሷ ሺ𝑡ሻ + 𝑐 ∙ 𝑢ሶ ሺ𝑡ሻ − |𝑘ே| ∙ 𝑢ሺ𝑡ሻ = 𝐹௢ ∙ sinሺ𝛺𝑡ሻ (21)

According to Differential Calculus, the general solution of Equation (21) is the sum of two separate solutions: 
(a) the partial solution of the homogenous equation: 𝑚 ∙ 𝑢ሷ ሺ𝑡ሻ + 𝑐 ∙ 𝑢ሶ ሺ𝑡ሻ − |𝑘ே| ∙ 𝑢ሺ𝑡ሻ = 0 

the solution of the above equation is: 𝑢ሺ𝑡ሻ = 𝛢 ∙ 𝑒ఒభ∙௧ + 𝛣 ∙ 𝑒ఒమ∙௧ 
where constants Α and Β will be defined below, while 𝜆ଵ and 𝜆ଶ are calculatedas: 𝜆ଵ = −𝜁𝑝 + 𝑝 ඥ𝜁ଶ + 1 

𝜆ଶ = −𝜁𝑝 − 𝑝 ඥ𝜁ଶ + 1 

and (b) the partial solution due to the external harmonic loading 𝐹௢ ∙ sinሺ𝛺𝑡ሻ which is known that is given by the 
following type: 𝑢ሺ𝑡ሻ = 𝐶 sinሺ𝛺𝑡ሻ + 𝐷 cos(𝛺𝑡)  (22)

where constants C and D are defined as: 

𝐶 = 𝐹௢|𝑘ே| ∙ −(1 + 𝛾ଶ)(1 + 𝛾ଶ)ଶ + (2𝜁𝛾)ଶ (23)

𝐷 = 𝐹௢|𝑘ே| ∙ −2𝜁𝛾(1 + 𝛾ଶ)ଶ + (2𝜁𝛾)ଶ (24)

where parameter γ is described as the ratio of the excitation’s frequency Ω to the parameter p of the SDoF system, 
i.e., 𝛾 = ఆ௣. 
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So, the sum of the two partial solutions (a) and (b) gives us the general solution of Equation (21), as it follows: 𝑢(𝑡) = 𝛢 𝑒ఒభ∙௧ + 𝛣 𝑒ఒమ∙௧ + 𝐶 sin(𝛺𝑡) + 𝐷 cos(𝛺𝑡) (25)

Differentiating Equation (25) once, the equation of velocity is extracted:  𝑢ሶ (𝑡) = 𝛢𝜆ଵ𝑒ఒభ∙௧ + 𝛣𝜆ଶ𝑒ఒమ∙௧ + 𝛺𝐶 cos(𝛺𝑡)  − 𝛺𝐷 sin(𝛺𝑡) (26)

We now have a system of two equations available for the calculation of the unknown constants 𝛢, 𝛣. Setting 
as time t = 0 and solving this system, we get: 

𝛢 = 𝜆ଶ 𝑢(0) − 𝐷𝜆ଶ − 𝑢ሶ (0) + 𝛺𝐶𝜆ଶ − 𝜆ଵ  (27)

𝛣 = 𝑢ሶ (0)  − 𝛺𝐶 − 𝜆ଵ 𝑢(0) + 𝐷𝜆ଵ𝜆ଶ − 𝜆ଵ  (28)

Also, in order to define the equation of acceleration 𝑢ሷ (𝑡) of mass m we differentiate once again with respect 
to time t the equation of velocity and we get: 𝑢ሷ (𝑡) =  𝛢𝜆ଵଶ𝑒ఒభ∙௧ + 𝛣𝜆ଶଶ𝑒ఒమ∙௧ − 𝛺ଶ𝐶 sin(𝛺𝑡) − 𝛺ଶ𝐷 cos(𝛺𝑡) (29)

Figures 8–10 show the plots of the displacement, velocity and acceleration of the system according to time 𝑡 with a mass m = 120 t, negative stiffness kN = −100 kN/m, initial conditions 𝑢଴ =  0.03 m,  𝑢ሶ ଴ =  0.07 m/s 
and damping ζ = 0.05, which oscillates due to a harmonic loading 𝐹 = 10 ∙ sin(9𝑡), where 𝛺 = 9 ୰ୟୢୱ ,𝐹௢ =10 kN . Observe that despite the fact that the system has damping, the system does not oscillate, and the 
displacement, velocity and acceleration of the system are increasing exponentially by time. 

 

Figure 8. Displacements of the mass of the SDoF oscillator with damping and negative stiffness due to harmonic 
loading. 

 

Figure 9. Velocities of the mass of the SDoF oscillator with damping and negative stiffness due to harmonic 
loading. 
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Figure 10. Accelerations of the mass of the SDoF oscillator with damping and negative stiffness due to harmonic 
loading. 

Since we have defined displacement 𝑢(𝑡) by Equation (25), velocity 𝑢ሶ (𝑡) by Equation (26), acceleration 𝑢ሷ (𝑡) by Equation (29), we can easily calculate in every time moment the elastic force 𝑃௘, damping force 𝑃ௗ and 
inertial force 𝑃௔, respectively, of the SDoF system. Indeed: 𝑃௘ = −|𝑘ே|  𝑢(𝑡) (30)

𝑃ௗ = 𝑐 𝑢ሶ (𝑡) (31)

𝑃௔ = 𝑚 𝑢ሷ (𝑡) (32)

Moreover, note that the impact of the external harmonic excitation 𝐹௢sin(𝛺𝑡)  should be taken under 
consideration. These four forces, that are acting on mass m of the system, are always in equilibrium state, according 
to D’Alembert’s principle. 

