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content, water—binder ratio, foam content, and curing age. Five predictive models
were evaluated, with the Artificial Neural Network (ANN) achieving the best
performance, yielding an accuracy of 98% and the lowest prediction error.
Sensitivity analysis identified wet density, cement content, and foam content as the
most influential variables. The results demonstrate that soft computing approaches
can significantly reduce experimental effort, lower costs, and support the
sustainable design of FFC mix ratios for diverse applications.
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1. Introduction

Approximately 8% of global CO, emissions are from cement production, making it a significant contributor
to climate change [1,2]. Cement, the second-most widely used product on Earth after water, underscores the urgent
need for sustainable alternatives. This study presents Fly Ash Composite Foam Concrete (FFC) as a feasible
alternative, in which a fraction of cement is substituted with fly ash, a byproduct of coal combustion. Compared
to traditional concrete, FFC reduces density and carbon footprint, and improves thermal insulation qualities [3,4].
FFC provides significant technical advantages in addition to environmental benefits. Its porous microstructure
increases durability, resists cracking, and improves acoustic insulation [5,6]. The lightweight nature of FFC makes it
suitable for both structural and non-structural applications by reducing dead load. The chemical interactions among
foam components produce a strong microstructure that balances mechanical strength with reduced weight [4].
Furthermore, by using recycled materials and minimizing embodied energy, FFC contributes to the circular
economy [6]. Traditional evaluation requires a 28-day curing period and substantial effort, resulting in increased
costs and building duration [1]. As a result, there is an increased demand for quicker, non-destructive prediction
approaches. Soft computing models have demonstrated significant potential in this field, offering data-driven
models that can capture complex nonlinear interactions and yield accurate strength estimates with reduced reliance
on physical testing [1,6]. Predictive models, such as Artificial Neural Networks (ANNs) and Interaction Models
(INs), have proven effective for estimating the compressive strength of complex concrete mixes. These methods
excel at processing large datasets, identifying patterns, and modeling behaviors that are difficult to detect with
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traditional statistical techniques. In this study, 302 mix design datasets (filtered from an initial 320 samples after
outlier removal) were used to build predictive models for FFC compressive strength.

The dataset was divided into 66% for training, 17% for testing, and 17% for validation. To assess the model’s
performance and accuracy, several statistical metrics were used, including R%, Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Scatter Index. This study employs multiple soft computing models, including
Linear Regression (LR), Multilinear Regression (MLR), Full Quadratic Model (FQ), Interaction Model (IN), and
Artificial Neural Network (ANN), and compares them. The results of this study indicate that the ANN performed
exceptionally well, achieving higher accuracy in predicting compressive strength and outperforming all other
techniques. This study presents an analytical approach to predict and optimize FFC mix design, thereby supporting
the broader adoption of sustainable building materials. The application of soft computing promotes economical,
ecologically friendly building processes while increasing efficiency by reducing dependency on conventional
laboratory techniques. This study further explores the sustainability potential of FFC, emphasizing its energy-
saving, environmental, and practical benefits. The partial replacement of cement with fly ash significantly reduces
CO; emissions, aligning with ecological goals [2,3]. This substitution also limits construction waste and supports
the reuse of industrial byproducts [4,5]. By minimizing resource extraction, FFC contributes to long-term
environmental conservation [6]. In addition, soft computing models facilitate the rapid and precise optimization
of mix designs [1,7], improving performance while lowering material and energy demands [8]. These models can
incorporate real-time data to enable dynamic, on-site adjustments [9,10]. Such features enhance construction
efficiency and reduce the need for repeated laboratory testing [11]. Overall, these innovations position FFC as a
scalable, sustainable material aligned with global development goals [6,12].

Fly Ash Composite Foam Concrete (FFC) comprises fly ash, cement, sand, foam, and a specific water-binder
ratio. Fly ash, derived from the burning of coal, can replace cement, making it a recycled, eco-friendly material
that is also more cost-effective. Adding foam to FFC reduces the concrete’s weight by incorporating air bubbles
and providing additional thermal insulation. The water-binder mix affects the concrete’s strength and workability.
Decreasing the water content results in stronger concrete; however, it reduces workability [13]. FFC must be
significantly lighter than regular concrete, requiring less structural support [1]. Its air pockets will make it
soundproof and more temperature-controlled [5].

