Bulletin of Computational Intelligence

=cilight

https://www.sciltp.com/journals/bci

sciight

' i

Article

Dynamic Response of SDoF System with Negative
Stiffness—A Relevant Key-Point for Machine Learning

Nikoleta Chatzikonstantinou and Triantafyllos Makarios *

Institute of Structural Analysis and Dynamics of Structures, School of Civil Engineering, Aristotle University of Thessaloniki,
GR-54124 Thessaloniki, Greece
* Correspondence: makariostr@civil.auth.gr

How To Cite: Chatzikonstantinou, N.; Makarios, T. Dynamic Response of SDoF System with Negative Stiffness—A Relevant Key-Point for
Machine Learning. Bulletin of Computational Intelligence 2026, 2(1), 31-53. https://doi.org/10.53941/bci.2026.100003

Received: 13 August 2025 Abstract: The present article deals with the role of the negative stiffness of
Revised: 6 November 2025 structures and the identification of negative stiftness by Artificial Intelligence and
Accepted: 25 November 2025  Machine Learning (ML). Generally, structures have positive stiffness combined
Published: 8 January 2026 with damping during earthquake-induced oscillations, which leads to energy loss

and causes a reduction in the amplitude of the vibration. However, when a structure
falls into the nonlinear region of a structure, the appearance of negative stiffness is
possible. If this occurs, then the mathematical solution of equation of motion is
changed drastically. This is the exact point covered by the present article and a
suitable procedure (namely the key-point) for ML is given. This paper aims to
define and solve the mathematical equation of motion for a Single Degree of
Freedom (SDoF) oscillator with damping and negative stiffness due to various
dynamic loading conditions. The derived solutions indicate that, for every case of
dynamic loading, oscillation with negative stiffness is absent, and the structure’s
response increases exponentially. The abovementioned facts are verified by the
presentation of a benchmark example that gives the exact values of response of a
SDoF system with negative stiffness.
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1. Introduction

The dynamic behavior of a structure depends on its mechanical characteristics as well as the characteristics
of the excitation. However, earthquake-induced resonance is inevitable at some point during the structure’s
lifetime, potentially causing significant damage. As a result, structural engineers have investigated seismic
isolation methods by designing seismic isolators that shift the structure’s fundamental period out of the range of
earthquake frequencies, thereby avoiding resonance between the structure and seismic excitation. However, when
seismic excitations have a long duration, it is crucial that structures also possess sufficient ductility. This can be
achieved either by increasing the ductility of the structure itself or by installing supplemental damping systems in
specific regions of the structure [1-3]. Moreover, seismic isolation often causes large displacements in the region
of the structure’s seismic joints, thus it is crucial to be eliminated.

At first sight, the application of negative stiffness systems in seismic isolation of civil engineer structures
seems to be a bit obscure and even dangerous for the structure’s stability. This fact led many researchers to use
negative stiffness systems so as to have limited impact on the structure’s stiffness, for example the negative
stiffness is considered as 20% of the structure’s stiffness. The above consideration seems to provide many
advantages, according to the relevant studies conducted [4,5]. Also, often the displacements of the negative
stiffness system are too large, so in order to not have an unstable state of the system [6], a “temporary limitation”
is used in order to eliminate the action of negative stiffness and the system gains its positive stiffness again. The
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system has positive stiffness for a few seconds, and then it gains negative stiffness again for a few seconds. This
procedure is going on until the earthquake incident comes to an end.

The implementation of negative stiffness as a property of structures, in order to provide seismic isolation, is
a subject that attracts more and more researchers lately. This is evident through the various studies conducted in
order to form innovative seismic isolation devices with negative stiffness mechanisms. However, it is often
observed that the proposed systems seem to be functional in experimental examination, but there is no theoretical
definition of the response i.e., the mathematical equations of the system’s motion are not defined. Furthermore, in
some cases, when a structure is investigated through pushover analysis, the stiffness becomes negative when the
displacement exceeds a specific value. Indeed, in the studies of Makarios et al. [7-9], where several cases of real
structures are examined, the results of the pushover analyses show that when the structures enter the Near Collapse
(NC) state, a significant reduction of the system’s stiffness occurs, and a descending branch appears to the pushover
curves. Consequently, it is crucial in order to fully understand the behavior of such systems, to investigate
thoroughly these systems, analytically and mathematically, so as for the correct and efficient design of seismic
isolation elements to be possible, that will eliminate structure’s oscillation due to dynamic loading.

The consideration and analytical investigation of a Single Degree of Freedom (SDoF) oscillator with negative
stiffness undergoing free oscillation is a simple yet effective approach to achieve a deeper understanding of
negative stiffness systems. It is important to note that civil engineering structures typically possess multiple
degrees of freedom; therefore, a SDoF simulation is only applicable in specific cases, such as water towers or
single-story buildings, where columns are considered weightless. Studying the behavior of SDoF systems under
dynamic loading enhances our understanding of the key parameters in dynamic problems and provides valuable
insights for further investigation of more complex systems [10,11]. A mathematical investigation of a SDoF
oscillator with negative stiffness and no damping was conducted in a previous study [12]. However, in reality, all
dynamic systems dissipate energy during oscillation and this is the issue of the present study. In buildings, energy
dissipation occurs through friction between the superstructure and the foundation, friction between structural
elements and infill walls, and other mechanisms. Therefore, this paper focuses on the formulation and solution of
the equation of motion for a SDoF oscillator with positive mass, negative stiffness, and damping. Moreover,
Machine Learning (ML) techniques are applied in structural engineering aiming to enhance structural health
monitoring [13], damage detection [14], structural performance [15], material modeling [16], finite element
analysis [17] and vibroacoustic analysis [18]. The idea of implementing ML in structural engineering has gained
interest through the last years due to the growing progress in ML techniques [19]. The concept of ML deals with
a group of methodologies that can be used to detect patterns in data, in an automatic way and thus can be used to
form prediction models as well as to help with decision making under complex conditions [20]. Given that, we
can assume if certain parameters are known, it is possible to define the behavior of a structural system under
dynamic excitations, even for the case where the system’s stiffness becomes negative. Specifically, artificial
intelligence and ML can identify the phenomenon of negative stiffness through the capacity curve of the system
as it results from the performance of the nonlinear pushover analysis. Indeed, the general procedure that can be
applied by the Artificial Machine is the following: (i) firstl, artificial intelligence must ask for the capacity curve
-such as given in Figure 1—of the structure until its collapse. (ii) The second step is to calculate the stiffness of
the structure at each step analysis as it is given in Figure 1, (iii) the third step is to verify that stiffness has taken a
negative value, namely ky. If the last step is true, then it must inform us that there is an area with negative stiffness
(Figure 1) and therefore we are falling in the theoretical gap, because any other common nonlinear response history
analysis is incorrect and this is due to the change of the mathematical solution of the motion equation with negative
stiffness where now the solution has exponential form (and not harmonic).