Figure 11 shows the plots of the elastic force 𝑃௘, damping force 𝑃ௗ and inertial force 𝑃௔, respectively, of 
the SDoF system with mass 𝑚 = 120 t, negative stiffness 𝑘ே = −100 kN/m, initial conditions 𝑢଴ =  0.03 m,𝑢ሶ ଴ =  0.07 m/s and damping ratio ζ = 0.05 which is loaded with a harmonic force 𝐹 = 10 ∙ sin(9𝑡), where 𝛺 =9 rad/s, 𝐹௢ = 10 kN. Observe that in every time moment, the sum of the inertial force 𝑃௔, damping force 𝑃ௗ 
and elastic force 𝑃௘ equals to the value of the external excitation 𝐹 which leads to the equilibrium state of the 
forces in every time step. 

In order to prove this, we choose two-time moments 𝑡ଵ = 0.24 s and 𝑡ଶ = 𝛵஽ = ଶగఠವ = 0.786 s and we 

calculate the sum of the forces for each time moment. 
For time moment 𝑡ଵ: 𝑃௘,ଵ = −|𝑘ே| 𝑢(𝑡ଵ) = −100 ∙ (0.04883)   = −4.883 kN 

𝑃ௗ,ଵ = 𝑐 𝑢ሶ (𝑡ଵ) = 10.95 ൉ (0.090) = 0.9911 kN 

𝑃௔,ଵ = 𝑚 𝑢ሷ (𝑡ଵ) = 120 ൉ 0.1017 = 12.2057 kN 

𝐹ଵ = 𝐹ை ∙ sin(𝛺𝑡) = 10 ൉ 𝑠𝑖𝑛(9 ൉ 0.24) = 8.3138 kN 

The sum of the above forces, considering them as vectors, is calculated: 𝑃௘,ଵ + 𝑃ௗ,ଵ + 𝑃௔,ଵ = −4.883 kN + 0.9911 kN + 12.2057 kN = 8.3138 kN = 𝐹ଵ 

Thus, the forces are in equilibrium state. 
For time moment 𝑡ଶ: 𝑃௘,ଶ = −|𝑘ே| 𝑢(𝑡ଶ) = −100 ∙ 0.102479  = −10.2479 kN 
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𝑃ௗ,ଶ = 𝑐 𝑢ሶ (𝑡ଶ) = 10.95 ൉ 0.1082 = 1.1855 kN 

𝑃௔,ଶ = 𝑚 𝑢ሷ (𝑡ଶ) = 120 ൉ 0.1347 = 16.1716 kN 

𝐹ଶ = 𝐹ை ∙ sin(𝛺𝑡) = 100 ൉ sin(9 ൉ 0.786) = 7.1092 kN 

The sum of the above forces, considering them as vectors, is calculated: 𝑃௘,ଶ + 𝑃ௗ,ଶ + 𝑃௔,ଶ = −10.2479 kN + 1.1855 kN + 16.1716 kN =  7.1092 kN 

Thus, the forces are in equilibrium state. Now it is crucial to examine how displacement changes when the 
excitations frequency is equal to parameter 𝑝. For 𝑝 = 𝛺 we get 𝛾 = ఆ௣ =1 and constants 𝐶 and 𝐷 are defined: 

𝐶 = 𝐹௢|𝑘ே| ∙ −(1 + 1ଶ)(1 + 1ଶ)ଶ + (2𝜁 ൉ 1)ଶ = − 𝐹௢|𝑘ே| ∙ 24 + 4𝜁ଶ 

𝐷 = 𝐹௢|𝑘ே| ∙ −2 ൉ 𝜁 ൉ 1(1 + 1ଶ)ଶ + (2 ൉ 1)ଶ = − 𝐹௢|𝑘ே| ∙ 𝜁4 

Given that constants 𝛢 and 𝛣 are relevant to constants C and D: 

𝛢 = 𝜆ଶ 𝑢(0) − 𝐷𝜆ଶ − 𝑢ሶ (0) + 𝛺𝐶𝜆ଶ − 𝜆ଵ  

 

Figure 11. Plot of the elastic force 𝑃௘, the damping force 𝑃ௗ and the inertial force 𝑃௔, respectively of the SDoF 
system due to the harmonic loading 𝐹 = 𝐹ை ∙ sin(𝛺𝑡). 

𝛣 = 𝑢ሶ (0)  − 𝛺𝐶 − 𝜆ଵ 𝑢(0) + 𝐷𝜆ଵ𝜆ଶ − 𝜆ଵ  

And given that the equation of the system’s displacement is: 𝑢(𝑡) = 𝛢 𝑒ఒభ∙௧ + 𝛣 𝑒ఒమ∙௧ + 𝐶 sin(𝛺𝑡) + 𝐷 cos(𝛺𝑡) 

Then, considering a SDoF system with mass 𝑚  = 120 t, negative stiffness 𝑘ே  = −100 kN/m, initial 
conditions 𝑢଴ =  0.0 m,𝑢ሶ ଴ =  0.0 m/s and damping ratio ζ = 0.05 which oscillates due to an external harmonic 
loading 𝐹 = 5 ∙ sin(2𝑡) , where 𝑝 = 𝛺 = 2 rad/s , 𝐹௢ = 10 kN  the following plot (Figure 12) is formed. 
Observe that in contrast with the case where the SDoF had positive stiffness 𝑘௣ଵ, there is no oscillation now that 
the system has negative stiffness. Thus, it is not possible for the phenomenon of resonance to happen in systems 
with negative stiffness. 
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Figure 12. Displacements of the SDoF system’s mass with negative stiffness due to harmonic loading and 
considering p = Ω. 