Due to FFC’s lightweight properties, it simplifies application on construction sites. Additionally, FFC can be
used to fill gaps due to its lightweight nature, strength, and insulating properties. With FFC’s heat-retention
prowess, it can maintain lower interior temperatures in summer while keeping them higher in winter, allowing
houses to use less electricity and making the environment cleaner. FFC can also work as a waterproof shield,
making walls more energy-efficient [6]. FFC could effectively minimize external noise. Furthermore, FFC requires
a lower water-binder ratio, which makes it easier to work with by reducing the needed curing time.

FFC is eco-friendly because it uses fly ash, a waste material [5]. Additionally, cement production can produce
more CO; than FFC, making it less environmentally sustainable [5]. Cement is not a reliable insulator, which
makes it less eco-friendly because it requires more electricity to maintain a consistent temperature difference
between the inside and outside. In contrast, FFC offers better insulation and sustainability. Additionally, Soft
computing models will help the industry by conserving resources, eliminating material waste, and enabling tests
to be conducted as frequently as needed. This will help the global industry become more efficient with its resource
expenditure. The combination of different soft computing models can aid faster, more error-free mix design
optimization, thereby enhancing their applicability in real-life construction.

The waste-derived and nano-enhanced materials were studied to evaluate their effect on the residual
compressive strength (RCS) of concrete exposed to high temperatures. Granite and marble waste powders (1-9%
cement replacement) were initially tested for their impact on compressive strength, followed by the creation of
hybrid mixes incorporating nano carbon tubes (NCTs) and nano alumina (NAI). A total of 288 and 156
experimental data points were used to train several machine learning (ML) and metaheuristic models, including
the Water Cycle Algorithm (WCA), Genetic Algorithm (GA), Artificial Neural Networks (ANN), Fuzzy Logic
(FL), and Multiple Linear Regression (MLR). The WCA model consistently showed the highest predictive
accuracy, closely followed by ANN and FL, with mean absolute errors below 4 kg/cm?. The best mixture included
9% waste granite powder (WGP) and 5% waste marble powder (WMP), which retained 59.6% more RCS after
exposure to 800 °C for 2 h. The nonlinear RCS prediction equations derived from WCA and GA exhibited excellent
regression performance. Sensitivity analyses (using ANN weights and SHAP interpretation) indicated that
temperature and exposure duration were the most influential factors, followed by the proportions of NAl, NCTs,
WGP, and WMP, respectively [14,15].
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Research Objectives

In this study, 302 mix design datasets (filtered from an initial 320 samples after outlier removal) were used
to develop predictive models for the compressive strength of FFC. The dataset was divided into 66% for training,
17% for testing, and 17% for validation. Model performance was evaluated using statistical error metrics, including
R?, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Scatter Index (SI). Multiple soft
computing models were employed, namely Linear Regression (LR), Multilinear Regression (MLR), Full Quadratic
Model (FQ), Interaction Model (IN), and Artificial Neural Network (ANN). Among these, the ANN model
demonstrated the best performance, achieving the highest predictive accuracy for compressive strength. This
analytical approach provides a framework for optimizing FFC mix design and supports the broader adoption of
sustainable building materials.

2. Methodology

The methodology of this study is illustrated in Figure 1, which outlines the steps undertaken. The dataset
used for this research was compiled from prior FFC-based research, comprising 302 datasets. The summary of the
data used in this research, including averages for the seven inputs, the strength result, units, and ranges, is shown in
Table 1. The data was split into training, testing, and validation sets to ensure more accurate models. The initial
set, comprising 202 datasets, was designated as the training dataset. The second group was defined as the test set,
and the third as the validation dataset. The dataset was divided into 66% for training, 17% for testing, and 17% for
validation. After analyzing the data, the overall R? increased to a very suitable number. The parameters that are
selected as input variables are wet density (WD), cement content (CC), fly ash content (FAC), sand content (SC),
water/binder ratio (WBD), foam content (FC), curing age (CA), and compressive strength (CS). The training,
testing, and validating dataset groups were applied to multiple models to determine the coefficient of determination
(R?), root mean squared error (RMSE), mean absolute error (MAE), scatter Index (SI), and objective (OBJ). These
numbers indicate how well the model aligns with the data. The predictive models used in this study are linear
regression (LR), complete multilinear regression (MLR), full quadratic model (FQ), interaction model (IN), and

artificial neural networks (ANN).
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Figure 1. The flowchart diagram for the study.
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Table 1. Dataset information.