The above-mentioned conclusion by Artificial intelligence is true because structures that exhibit negative
stiffness in the nonlinear region cannot be subjected to strong dynamic loading, because the equation of motion of
the oscillation has a completely different mathematic form. This gap is covered by the present study. The present
work gives the exact mathematical solution of the response of a single degree of freedom oscillator with negative
stiffness, when it is excited at its base by a group of excitations from many harmonic terms. The study demonstrates
that the system with negative stiffness results in greater energy dissipation compared to a SDoF oscillator with
positive stiffness. Furthermore, the response displacement increases exponentially over time, indicating the
absence of mass oscillation. This above-mentioned procedure constitutes the key-point for a novel machine
learning technique for negative stiffness systems.
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Figure 1. Machine Learning can identify the areas with Negative Stiffness, using the Pushover Curve. Note that
point i represents every point of the pushover curve for which the stiffness of the system is negative.

2. Analytical and Numerical Investigation of the SDoF System with Damping and Negative Stiffness
2.1. Free Vibration with Damping (c # 0, ky <0)

Assume the SDoF oscillator of Figure 2 that due to force F reaches at the point C, where it possesses damping
and negative stiffness ky and assume that it performs free vibration. Note that Figure 2 is representative of
numerous analyses carried out, in which the occurrence of negative stiffness was prominently observed. Moreover,
in the current study it was decided to present only the part that deals with the system’s behavior when stiffness
becomes negative, in order to highlight the necessity of the modification of the existing algorithms that calculate
the response in non-linear region. Thus, the software programs that are used to conduct pushover analyses need to
check in every step of the procedure if the stiffness of the system is negative or not. In case that the system’s
stiffness is positive, the calculations are conducted as usual. However, if the system’s stiffness becomes negative,
then the mathematical equations presented in this study should be applied for as long as the negative stiffness
occurs. This approach represents the central objective of this work.

Starting from point C of the Capacity Curve of Figure 2, we are writing the equation of motion of the system
as following:

m-ii(t) +c-ult) + ky-u()=0 (1

where ky is negative, so we re-write Equation (1) using the absolute value |ky| and setting the negative sign
outside the brackets in order to form a mathematically correct equation:

m-iu(t) +c-ult) — kyl-ul®) =0 2)
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Figure 2. (a) SDoF system with positive mass m, damping ¢ and (from point C has) negative stiffness kn. (b) Capacity

o

Curve of SDoF system.
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By dividing the two parts of the equation by mass m we get:

a0 + S aw =l e = o 3)
m m

We consider the ratio p? of two positive quantities as a positive quantity too.

k
m
By Differential Calculus it is known that the solution of Equation (3) shall be of an exponential form, i.e.:
u(t) = et (5)
where 4 is defined by:
_Cy (g)z t4ep?
__m=\\m P (©)
Mo = 2

Note that there is only one case to take into consideration in order to calculate 4, as the discriminant A is
always positive defined, so there are two real and discreet roots A; and A,. In this case the two partial solutions
u, (t) and u,(t) are:

w(6) = eht (7

u, (t) = ezt (3)
The general solution of the initial differential Equation (3) is defined:
u(®) =A-u () + B-uy(t) = A-eMt + B - ezt )

where A and B are arbitrary constants that will be defined later. As it is shown the extracted general solution does
not depict a harmonic oscillation but shows clearly that the SDoF system with damping has exponential
displacement for every time step which is given by the following equation:

u(t) =A-eMt + B-et2t

Because it is known that:
C 2
— . an2
A= (—) +4-p°>0

At this point, it is useful to define system’s damping ¢ as a function of the critical damping, ¢ = { - ¢,
where {'is a damping ratio with a range of values, either greater or minor than one.