2.3. Response of the SDoF System with Damping and Negative Stiffness Due to Seismic Excitation (c ≠ 0, 𝑘ே < 0) 

We consider a SDoF oscillator of mass m, with damping c and negative stiffness 𝑘ே which is shown in 
Figure 13 and we are going to examine this oscillator for a horizontal motion of its base that is described by a 
harmonic (sinusoidal) time function. Firstly, we are assuming that the SDoF’s base is in equilibrium state and at 
the time t = 0 begins to move horizontally for a specific time duration, such as the base displacement 𝑢୥(𝑡) is 
described by the following equation: 𝑢୥(𝑡) = 𝛱 ∙ sin(𝛺𝑡) (33)

where Π is the ground oscillation amplitude (in m) and Ω is the circular frequency of the harmonic motion of the 
base, in rad s⁄ . The first derivative of Equation (33) with respect to time gives the equation of velocity at the base: 𝑢ሶ ୥(𝑡) = 𝛺𝛱 ∙ cos(𝛺𝑡) (34)

 

Figure 13. Positive (a) and Negative (b) lateral Stiffness. 

While the second derivative of Equation (34) with respect to time gives the equation of acceleration at the base: 𝑢ሷ ୥(𝑡) = −𝛺ଶ 𝛱 ∙ sin(𝛺𝑡) (35)

Setting t = 0 (beginning of the excitation) in Equations (33)-(35) we get the initial conditions at the base of 
the oscillator: 𝑢୥(0) = 𝛱 ∙ sin(0) = 0 

𝑢ሶ ୥(0) = 𝛺𝛱 ∙ cos(0) = 𝛺𝛱 

𝑢ሷ ୥(0) = −𝛺ଶ 𝛱 ∙ sin(0) = 0 
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According to Figure 14, for a random time moment t the SDoF oscillator’s mass has a displacement equal to 𝑢୲୭୲(𝑡) which is calculated as: 𝑢୲୭୲(𝑡) = 𝑢୥(𝑡) − 𝑢(𝑡) (36)

This happens because we assume that the oscillator possesses a negative stiffness system at its base that 
reverses the direction of the ground motion when the seismic incident happens. Figure 14 shows a SDoF oscillator 
in the initial equilibrium state O and when the ground displacement has positive direction i.e., when the motion 
occurs along the positive semiaxis Οx, the oscillator’s base is located at point Ο’ due to the reverse of the ground 
motion direction. We also assume that the mass has a positive relative displacement +𝑢  compared to the 
oscillator’s base. Thus, the real distance that mass m executes is given by Equation (36) and as a result the inertial 
force 𝑃௔ has a positive direction along the positive semiaxis Οx, while the damping force 𝑃ௗ  has a positive 
direction along the negative semiaxis Οx. Last, the elastic force 𝑃௘  that is acting upon mass, has a positive 
direction along the positive semiaxis Οx due to the action of negative stiffness. The value of the above forces, is 
calculated as it is demonstrated below. Mass 𝑚 of the system has a total acceleration 𝑢୲୭୲(𝑡) which leads to an 
inertial force 𝑃௔ (Newton law) acting on mass, equal to (Figure 13): 𝑃௔ = 𝑚 𝑢ሷ ୲୭୲(𝑡) = 𝑚 ൣ𝑢ሷ ୥(𝑡) − 𝑢ሷ (𝑡)൧ = 𝑚 ∙ 𝑢ሷ ୥(𝑡) −𝑚 ∙ 𝑢ሷ (𝑡) (37)

 

Figure 14. SDoF oscillator with positive mass m, damping c and negative stiffness kN. under seismic excitation. 

Simultaneously, there is another force acting on mass, the damping force 𝑃ௗ  (Kelvin-Voight law) with 
opposite sign from the inertial force 𝑃௔. Also, there is the elastic force 𝑃௘ (Hooke law) with the same sign to the 
inertial force 𝑃௔: 𝑃ௗ = 𝑐 ∙ 𝑢ሶ (𝑡)  (38)

𝑃௘ =  |𝑘ே| ∙ 𝑢(𝑡) (39)

Thus, according to D’Alembert principle and considering the positive axis to the right, we get: 𝑃௔ − 𝑃ௗ + 𝑃௘ = 0 (40)

The equation of motion of mass is written: 𝑚 ∙ 𝑢ሷ ୥(𝑡) −𝑚 ∙ 𝑢ሷ (𝑡) − 𝑐 ∙ 𝑢ሶ (𝑡) + |𝑘ே| ∙ 𝑢(𝑡) = 0 

−𝑚 ∙ 𝑢ሷ ୥(𝑡) + 𝑚 ∙ 𝑢ሷ (𝑡) + 𝑐 ∙ 𝑢ሶ (𝑡) − |𝑘ே| ∙ 𝑢(𝑡) = 0 

𝑚 ∙ 𝑢ሷ (𝑡) + 𝑐 ∙ 𝑢ሶ (𝑡) − |𝑘ே| ∙ 𝑢(𝑡) = 𝑚 ∙ 𝑢ሷ ୥(𝑡) (41)

By inserting Equation (35) into Equation (41): 𝑚 ∙ 𝑢ሷ (𝑡) + 𝑐 ∙ 𝑢ሶ (𝑡) − |𝑘ே| ∙ 𝑢(𝑡) = −𝑚 𝛺ଶ 𝛱 ∙ sin(𝛺𝑡) (42)