¢ =0 co =20mp (10)

The two real and discreet roots are given by:

c c\?
-+ (—) 402 oy @)+ AP
m =~ \m {p  (2p)* +4p (11)
A1 = 2 = * > =—({ptpyJ{*+1
In order to calculate constants 4 and B, we assume that at the beginning of time (i.e., when =0) the system
possesses an initial velocity 1(0) # 0 (or i, # 0) and an initial displacement u(0) # 0 (or uy, # 0). By using
these initial conditions, we get the following expressions:

2, u(0) — 1(0)
A==

_u(0) — 2, -u(0)
TR A
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Thus, Equation (9) is fully defined and describes a non-periodical motion, which means that the parameter p
is not possible to describe an eigenfrequency:

- Az - u(0) —u(0) oMt 4 w0) — 4 -u(0) ezt

12
u(t) 5 — L (12)
The velocity of mass is given by:
Ay -u(0) —u(0) u(0) — 4, - u(0)
Y — e ~Z 7., 1t AN SR DAY DL 4 13
u(t) =44 5 — ettt + 1, =7 e (13)
And the acceleration of mass ii(t) by:
Ay -u(0) —u(0 u(0) — A, -u(0
i(t) = A2+ 2~ u(0) ().e/ll-t_l_/l%_ (0) 1 ()-elz't (14)

A, — A4 Ay =N

Figures 3—5 show the plots of the displacement, velocity and acceleration of a SDoF oscillator with mass m
=120 t, negative stiffness ky =—100 kN/m, initial conditions uy = 0.03 m,u, = 0.07 m/s and damping ratio ¢
= 0.05, which performs free vibration. Note that despite damping, the system does not oscillate, and the
displacement, velocity and acceleration are increasing exponentially by time.
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Figure 3. Displacements of the mass of the SDoF oscillator with damping and negative stiffness due to free vibration.
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Figure 4. Velocities of the mass of the SDoF oscillator with damping and negative stiffness due to free vibration.
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Figure 5. Accelerations of the mass of the SDoF oscillator with damping and negative stiffness due to free vibration.

Since the equations of displacement u(t), velocity ©(t) and acceleration ii(t) are defined it is possible to
calculate the elastic force P,, the damping force P; and the inertial force P, of'the SDoF system respectively. Indeed:

P, = —|kyl u(®) 15)
Py = cu(t) (16)
P, = mii(t) (17)

Note that the above three forces are constantly in equilibrium according to D’ Alembert’s principle.

P,+P;+P =0 (18)

m-i(t) + ¢ - u(t) = [kyl - ut) (19)

This means that in every time moment ¢ of the negative-stiffness-SDoF mass motion, the elastic force P, is
competitive to the sum of the other two forces (i.e., inertial force P, and damping force Py). Figure 6 shows the
plots of the elastic force P,, damping force P; and inertial force P,, respectively, for a SDoF system with mass
m =120 t, negative stiffness ky =—100 kN/m, initial conditions u, = 0.03 m, 1, = 0.07 m/s and damping
ratio { = 0.05. Observe that for every time moment ¢ the sum of the inertial force P, and damping force P; is
equal to the elastic force P,, which means that in every time moment ¢ the three forces are in equilibrium state.
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Figure 6. Plot of the elastic force, damping force and inertial force of the SDoF system with damping and negative
stiffness due to free vibration.
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2.2. Response of the SDoF System with Damping and Negative Stiffness Due to Harmonic Loading (¢ # 0, ky < 0)

We consider again the SDoF system of Figure 7 with damping ¢ and negative stiffness ky which now is
loaded with a dynamic harmonic load F = E, - sin(22t).
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Figure 7. SDoF system with positive mass m, damping ¢ and (from the point C has) negative stiffness kv loaded
with a dynamic harmonic load F.

Starting from point C of the Capacity Curve of Figure 7, we are writing the equation of motion of the system
as following:

m-ii(t) + ¢ - u(t) + ky - u(t) = E, - sin(22t) (20)

However, as ky is negative, we need to rewrite Equation (20) using the absolute value |ky| and
considering the negative sign outside the brackets, in order to form a mathematically correct equation:

m-ii(t) + c-u(t) — |kyl - u(t) =F, - sin(Qt) (21)

According to Differential Calculus, the general solution of Equation (21) is the sum of two separate solutions:
(a) the partial solution of the homogenous equation:

m-i(t) +c-u(t) — |ky|-ut) =0
the solution of the above equation is:
u(t) =A-eMt + B-et2t

where constants 4 and B will be defined below, while A, and A, are calculatedas:

h=—lp+pt+1
ho=={p-pyP+1

and (b) the partial solution due to the external harmonic loading F, - sin(£2t) which is known that is given by the
following type:

u(t) = C sin(2t) + D cos(Qt) (22)
where constants C and D are defined as:

F, _(1+V2)

C = Tl AT 722 + @)

(23)

F, —2{y

D=1l v+ 2one

(24)

where parameter y is described as the ratio of the excitation’s frequency Q to the parameter p of the SDoF system,

. k0]
1.6, Yy = ;
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So, the sum of the two partial solutions (a) and (b) gives us the general solution of Equation (21), as it follows:

Differentiating Equation (25) once, the equation of velocity is extracted:

u(t) = Ae?Mt + Be?2t + ( sin(2t) + D cos(t)

u(t) = Al et + BA,e?2't + 0C cos(2t) — 2D sin(2t)

(25)

(26)

We now have a system of two equations available for the calculation of the unknown constants A4, B. Setting
as time ¢ = 0 and solving this system, we get:

4 12u(®) = DAy —i(0) +0C

A=

5 _ WO) —0C — 2, u(0) + DAy

A=A

@7

(28)

Also, in order to define the equation of acceleration ii(t) of mass m we differentiate once again with respect
to time ¢ the equation of velocity and we get:

ii(t) = Ar2eMt 4 B, %et2t — 02C sin(Qt) — 22D cos(2t)

(29)

Figures 8—10 show the plots of the displacement, velocity and acceleration of the system according to time
t with a mass m = 120 t, negative stiffness ky = —100 kN/m, initial conditions uy = 0.03 m, it; = 0.07 m/s

rad

and damping { = 0.05, which oscillates due to a harmonic loading F = 10 - sin(9t), where 2 = 9T’F" =

10 kN. Observe that despite the fact that the system has damping, the system does not oscillate, and the
displacement, velocity and acceleration of the system are increasing exponentially by time.
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Figure 8. Displacements of the mass of the SDoF oscillator with damping and negative stiffness due to harmonic

loading.
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Figure 9. Velocities of the mass of the SDoF oscillator with damping and negative stiftness due to harmonic

loading.

https://doi.org/10.53941/bci.2026.100003

38



Chatzikonstantinou and Makarios Bull. Comput. Intell. 2026, 2(1), 31-53
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Figure 10. Accelerations of the mass of the SDoF oscillator with damping and negative stiffness due to harmonic
loading.

Since we have defined displacement u(t) by Equation (25), velocity (t) by Equation (26), acceleration
ii(t) by Equation (29), we can easily calculate in every time moment the elastic force P,, damping force P; and
inertial force P,, respectively, of the SDoF system. Indeed:

P, = —lky| u(t) (30)
P, = cu(t) 31)
P, = mii(t) (32)

Moreover, note that the impact of the external harmonic excitation F,sin(£2t) should be taken under
consideration. These four forces, that are acting on mass m of the system, are always in equilibrium state, according
to D’ Alembert’s principle.

Figure 11 shows the plots of the elastic force P,, damping force P; and inertial force P,, respectively, of
the SDoF system with mass m = 120 t, negative stiffness ky = —100 kN/m, initial conditions u, = 0.03 m,
iy = 0.07 m/s and damping ratio = 0.05 which is loaded with a harmonic force F = 10 - sin(9t), where 2 =
9rad/s, F, = 10 kN. Observe that in every time moment, the sum of the inertial force P,, damping force P,
and elastic force P, equals to the value of the external excitation F which leads to the equilibrium state of the
forces in every time step.

In order to prove this, we choose two-time moments t; = 0.24 s and t, =T, = j—z = 0.786 s and we
calculate the sum of the forces for each time moment.

For time moment t;:

P,. = —lkylu(t,) = =100 - (0.04883) = —4.883 kN
Py1 = cu(t;) = 10.95 - (0.090) = 0.9911 kN
Py, = mii(t;) = 120 - 0.1017 = 12.2057 kN

F, = F, - sin(2t) = 10 - sin(9 - 0.24) = 8.3138 kN
The sum of the above forces, considering them as vectors, is calculated:
P,1+ Py + Py =—4883KN+ 09911 kN + 12.2057 kN = 8.3138kN = F;

Thus, the forces are in equilibrium state.

For time moment t,:

P,, = —|ky| u(t,) = =100 0.102479 = —10.2479 kN
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Py, = cu(t,) = 10.95 - 0.1082 = 1.1855 kN
Py, =mii(t,) = 120-0.1347 = 16.1716 kN

F, = F, - sin(f2t) = 100 - sin(9 - 0.786) = 7.1092 kN
The sum of the above forces, considering them as vectors, is calculated:

Py + Pyp+ Pyp = —10.2479 kKN + 1.1855 kN + 16.1716 kN = 7.1092 kN

Thus, the forces are in equilibrium state. Now it is crucial to examine how displacement changes when the
excitations frequency is equal to parameter p. For p = weget y = % =1 and constants C and D are defined:

oo Fo —(1+1?) _F, 2
Clkyl (W4+1224+270-1% 0 Jkyl 4+ 42
o Fo -2.¢-1 _ F ¢

Clkyl Q41924+ 21D kyl 4

Given that constants A and B are relevant to constants C and D:

A2 =4
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Figure 11. Plot of the elastic force P,, the damping force P; and the inertial force P,, respectively of the SDoF
system due to the harmonic loading F = Fj - sin(Q2t).

B
A=A

And given that the equation of the system’s displacement is:
u(t) = AeMt + Be?2t + ( sin(2t) + D cos(2t)

Then, considering a SDoF system with mass m = 120 t, negative stiffness ky = —100 kN/m, initial
conditions uy = 0.0 m,1, = 0.0 m/s and damping ratio = 0.05 which oscillates due to an external harmonic
loading F =5-sin(2t), where p =2 =2rad/s, F, = 10kN the following plot (Figure 12) is formed.
Observe that in contrast with the case where the SDoF had positive stiffness k,, there is no oscillation now that
the system has negative stiffness. Thus, it is not possible for the phenomenon of resonance to happen in systems
with negative stiffness.
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Figure 12. Displacements of the SDoF system’s mass with negative stiffness due to harmonic loading and

considering p = Q.

2.3. Response of the SDoF System with Damping and Negative Stiffness Due to Seismic Excitation (c #0, ky < 0)

We consider a SDoF oscillator of mass m, with damping ¢ and negative stiffness k,y which is shown in
Figure 13 and we are going to examine this oscillator for a horizontal motion of its base that is described by a
harmonic (sinusoidal) time function. Firstly, we are assuming that the SDoF’s base is in equilibrium state and at
the time 7 = 0 begins to move horizontally for a specific time duration, such as the base displacement u,4(t) is

described by the following equation:

ug(t) = II - sin(2t)

(33)

where /7 is the ground oscillation amplitude (in m) and @ is the circular frequency of the harmonic motion of the
base, in rad/s. The first derivative of Equation (33) with respect to time gives the equation of velocity at the base:

g () = 0211 - cos(t) (34
(N)A 7 (kKN
L 1/, S ——
d| :d c
| R i
u, o k | um |k U (m)
" “ .
|
| |
_______ -F P | |
n n -F;

. POSITIVE LATERAL STIFFNESS

b_ NEGATIVE LATERAL STIFFNESS

Figure 13. Positive (a) and Negative (b) lateral Stiffness.