Also, if we consider that the sinus term of the right part of Equation (42) represents a harmonic loading F, i.e.: 
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𝐹 = −𝑚 𝛺ଶ𝛱 (43)

then Equation (42) can be written as: 𝑚 ∙ 𝑢ሷ (𝑡) + 𝑐 ∙ 𝑢ሶ (𝑡) − |𝑘ே| ∙ 𝑢(𝑡) = 𝐹 ∙ sin(𝛺𝑡) (44)

Consequently, we get an equation of motion similar to the one we would obtain as if the oscillator was loaded 
by a harmonic loading on its mass. Therefore, we consider again the ideal SDoF system of Figure 15 with damping 
and negative stiffness 𝑘ே which now is loaded with a dynamic harmonic lateral load 𝐹 = 𝐹௢ ∙ sin(𝛺𝑡). 

 

Figure 15. (a) SDoF system with (positive) mass m, damping cand negative stiffness kN loaded with a dynamic 
harmonic lateral load F(t). (b) graphical presentation of the harmonic lateral load F(t) 

The equation of motion for this system is written as: 𝑚 ∙ 𝑢ሷ (𝑡) + 𝑐 ∙ 𝑢ሶ (𝑡) + 𝑘ே ∙ 𝑢(𝑡) = 𝐹୭ ∙ sin(𝛺𝑡) (45)

However, as 𝑘ே  is negative, we need to rewrite Equation (45) using the absolute value |𝑘ே|  and 
considering the negative sign outside the brackets, in order to form a mathematically correct equation: 𝑚 ∙ 𝑢ሷ (𝑡) + 𝑐 ∙ 𝑢ሶ (𝑡) − |𝑘ே| ∙ 𝑢(𝑡) = 𝐹୭ ∙ sin(𝛺𝑡) (46)

According to Differential Calculus, the general solution of Equation (46) is the sum of two separate solutions: 
(a) the partial solution of the homogenous equation: 𝑚 ∙ 𝑢ሷ (𝑡) + 𝑐 ∙ 𝑢ሶ (𝑡) − |𝑘ே| ∙ 𝑢(𝑡) = 0 

the solution of the above equation is (Chatzikonstantinou et al. [21]): 𝑢(𝑡) = 𝛢 ∙ 𝑒ఒభ∙௧ + 𝛣 ∙ 𝑒ఒమ∙௧ 
where constants Α and Β will be defined below, while 𝜆ଵ and 𝜆ଶ are calculated by: 𝜆ଵ = −𝜁𝑝 + 𝑝 ඥ𝜁ଶ + 1 

𝜆ଶ = −𝜁𝑝 − 𝑝 ඥ𝜁ଶ + 1 

and (b) the partial solution due to the external harmonic lateral load 𝐹୭ ∙ sin(𝛺𝑡)  which will be defined 
immediately. Indeed, in order to calculate the partial solution, first we divide both parts of Equation (46) by mass 
m and replace c by 2𝜁𝑚𝑝: 

𝑢ሷ (𝑡) + 𝑐𝑚 ∙ 𝑢ሶ (𝑡) − |𝑘ே|𝑚 ∙ 𝑢(𝑡) = 𝐹୭ ∙ sin(𝛺𝑡)𝑚  (47)

We consider the ratio 𝑝ଶ  of two positive quantities as a positive quantity too, that cannot represent 
frequency, as we demonstrated above (because vibration does not exist): |𝑘ே|𝑚 = 𝑝ଶ (48)
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At this point, in order to have a comparable solution to the case of positive stiffness and without loss of 
generality, it is useful to define system’s damping c as a function of the of the quantity 2𝑚𝑝 (where in the case 
of the positive stiffness is known as the «critical damping», 𝑐௖௥ = 2𝑚𝑝), where ζ is a damping ratio with a range 
of values, either greater or minor than one. We also consider: 𝑐 = 2𝜁𝑚𝑝 (49)

By replacing Equations (48) and (49) into Equation (47) we get: 

𝑢ሷ (𝑡) + 2𝜁𝑝 ∙ 𝑢ሶ (𝑡) − 𝑝ଶ ∙ 𝑢(𝑡) = 𝐹୭𝑚 ∙ sin(𝛺𝑡) (50)

From differential Calculus it is known that the partial solution of Equation (50) is given by: 𝑢(𝑡) = 𝐶 sin(𝛺𝑡) + 𝐷 cos(𝛺𝑡) (51)

The first two derivatives of Equation (51), with respect to time t are calculated as: 𝑢ሶ (𝑡) = 𝛺𝐶 cos(𝛺𝑡) − 𝛺𝐷 sin(𝛺𝑡) (52)

𝑢ሷ (𝑡) = −𝛺ଶ𝐶 sin(𝛺𝑡) − 𝛺ଶ𝐷 cos(𝛺𝑡) (53)

By inserting Equations (52) and (53) into Equation (50) we get: (−𝛺ଶ𝐶 sin(𝛺𝑡) − 𝛺ଶ𝐷 cos(𝛺𝑡)) + 2𝜁𝑝(𝛺𝐶 cos(𝛺𝑡) − 𝛺𝐷 sin(𝛺𝑡)) − 𝑝ଶ(𝐶 sin(𝛺𝑡) + 𝐷 cos(𝛺𝑡))= 𝐹୭𝑚 ∙ sin(𝛺𝑡) ⇒ 

(−𝑝ଶ𝐶 − 𝛺ଶ𝐶 − 2𝜁𝑝𝛺𝐷) sin(𝛺𝑡) + (−𝑝ଶ𝐷 − 𝛺ଶ𝐷 + 2𝜁𝑝𝛺𝐶) cos(𝛺𝑡) = 𝐹୭𝑚 ∙ sin(𝛺𝑡) + 0 ∙ cos(𝛺𝑡) (54)

In order Equation (54) to be accurate for every time moment t the sinus and cosines coefficients of the first 
part of the equation need to be equal to the respective ones of the second part of the equation, so: 

−𝑝ଶ𝐶 − 𝛺ଶ𝐶 − 2𝜁𝑝𝛺𝐷 = 𝐹୭𝑚 (55)

−𝑝ଶ𝐷 − 𝛺ଶ𝐷 + 2𝜁𝑝𝛺𝐶 = 0 (56)

Then, Equations (55) and (56) are rewritten as: 

ቆ−1 − 𝛺ଶ𝑝ଶቇ𝐶 − 2𝜁𝛺𝑝 𝐷 = F୭𝑚𝑝ଶ 

2𝜁𝛺𝑝 𝐶 + ቆ−1 − 𝛺ଶ𝑝ଶቇ𝐷 = 0 

These last two equations are a system of two equations with two unknown parameters C and D, so by using 
equation |𝑘ே| = 𝑚𝑝ଶ to solve the system in order to define these factors, and by inserting the term γ as the ratio 
of the excitation’s frequency Ω to the parameter p of the SDoF system, i.e., 𝛾 = 𝛺/𝑝, constants C and D are 
defined as: 

𝐶 = F୭|𝑘ே| ∙ −(1 + 𝛾ଶ)(1 + 𝛾ଶ)ଶ + (2𝜁𝛾)ଶ (57)

𝐷 = F୭|𝑘ே| ∙ −2𝜁𝛾(1 + 𝛾ଶ)ଶ + (2𝜁𝛾)ଶ (58)

So, the sum of the two partial solutions (a) and (b) gives us the general solution of Equation (46), as it follows: 
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𝑢(𝑡) = 𝛢 𝑒ఒభ∙௧ + 𝛣 𝑒ఒమ∙௧ + 𝐶 sin(𝛺𝑡) + 𝐷 cos(𝛺𝑡) (59)

If we consider time t = 0 in Equation (59), then we get: u(0) = 𝛢 ∙ 𝑒଴ + 𝛣 ∙ 𝑒଴ + 𝐶 sin(0) + 𝐷 cos(0) 

𝛢 + 𝛣 = 𝑢(0) − 𝐷 (60)

Also, the derivative of Equation (59) once, the equation of velocity is extracted: 𝑢ሶ (𝑡) = 𝛢𝜆ଵ𝑒ఒభ∙௧ + 𝛣𝜆ଶ𝑒ఒమ∙௧ + 𝛺𝐶 cos(𝛺𝑡)  − 𝛺𝐷 sin(𝛺𝑡)  (61)

Next, we consider time t = 0 in Equation (61), so we get: uሶ (0) = 𝛢𝜆ଵ𝑒଴ + 𝛣𝜆ଶ𝑒଴ + 𝛺𝐶 cos(0) − 𝛺𝐷 sin(0) 

𝛢𝜆ଵ + 𝛣𝜆ଶ = 𝑢ሶ (0) − 𝛺𝐶 (62)

We now have the following system of two equations (Equations (60) and (62)) available for the calculation 
of the unknown constants 𝛢, 𝛣: 

𝛢 = 𝜆ଶ u(0) − 𝐷𝜆ଶ − uሶ (0) + 𝛺𝐶𝜆ଶ − 𝜆ଵ  (63)

𝛣 = uሶ (0)  − 𝛺𝐶 − 𝜆ଵ u(0) + 𝐷𝜆ଵ𝜆ଶ − 𝜆ଵ  (64)

Also, in order to define the equation of acceleration 𝑢ሷ (𝑡) of mass m we get the derivative once again with 
respect to time t the equation of velocity: 𝑢ሷ (𝑡) =  𝛢𝜆ଵଶ𝑒ఒభ∙௧ + 𝛣𝜆ଶଶ𝑒ఒమ∙௧ − 𝛺ଶ𝐶 sin(𝛺𝑡) − 𝛺ଶ𝐷 cos(𝛺𝑡)  (65)

Since we have defined displacement 𝑢(𝑡) by Equation (59), velocity 𝑢ሶ (𝑡) by Equation (61), acceleration 𝑢ሷ (𝑡) by Equation (65), we can easily calculate in every time moment the elastic force 𝑃௘, damping force 𝑃ௗ and 
inertial force 𝑃௔, respectively, of the SDoF system. Indeed: 𝑃௘ = −|𝑘ே| 𝑢(𝑡)   (66)

𝑃ௗ = 𝑐 𝑢ሶ (𝑡) (67)

𝑃௔ = 𝑚 𝑢ሷ (𝑡) (68)

This means that for the ideal case that the ground motion consists of a harmonic motion, then the response 
of the SDoF oscillator with negative stiffness is identical to the displacement that the system would have if its 
mass m was loaded to a harmonic force. Given that the random seismic excitation consists of a sum of N harmonic 
terms, as it is proven through Fast Fourier Transform (FFT) analysis of the ground motion, where each of the terms 
is identical to Equation (33), it is possible to perform the above procedure for each one of these harmonic terms, 
find the solution for each one, and finally calculate the sum of them. In this way the precise solution of the 
displacement is extracted. This is very important, because when the precise displacement of a SDoF system with 
damping and negative stiffness is known, one can easily check the efficiency and stability of the various numerical 
methods, as well as to see if they converge to the correct values. 