While the second derivative of Equation (34) with respect to time gives the equation of acceleration at the base:

iig(t) = —0% II - sin(A2t)

(35)

Setting ¢ = 0 (beginning of the excitation) in Equations (33)-(35) we get the initial conditions at the base of

the oscillator:

ug(0) = IT-sin(0) = 0

1g(0) = Q211 - cos(0) = 011

i15(0) = —02 11 - sin(0) = 0
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According to Figure 14, for a random time moment ¢ the SDoF oscillator’s mass has a displacement equal to
Uit (t) which is calculated as:

Ugor(£) = ug(t) — u(t) (36)

This happens because we assume that the oscillator possesses a negative stiffness system at its base that
reverses the direction of the ground motion when the seismic incident happens. Figure 14 shows a SDoF oscillator
in the initial equilibrium state O and when the ground displacement has positive direction i.e., when the motion
occurs along the positive semiaxis Ox, the oscillator’s base is located at point O’ due to the reverse of the ground
motion direction. We also assume that the mass has a positive relative displacement +u compared to the
oscillator’s base. Thus, the real distance that mass m executes is given by Equation (36) and as a result the inertial
force P, has a positive direction along the positive semiaxis Ox, while the damping force P; has a positive
direction along the negative semiaxis Ox. Last, the elastic force P, that is acting upon mass, has a positive
direction along the positive semiaxis Ox due to the action of negative stiffness. The value of the above forces, is
calculated as it is demonstrated below. Mass m of the system has a total acceleration uy,(t) which leads to an
inertial force P, (Newton law) acting on mass, equal to (Figure 13):

Py = Ml (£) = m [iig(t) — k()] = m - iig(t) — m - ii(t) (37)

]

m .—’ .

Horizontal motion ME(I‘)

0 ) s _,r:/“g(f):U sin(@ ;)x

R — — — — ~

to positive
t displacement

o Initial U
Position 17
-%l uft) 1]
to negative displacement ll’g(t) T=27m/Q

one period of external excitation

Figure 14. SDoF oscillator with positive mass m, damping ¢ and negative stiffness kv. under seismic excitation.

Simultaneously, there is another force acting on mass, the damping force P; (Kelvin-Voight law) with
opposite sign from the inertial force P,. Also, there is the elastic force P, (Hooke law) with the same sign to the
inertial force P,:

P, =c-u(t) (38)
Pe = lky|-u(®) (39)
Thus, according to D’ Alembert principle and considering the positive axis to the right, we get:
P,—P;+P, =0 (40)
The equation of motion of mass is written:
m-iig(t) —m-ii(t) — c-u(t) + |ky|-u() =0

—m-ilg(t) + m-i(t) +c-u(t) — [ky|-u) =0

m-ii(t) + c-ult) — lky| - u(t) = m-iiy(t) (41)
By inserting Equation (35) into Equation (41):
m-i(t) + c-u(t) — |ky| -u() = —m 02 1 - sin(Q2t) (42)

Also, if we consider that the sinus term of the right part of Equation (42) represents a harmonic loading F) i.e.:
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F=-mQ020 (43)
then Equation (42) can be written as:
m-i(t) +c-u(t) — |kyl-u(t) = F - sin(2t) (44)

Consequently, we get an equation of motion similar to the one we would obtain as if the oscillator was loaded
by a harmonic loading on its mass. Therefore, we consider again the ideal SDoF system of Figure 15 with damping
and negative stiffness ky which now is loaded with a dynamic harmonic lateral load F = F, - sin(t).

u(t) .

F(1)= Fysin (Qt
F(t)= Fysin (Q1) ,m (‘l:) o sin (2.1)

%
Q(t)i‘(:- Q)= kN u(t)

(kN)

u(t)

(m)

0Wf — — i

Figure 15. (a) SDoF system with (positive) mass m, damping cand negative stiffness kv loaded with a dynamic
harmonic lateral load F(?). (b) graphical presentation of the harmonic lateral load F'(z)

The equation of motion for this system is written as:
m-it(t) + c-u(t) + ky - u(t) = F, - sin(2t) (45)

However, as ky is negative, we need to rewrite Equation (45) using the absolute value |ky| and
considering the negative sign outside the brackets, in order to form a mathematically correct equation:

m-ii(t) + c-u(t) — |kyl - u(t) = F, - sin(Q2t) (46)

According to Differential Calculus, the general solution of Equation (46) is the sum of two separate solutions:
(a) the partial solution of the homogenous equation:

m-ii(t) + c-u(t) — |kyl-u(t) =0
the solution of the above equation is (Chatzikonstantinou et al. [21]):
u(t) =A-eMt + B-et2t
where constants 4 and B will be defined below, while A; and A, are calculated by:

h=—{p+p i+l
A =={p—py3*+1

and (b) the partial solution due to the external harmonic lateral load F, -sin(2t) which will be defined
immediately. Indeed, in order to calculate the partial solution, first we divide both parts of Equation (46) by mass
m and replace ¢ by 2{mp:

F, - sin(02t)
K 47

a0 + S a -l e =
m m

We consider the ratio p? of two positive quantities as a positive quantity too, that cannot represent
frequency, as we demonstrated above (because vibration does not exist):

|kN| 2
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At this point, in order to have a comparable solution to the case of positive stiffness and without loss of
generality, it is useful to define system’s damping c as a function of the of the quantity 2mp (where in the case
of the positive stiffness is known as the «critical damping», c.. = 2mp), where { is a damping ratio with a range
of values, either greater or minor than one. We also consider:

c=2{mp (49)

By replacing Equations (48) and (49) into Equation (47) we get:
, . Fy .
i(t) + 2{p - u(t) —p?-u(t) = e sin(Qt) (50)

From differential Calculus it is known that the partial solution of Equation (50) is given by:
u(t) = C sin(2t) + D cos(t) (51)
The first two derivatives of Equation (51), with respect to time ¢ are calculated as:
u(t) = 2C cos(N2t) — 2D sin(Nt) (52)
ii(t) = —N?C sin(2t) — 22D cos(t) (53)
By inserting Equations (52) and (53) into Equation (50) we get:
(—02C sin(2t) — 22D cos(N2t)) + 2{p(2C cos(t) — 2D sin(2t)) — p2(C sin(2t) + D cos(t))

F,
="sin(Qt) =
m

E
(—p2C — 2%C — 27p0D) sin(Nt) + (—p?D — N2D + 27pNC) cos(2t) = EO sin(Qt) + 0-cos(2t) (54)

In order Equation (54) to be accurate for every time moment ¢ the sinus and cosines coefficients of the first
part of the equation need to be equal to the respective ones of the second part of the equation, so:

F
—p2C — 02C — 2{pND = EO (55)
—p2D — 22D + 2{pC =0 (56)

Then, Equations (55) and (56) are rewritten as:

These last two equations are a system of two equations with two unknown parameters C and D, so by using
equation |ky| = mp? to solve the system in order to define these factors, and by inserting the term y as the ratio
of the excitation’s frequency 2 to the parameter p of the SDoF system, i.e., y = £2/p, constants C and D are
defined as:

_ l:0 . _(1+V2)
C= ] T2+ ) ©7)
o Fo —2¢y 58)

eyl (L +¥2? + (207)?

So, the sum of the two partial solutions (a) and (b) gives us the general solution of Equation (46), as it follows:
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u(t) = AeMt + Be?2t 4 C sin(2t) + D cos(Q2t) (59)
If we consider time ¢ = 0 in Equation (59), then we get:

u(0) =A-e°+ B-e®+ Csin(0) + D cos(0)

A+B=u(0)-D (60)
Also, the derivative of Equation (59) once, the equation of velocity is extracted:
u(t) = Al et + BA,e?2't + OC cos(2t) — 2D sin(t) (61)
Next, we consider time 7 = 0 in Equation (61), so we get:

1u(0) = A1,e° + BA,e® + 02C cos(0) — 2D sin(0)

ALy + B2, = u(0) — QC (62)

We now have the following system of two equations (Equations (60) and (62)) available for the calculation
of the unknown constants A, B:

2, u(0) — DA, — u(0) + 2C

- 63

A 5 -1 (63)

g _ 10 —0C — 4 u(0) + D,
B Ay =X

(64)

Also, in order to define the equation of acceleration ii(t) of mass m we get the derivative once again with
respect to time ¢ the equation of velocity:

ii(t) = Ad2eMt + BA,%et2t — 02C sin(Qt) — 02D cos(t) (65)

Since we have defined displacement u(t) by Equation (59), velocity #(t) by Equation (61), acceleration
ii(t) by Equation (65), we can easily calculate in every time moment the elastic force P,, damping force P; and
inertial force P,, respectively, of the SDoF system. Indeed:

P, = —|ky|u(t) (66)
P, = cu(t) (67)
P, = mii(t) (68)

This means that for the ideal case that the ground motion consists of a harmonic motion, then the response
of the SDoF oscillator with negative stiffness is identical to the displacement that the system would have if its
mass m was loaded to a harmonic force. Given that the random seismic excitation consists of a sum of N harmonic
terms, as it is proven through Fast Fourier Transform (FFT) analysis of the ground motion, where each of the terms
is identical to Equation (33), it is possible to perform the above procedure for each one of these harmonic terms,
find the solution for each one, and finally calculate the sum of them. In this way the precise solution of the
displacement is extracted. This is very important, because when the precise displacement of a SDoF system with
damping and negative stiffness is known, one can easily check the efficiency and stability of the various numerical
methods, as well as to see if they converge to the correct values.

3. Numerical Example

Consider a SDoF oscillator of mass m = 100 t, negative stiffness ix=—5 kN/m, where p = ’% = 0.2236

and a damping ratio {=0.05,s0as ¢ = 2-{ - m - p = 2.23606. The base of the oscillator is moving due to random
seismic excitation. Assuming that the seismic loading (Figure 16) consists of the sum of 46 harmonic terms of
Table 1, each of them creating an inertial harmonic force p,, to the oscillator’s mass and is described by the
following expression:
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Pn = —m QA - sin(Qyt — @y,)
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where P, = —m 0211,, 2, = 2-m- f, is the circular frequency of the base excitation, T,, is period, IT,, is the
amplitude and ¢,, is the phase of the seismic excitation at its base. The values of each term’s amplitude II,, are
chosen arbitrarily, between a range from 0.001 m to 0.00001 m. Period T,, of each harmonic term was chosen
from a range between 1.00 s to 0.10 s and each harmonic term differs by 0.02 s relatively to the previous and the
fore coming term. Phase ¢, was chosen from a range between 0.15 rad to 1.05 rad, and each harmonic term
differs by 0.02 rad relatively to the previous and the fore coming term. These assumptions where set in order to
form harmonic terms that if combined will result to a realistic form of a base ground excitation.

Table 1. Characteristics of the 46 harmonic terms that combine the base ground excitation.