3. Numerical Example 

Consider a SDoF oscillator of mass m = 100 t, negative stiffness kΝ= −5 kN/m, where 𝑝 = ට|௞ಿ|௠ = 0.2236 

and a damping ratio ζ = 0.05, so as 𝑐 = 2 · 𝜁 · 𝑚 · 𝑝 = 2.23606. The base of the oscillator is moving due to random 
seismic excitation. Assuming that the seismic loading (Figure 16) consists of the sum of 46 harmonic terms of 
Table 1, each of them creating an inertial harmonic force 𝑝௡ to the oscillator’s mass and is described by the 
following expression: 



Chatzikonstantinou and Makarios  Bull. Comput. Intell. 2026, 2(1), 31–53 

https://doi.org/10.53941/bci.2026.100003  46 

𝑝௡ = −𝑚 𝛺௡ଶ𝛱௡ ∙ sin(𝛺௡𝑡 − 𝜑௡) 

where 𝑃௡ = −𝑚 𝛺௡ଶ𝛱௡, 𝛺௡ = 2 · 𝜋 · 𝑓௡ is the circular frequency of the base excitation, 𝑇௡ is period, 𝛱௡ is the 
amplitude and 𝜑௡ is the phase of the seismic excitation at its base. The values of each term’s amplitude 𝛱௡ are 
chosen arbitrarily, between a range from 0.001 m to 0.00001 m. Period 𝑇௡ of each harmonic term was chosen 
from a range between 1.00 s to 0.10 s and each harmonic term differs by 0.02 s relatively to the previous and the 
fore coming term. Phase 𝜑௡ was chosen from a range between 0.15 rad to 1.05 rad, and each harmonic term 
differs by 0.02 rad relatively to the previous and the fore coming term. These assumptions where set in order to 
form harmonic terms that if combined will result to a realistic form of a base ground excitation. 

Table 1. Characteristics of the 46 harmonic terms that combine the base ground excitation. 

Α/Α Amplitude 𝜫𝒊 (m)Phase 𝝋𝒊 (rad) Frequency 𝒇𝒊 (Hz) Period 𝑻𝒊 (s) Frequency 𝜴𝒊 (rad/s) 
1 0.0003 0.15 1 1 6.28319 
2 0.00025 0.17 1.02041 0.98 6.41143 
3 0.0002 0.19 1.04167 0.96 6.54501 
4 0.00015 0.21 1.06383 0.94 6.68424 
5 0.0009 0.23 1.08696 0.92 6.82957 
6 0.0009 0.25 1.11111 0.9 6.98131 
7 0.00075 0.27 1.13636 0.88 7.13996 
8 0.0007 0.29 1.16279 0.86 7.30603 
9 0.0006 0.31 1.19048 0.84 7.48001 

10 0.0005 0.33 1.21951 0.82 7.66241 
11 0.0004 0.35 1.25 0.8 7.85398 
12 0.00015 0.37 1.28205 0.78 8.05536 
13 0.001 0.39 1.31579 0.76 8.26735 
14 0.0035 0.41 1.35135 0.74 8.49078 
15 0.003 0.43 1.38889 0.72 8.72665 
16 0.0005 0.45 1.42857 0.7 8.97597 
17 0.00026 0.47 1.47059 0.68 9.23999 
18 0.0007 0.49 1.51515 0.66 9.51997 
19 0.0006 0.51 1.5625 0.64 9.81748 
20 0.0005 0.53 1.6129 0.62 10.13415 
21 0.0003 0.55 1.66667 0.6 10.472 
22 0.0009 0.57 1.72414 0.58 10.83309 
23 0.0007 0.59 1.78571 0.56 11.21995 
24 0.0008 0.61 1.85185 0.54 11.63552 
25 0.0005 0.63 1.92308 0.52 12.08307 
26 0.0007 0.65 2 0.5 12.56637 
27 0.0004 0.67 2.08333 0.48 13.08995 
28 0.0002 0.69 2.17391 0.46 13.65908 
29 0.0003 0.71 2.27273 0.44 14.27998 
30 0.00025 0.73 2.38095 0.42 14.95995 
31 0.0001 0.75 2.5 0.4 15.70796 
32 0.00055 0.77 2.63158 0.38 16.5347 
33 0.0004 0.79 2.77778 0.36 17.45331 
34 0.0006 0.81 2.94118 0.34 18.47998 
35 0.0005 0.83 3.125 0.32 19.63495 
36 0.0004 0.85 3.33333 0.3 20.94393 
37 0.0003 0.87 3.57143 0.28 22.43996 
38 0.00085 0.89 3.84615 0.26 24.16607 
39 0.00075 0.91 4.16667 0.24 26.17996 
40 0.00065 0.93 4.54545 0.22 28.5599 
41 0.0002 0.95 5 0.2 31.41593 
42 0.00001 0.97 5.55556 0.18 34.90661 
43 0.00002 0.99 6.25 0.16 39.26991 
44 0.00003 1.01 7.14286 0.14 44.87991 
45 0.00004 1.03 8.33333 0.12 52.35986 
46 0.00001 1.05 10 0.1 62.83185 

From the summation of the above 46 harmonic terms of the above Table 1 we get the following accelerogram 
of the seismic excitation: 
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Figure 16. The accelerogram of the seismic excitation. 