A/A  Amplitude II; (m)Phase ¢; (rad)Frequency f; (Hz) Period T; (s) Frequency £2; (rad/s)

1 0.0003
2 0.00025
3 0.0002
4 0.00015
5 0.0009
6 0.0009
7 0.00075
8 0.0007
9 0.0006
10 0.0005
11 0.0004
12 0.00015
13 0.001
14 0.0035
15 0.003
16 0.0005
17 0.00026
18 0.0007
19 0.0006
20 0.0005
21 0.0003
22 0.0009
23 0.0007
24 0.0008
25 0.0005
26 0.0007
27 0.0004
28 0.0002
29 0.0003
30 0.00025
31 0.0001
32 0.00055
33 0.0004
34 0.0006
35 0.0005
36 0.0004
37 0.0003
38 0.00085
39 0.00075
40 0.00065
41 0.0002
42 0.00001
43 0.00002
44 0.00003
45 0.00004
46 0.00001

0.15
0.17
0.19
0.21
0.23
0.25
0.27
0.29
0.31
0.33
0.35
0.37
0.39
0.41
0.43
0.45
0.47
0.49
0.51
0.53
0.55
0.57
0.59
0.61
0.63
0.65
0.67
0.69
0.71
0.73
0.75
0.77
0.79
0.81
0.83
0.85
0.87
0.89
0.91
0.93
0.95
0.97
0.99
1.01
1.03
1.05

1
1.02041
1.04167
1.06383
1.08696
1.11111
1.13636
1.16279
1.19048
1.21951

1.25
1.28205
1.31579
1.35135
1.38889
1.42857
1.47059
1.51515
1.5625
1.6129
1.66667
1.72414
1.78571
1.85185
1.92308

2
2.08333
2.17391
2.27273
2.38095

2.5
2.63158
2.77778
2.94118

3.125
3.33333
3.57143
3.84615
4.16667
4.54545

5

5.55556
6.25
7.14286
8.33333
10

1
0.98
0.96
0.94
0.92

0.9
0.88
0.86
0.84
0.82

0.8
0.78
0.76
0.74
0.72

0.7
0.68
0.66
0.64
0.62

0.6
0.58
0.56
0.54
0.52

0.5
0.48
0.46
0.44
0.42

0.4
0.38
0.36
0.34
0.32

0.3
0.28
0.26
0.24
0.22

0.2
0.18
0.16
0.14
0.12

0.1

6.28319
6.41143
6.54501
6.68424
6.82957
6.98131
7.13996
7.30603
7.48001
7.66241
7.85398
8.05536
8.26735
8.49078
8.72665
8.97597
9.23999
9.51997
9.81748
10.13415
10.472
10.83309
11.21995
11.63552
12.08307
12.56637
13.08995
13.65908
14.27998
14.95995
15.70796
16.5347
17.45331
18.47998
19.63495
20.94393
22.43996
24.16607
26.17996
28.5599
31.41593
34.90661
39.26991
44.87991
52.35986
62.83185

From the summation of the above 46 harmonic terms of the above Table 1 we get the following accelerogram

of the seismic excitation:
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Figure 16. The accelerogram of the seismic excitation.

The maximum acceleration is 3.30 m/s? which is a little smaller than the value of the acceleration of seismic
zone 111 as it is defined by the Greek Code for Seismic Resistant Structures 2000. Note that for the specific seismic
zone the value of the acceleration is equivalent to 0.36g:

0.36-9.81m/s? = 3.53m/s?

According to the accelerogram, the acceleration response spectrum is formed as below (Figure 17):

Acceleration Response Spectrum

Spectral Acceleration (m/s2)

0.00
0.00 0.10 020 030 040 050 060 070 080 090 100 1.10 1.20

Period 7 (sec)
Figure 17. The acceleration response spectrum for the given accelerogram.

Now, the definition of the response for the first harmonic term will be presented. This term has the following
characteristics: 2, =2 -m-f; =6.28319rad/s , II; =0.0003m , ¢, =0.15rad , P, =-mQ?Il, =
—100 +(6.28319)% - 0.0003 = —1.18435 kN, so the first harmonic term of the combination of the harmonic terms
that describe the random base ground excitation of the numerical example, is written as:

ug1(t) = I1; - sin(f;t — ¢,) = 0.0003 - sin(6.28319¢ — 0.15)
And the initial conditions are given as:
3 (0) = Uy (0) — ug1(0) = 0 — 11 - sin(2; - 0 — ;) = 448 -10"°m
and
11 (0) = e (0) — g1 (0) =0 — 11, - 2, - cos(£2; - 0 — ;) = —0.00186379 m/s
and
i1(0) = il (0) — 1g1(0) = 0 — (=1) - 2 - [T - sin(€2y - 0 — ¢,) = —0.001769874 m/s?

Thus, the response values (displacement u, 4, velocity 1, 4, acceleration ii, 4) of the first harmonic term of
the excitation will be calculated by the following equations:

Uy o(t) = Ae*t + Be?zt + Csin(Q,t — ¢,) + D cos(2,t — ¢,)
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Uy 4(t) = Al e?t + Ble?2t + 2,C cos(2,t — ¢,) — 2,D sin(Q,t — @)
il o(t) = AL 2eMt + BAy et — 02C sin(,t — 1) — 02D cos(4t — ¢;)
where:
M=—p+pJT%+1=-005-02236 + 0.2236y/0.052 + 1 = 0.212705

Ay =—={p—p{®+1=-0.05-0.2236 — 0.2236+/0.052 + 1 = —0.235066

2y
Y= = 1280992

F —(1+y2 —ma?Il; —(1 + y?

C=r—r- 2(2 ") ~= 3 2(2 i) ~=0.0002996
eyl (1+ )% + (2¢y1) kvl (14?2 + (28r1)
F —2 —m021l, -2

D=— J2 - ’ di = 1.06-107

vl (T+¥2%2 + Q0?2 Tkwl (1 + 1% + (2071)

A _ Azul(o) - DAZ - ul(O) + .(21(:

e = —0.00834

B
AZ_/‘{I

= 0.00839

Selecting a time step equal to Az =0.005 s and a total duration of the excitation equal to # = 15 s the values
of displacement, velocity, acceleration are defined for every time moment for the first harmonic term of the 46
terms that contribute to the random seismic excitation. The plots of the response values of displacement, velocity
and acceleration with respect to time are presented in Figures 18, 19 and 20 respectively.