The maximum acceleration is 3.30 m/s2 which is a little smaller than the value of the acceleration of seismic 
zone ΙΙΙ as it is defined by the Greek Code for Seismic Resistant Structures 2000. Note that for the specific seismic 
zone the value of the acceleration is equivalent to 0.36g: 0.36 ∙ 9.81 m sଶ⁄ =  3.53 m sଶ⁄  

According to the accelerogram, the acceleration response spectrum is formed as below (Figure 17): 

 

Figure 17. The acceleration response spectrum for the given accelerogram. 

Now, the definition of the response for the first harmonic term will be presented. This term has the following 
characteristics: 𝛺ଵ = 2 · 𝜋 · 𝑓ଵ = 6.28319 rad/s , 𝛱ଵ = 0.0003 m , 𝜑ଵ = 0.15 rad , 𝑃ଵ = −𝑚 𝛺ଵଶ𝛱ଵ =−100 ·(6.28319)ଶ · 0.0003 = −1.18435 kN, so the first harmonic term of the combination of the harmonic terms 
that describe the random base ground excitation of the numerical example, is written as: 𝑢୥,ଵ(𝑡) = 𝛱ଵ ∙ sin(𝛺ଵ𝑡 − 𝜑ଵ) = 0.0003 ∙ sin(6.28319𝑡 − 0.15) 

And the initial conditions are given as: 𝑢ଵ(0) = 𝑢௧௢௧(0) − 𝑢୥,ଵ(0) = 0 − 𝛱ଵ ∙ sin(𝛺ଵ ∙ 0 − 𝜑ଵ) = 4.48 · 10ିହm 

and 𝑢ሶଵ(0) = 𝑢ሶ ௧௢௧(0) − 𝑢ሶ ୥,ଵ(0) = 0 −𝛱ଵ ∙ 𝛺ଵ ∙ cos(𝛺ଵ ∙ 0 − 𝜑ଵ) = −0.00186379 m/s 

and 𝑢ሷ (0) = 𝑢ሷ ௧௢௧(0) − 𝑢ሶ ୥,ଵ(0) = 0 − (−1) · 𝛺ଵଶ · 𝛱 · sin(𝛺ଵ ∙ 0 − 𝜑ଵ) = −0.001769874 m/s2 

Thus, the response values (displacement 𝑢ଵ,௔, velocity 𝑢ሶଵ,௔, acceleration 𝑢ሷଵ,௔) of the first harmonic term of 
the excitation will be calculated by the following equations: 𝑢ଵ,௔(𝑡) =  𝛢𝑒ఒభ∙௧ + 𝛣𝑒ఒమ∙௧ + 𝐶 sin(𝛺௡𝑡 − 𝜑௡) + 𝐷 cos(𝛺௡𝑡 − 𝜑௡) 
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𝑢ሶଵ,௔(𝑡) = 𝛢𝜆ଵ𝑒ఒభ∙௧ + 𝛣𝜆ଶ𝑒ఒమ∙௧ + 𝛺௡𝐶 cos(𝛺௡𝑡 − 𝜑௡) − 𝛺௡𝐷 sin(𝛺௡𝑡 − 𝜑௡) 

𝑢ሷଵ,௔(𝑡) =  𝛢𝜆ଵଶ𝑒ఒభ∙௧ + 𝛣𝜆ଶଶ𝑒ఒమ∙௧ − 𝛺ଵଶ𝐶 sin(𝛺ଵ𝑡 − 𝜑ଵ) − 𝛺ଵଶ𝐷 cos(𝛺ଵ𝑡 − 𝜑ଵ) 

where: 𝜆ଵ = −𝜁𝑝 + 𝑝 ඥ𝜁ଶ + 1 = −0.05 · 0.2236 + 0.2236ඥ0.05ଶ + 1 = 0.212705 

𝜆ଶ = −𝜁𝑝 − 𝑝 ඥ𝜁ଶ + 1 = −0.05 · 0.2236 − 0.2236ඥ0.05ଶ + 1 = −0.235066 

𝛾ଵ = 𝛺ଵ𝑝 = 28.0992 

𝐶 = 𝐹|𝑘ே| ∙ −(1 + 𝛾ଵଶ)(1 + 𝛾ଵଶ)ଶ + (2𝜁𝛾ଵ)ଶ = −𝑚𝛺ଶ𝛱௜|𝑘ே| ∙ −(1 + 𝛾ଵଶ)(1 + 𝛾ଵଶ)ଶ + (2𝜁𝛾ଵ)ଶ = 0.0002996 

𝐷 = 𝐹|𝑘ே| ∙ −2𝜁𝛾ଵ(1 + 𝛾ଵଶ)ଶ + (2𝜁𝛾ଵ)ଶ = −𝑚𝛺ଶ𝛱௜|𝑘ே| ∙ −2𝜁𝛾ଵ(1 + 𝛾ଵଶ)ଶ + (2𝜁𝛾ଵ)ଶ = 1.06 · 10ି଺ 

𝛢 = 𝜆ଶ𝑢ଵ(0) − 𝐷𝜆ଶ − 𝑢ሶଵ(0) + 𝛺ଵ𝐶𝜆ଶ − 𝜆ଵ = −0.00834 

𝛣 = uሶ (0)  − 𝛺𝐶 − 𝜆ଵ u(0) + 𝐷𝜆ଵ𝜆ଶ − 𝜆ଵ = 0.00839 

Selecting a time step equal to Δt = 0.005 s and a total duration of the excitation equal to t = 15 s the values 
of displacement, velocity, acceleration are defined for every time moment for the first harmonic term of the 46 
terms that contribute to the random seismic excitation. The plots of the response values of displacement, velocity 
and acceleration with respect to time are presented in Figures 18, 19 and 20 respectively. 

 

Figure 18. Displacements for the 1st harmonic term of the seismic base excitation of the SDoF oscillator with 
damping and negative stiffness. 
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Figure 19. Velocities for the 1st harmonic term of the seismic base excitation of the SDoF oscillator with 
damping and negative stiffness. 

 

Figure 20. Accelerations for the 1st harmonic term of the seismic base excitation of the SDoF oscillator with 
damping and negative stiffness. 

Consequently, by calculating for each harmonic term the response values 𝑢(𝑡), 𝑢ሶ (𝑡), 𝑢ሷ (𝑡)  using the 
abovementioned equations, the response of the SDoF oscillator under random seismic base excitation at time 
moment t is defined as the sum of the values of all the harmonic terms. This procedure was conducted for all the 
harmonic terms and then the values of response 𝑢(𝑡), 𝑢ሶ (𝑡), 𝑢ሷ (𝑡) was defined for every time moment t, and they 
were used to create the plots presented in Figures 21–23. The main observation of these figures is that when a 
system possesses negative stiffness there is no oscillation. The motion is characterized by exponential growth of 
the displacements (compared to the case where the stiffness is positive) which leads to the development of large 
displacements that cannot be absorbed by the structure and as a result it finally collapses. 
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Figure 21. Displacements of the mass of the SDoF oscillator with damping and negative stiffness due to seismic 
base excitation defined as the sum of the values of all the harmonic terms (note the calculations were conducted for 
very large ideal displacements in order to ensure better oversight of the results). 

 

Figure 22. Velocities of the mass of the SDoF oscillator with damping and negative stiffness due to seismic base 
excitation defined as the sum of the values of all the harmonic terms. 

 

Figure 23. Accelerations of the mass of the SDoF oscillator with damping and negative stiffness due to seismic 
base excitation defined as the sum of the values of all the harmonic terms. 
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4. Conclusions 

In this study, an attempt was made to use the advantages of Machine Learning techniques, in order to 
demonstrate a method that implements Machine Learning to identify the negative stiffness of a Single Degree of 
Freedom system. The concept of this key-point strategy has been presented through an analytical investigation of 
the behavior of a theoretical Single Degree of Freedom (SDoF) oscillator. The system has positive mass, damping, 
and negative stiffness, and its behavior was investigated under the following loading conditions: (i) free vibration, 
(ii) forced vibration due to dynamic harmonic loading, and (iii) forced vibration due to ground motion. The primary 
objective was to derive the theoretical/analytical equations that describe the system’s response (displacement, 
velocity, acceleration) of the mass with respect to time. These equations, which are the core of the key-point and 
possess primary role (since it is a benchmark example that gives the exact values of response of a SDoF system 
with negative stiffness) represent the precise theoretical solution of the system’s motion. Additionally, the study 
explored how the behavior of a negative stiffness system differs from that of a system with positive stiffness. The 
main conclusions are summarized below. 
- The analytical investigation of the mass equation of motion revealed that the response of a SDoF system with 

damping and negative stiffness is described by an exponential equation that does not depict oscillation of the 
system’s mass, regardless of whether damping is present. However, in order to be useful, the above 
conclusion has to remain true exclusively under the following condition: A restriction must be placed on the 
exponentially increasing displacements, and this can only be achieved if the period of negative stiffness lasts 
for a few seconds (2 to 3 s) and is immediately followed by a return to positive stiffness for another 2 to 3 s. 
Then, the negative stiffness reappears, and this cycle repeats for as long as the strong motion of the earthquake 
persists. This suggests that such systems could potentially be used in seismic isolation. It is important to note 
that this finding applies to both free vibration and forced vibration scenarios. The experimental justification 
of the above is a subject of great interest for further investigation. 

- The forces acting on the free oscillating SDoF system with damping and negative system, i.e., the elastic 
force 𝑃௘, the damping force 𝑃ௗ and the inertial force 𝑃௔ are in equilibrium state for every time moment t. 
When the SDoF system with damping and negative stiffness is under forced vibration, when there is also the 
harmonic lateral load F, the sum of the elastic force 𝑃௘, damping force 𝑃ௗ and inertial force 𝑃௔ are equal 
to the value of the harmonic lateral load F, and of opposite direction, for every time step t, so the forces are 
in equilibrium state. This means that the fundamental D’Alembert principle is true for negative stiffness 
systems. 

- In the present study, the investigation of a SDoF system with damping and negative stiffness was chosen, 
due to various loading conditions, as it is considered the simplest yet most effective way to achieve an 
intuitive understanding of the system’s behavior as well as the basic principles of dynamic response. There 
are already some primary attempts to expand the mathematical solution to multi-degree-of-freedom systems 
(MDoF). It is known that multi-degree-of-freedom systems in their non-linear response, cannot be 
decomposed into single-degree-of-freedom oscillators as it is possible in the elastic region. Negative stiffness 
in MDoF systems appears when the stiffness matrix of the system is not positive defined, i.e., when a diagonal 
term of the matrix has negative sign. However, the investigation of such systems is the objective of future 
study. 

- The seismic excitation example used in the present study, constitutes of arbitrary harmonic terms of known 
characteristics, which is an idealization of a real seismic excitation. The realistic case where the seismic 
excitation is described by an actual ground motion accelerogram, is part of a separate study that is being 
developed by the authors of the present paper. 

- Last but not least, the exact response values by the presented benchmark example (of a SDoF with negative 
stiffness) are a useful tool to evaluate any new numerical method for calculating the dynamic response of a 
SDoF system with negative stiffness. 
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