Displacement u(%) 1st Harmonic Term
(m)

1 t t t t 1 t

0.01 +
-0.03 +
-0.05 +
[ ky=—5 kN/m
007 | £=0.05

-0.09 +

013 +

-0.15 +
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00
Time 7 (s)

Figure 18. Displacements for the 1st harmonic term of the seismic base excitation of the SDoF oscillator with
damping and negative stiffness.
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Figure 19. Velocities for the 1st harmonic term of the seismic base excitation of the SDoF oscillator with

damping and negative stiffness.
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Figure 20. Accelerations for the 1st harmonic term of the seismic base excitation of the SDoF oscillator with

damping and negative stiffness.
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Consequently, by calculating for each harmonic term the response values u(t), u(t), i(t) using the
abovementioned equations, the response of the SDoF oscillator under random seismic base excitation at time
moment ¢ is defined as the sum of the values of all the harmonic terms. This procedure was conducted for all the
harmonic terms and then the values of response u(t), u(t), ii(t) was defined for every time moment ¢, and they
were used to create the plots presented in Figures 21-23. The main observation of these figures is that when a

system possesses negative stiffness there is no oscillation. The motion is characterized by exponential growth of

the displacements (compared to the case where the stiffness is positive) which leads to the development of large
displacements that cannot be absorbed by the structure and as a result it finally collapses.
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Displacement u(1)
(m)

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00
Time 1 (s)

Figure 21. Displacements of the mass of the SDoF oscillator with damping and negative stiffness due to seismic
base excitation defined as the sum of the values of all the harmonic terms (note the calculations were conducted for
very large ideal displacements in order to ensure better oversight of the results).
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Figure 22. Velocities of the mass of the SDoF oscillator with damping and negative stiffness due to seismic base

excitation defined as the sum of the values of all the harmonic terms.
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Figure 23. Accelerations of the mass of the SDoF oscillator with damping and negative stiffness due to seismic
base excitation defined as the sum of the values of all the harmonic terms.
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4. Conclusions

In this study, an attempt was made to use the advantages of Machine Learning techniques, in order to
demonstrate a method that implements Machine Learning to identify the negative stiffness of a Single Degree of
Freedom system. The concept of this key-point strategy has been presented through an analytical investigation of
the behavior of a theoretical Single Degree of Freedom (SDoF) oscillator. The system has positive mass, damping,
and negative stiffness, and its behavior was investigated under the following loading conditions: (i) free vibration,
(i1) forced vibration due to dynamic harmonic loading, and (iii) forced vibration due to ground motion. The primary
objective was to derive the theoretical/analytical equations that describe the system’s response (displacement,
velocity, acceleration) of the mass with respect to time. These equations, which are the core of the key-point and
possess primary role (since it is a benchmark example that gives the exact values of response of a SDoF system
with negative stiffness) represent the precise theoretical solution of the system’s motion. Additionally, the study
explored how the behavior of a negative stiffness system differs from that of a system with positive stiffness. The
main conclusions are summarized below.

- The analytical investigation of the mass equation of motion revealed that the response of a SDoF system with
damping and negative stiffness is described by an exponential equation that does not depict oscillation of the
system’s mass, regardless of whether damping is present. However, in order to be useful, the above
conclusion has to remain true exclusively under the following condition: A restriction must be placed on the
exponentially increasing displacements, and this can only be achieved if the period of negative stiffness lasts
for a few seconds (2 to 3 s) and is immediately followed by a return to positive stiffness for another 2 to 3 s.
Then, the negative stiffness reappears, and this cycle repeats for as long as the strong motion of the earthquake
persists. This suggests that such systems could potentially be used in seismic isolation. It is important to note
that this finding applies to both free vibration and forced vibration scenarios. The experimental justification
of the above is a subject of great interest for further investigation.

- The forces acting on the free oscillating SDoF system with damping and negative system, i.e., the elastic
force P,, the damping force P; and the inertial force P, are in equilibrium state for every time moment ¢.
When the SDoF system with damping and negative stiffness is under forced vibration, when there is also the
harmonic lateral load F, the sum of the elastic force P,, damping force P; and inertial force P, are equal
to the value of the harmonic lateral load F, and of opposite direction, for every time step ¢, so the forces are
in equilibrium state. This means that the fundamental D’Alembert principle is true for negative stiffness
systems.

- In the present study, the investigation of a SDoF system with damping and negative stiffness was chosen,
due to various loading conditions, as it is considered the simplest yet most effective way to achieve an
intuitive understanding of the system’s behavior as well as the basic principles of dynamic response. There
are already some primary attempts to expand the mathematical solution to multi-degree-of-freedom systems
(MDoF). It is known that multi-degree-of-freedom systems in their non-linear response, cannot be
decomposed into single-degree-of-freedom oscillators as it is possible in the elastic region. Negative stiffness
in MDoF systems appears when the stiffness matrix of the system is not positive defined, i.e., when a diagonal
term of the matrix has negative sign. However, the investigation of such systems is the objective of future
study.

- The seismic excitation example used in the present study, constitutes of arbitrary harmonic terms of known
characteristics, which is an idealization of a real seismic excitation. The realistic case where the seismic
excitation is described by an actual ground motion accelerogram, is part of a separate study that is being
developed by the authors of the present paper.

- Last but not least, the exact response values by the presented benchmark example (of a SDoF with negative
stiffness) are a useful tool to evaluate any new numerical method for calculating the dynamic response of a
SDoF system with negative stiffness.
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