Sources Numbers Proportion (%) Sources Numbers Proportion (%)
[16] 36 11 [17] 17 5
[18] 35 11 [19] 16 5
[20] 24 8 [21] 16 5
[20] 24 8 [22] 15 5
[23] 18 6 [24] 15 5
[25] 18 6 [26] 14 4
[27] 18 6 [16] 7 2
[28] 18 6 [26] 6 2
[29] 18 6 [30] 5 2

2.1. Overview of Applied Models
2.1.1. Linear Regression Model

Linear regression (LR) modeling is a statistical approach used to predict the relationship between independent
and dependent variables by fitting a linear equation to observed data, thereby predicting the compressive strength
of FFC. This model demonstrates that soft computing models, particularly linear regression, can enhance the
efficiency of concrete mix design by reducing the need for extensive laboratory testing. Training, testing, and
validating the LR model ensures its predictive accuracy and reliability, making it a viable alternative for
preliminary strength assessments. The linear model uses Equation (1) to determine the optimal compressive
strength. LR model’s compressive strength is based on input parameters, as shown in Equation (1).

€S (MPa) = A+ B(WD) + C(CC) + D(FAC) + E(SC) + F(WBR) + G(FC) + H(CA) (1)

The independent parameters are wet density (WD), cement content (CC), fly ash content (FAC), sand content
(SC), water/binder ratio (WBR), foam content (F'C), and curing age (CA). The dependent parameter is compressive
strength (CS). The A to H are the model parameters.

2.1.2. Multi-Linear Regression Model

The third model employed in this study was a statistical soft-computing technique, specifically the multiple
linear regression (MLR) model. It was used to analyze the Fly Ash Composite Foam Concrete (FCC) and its
compressive strength. The MLR model is the relationship between various independent variables, including wet
density, cement content, fly ash content, sand content, water-binder ratio, foam content, and curing age. To ensure
that only the most significant independent variables have a meaningful effect on the dependent variable, each
relationship was assessed by estimating a regression coefficient for each independent variable. The general formula
for the multi-linear regression model is:

CS (MPa) = A x (B x (WD)B1) x (C x (CC)B2) x (D x (FAC)B3) x (E X (SC)B+) x (F x (WBR)?5)
X (G X (FC)Bs) x (H x (CA)B7)

where B; to B, represent the model parameters.

2

2.1.3. Full Quadratic Model

The Full quadratic model (FQ) was the third model used; a higher-order statistical technique employed to
achieve complex nonlinear relationships among variables. This model was applied to predict the compressive strength
of FFC concrete. The FQ model captures the linear relationship between input and output variables, including their
interactions and squared terms, providing a more comprehensive analysis than simpler regression methods. Including
quadratic terms helps the model capture the complex patterns in concrete mixes containing recycled materials, such
as fly ash. The general form of the Full Quadratic regression model is expressed as:

CS (MPa) = A+ B(WD) + C(CC) + D(FAC) + E(SC) + F(WBR) + G(FC) + H(CA) + (P(WD) x (€C)) + (Q(WD) x (FAC))
+ (RWD) x (SC)) + (S(WD) x (WBR)) + (T(WD) x (FC)) + (UWD) x (CA)) + (V(CC) x (FAC))
+ (W(CC) x (SC)) + (X(€C) x (WBR)) + (Y(CC) x (FC)) + (Z(CC) x (CA)) + (AA(FAC) % (SC))
+ (AB(FAC) x (WBR)) + (AC(FAC) x (FC)) + (AD(FAC) X +(CA)) + (AE(SC) x (WBR))
+ (AF(SC) x (FC)) + (AG(SC) x (CA)) + (AH(WBR) x (FC)) + (AI(WBR) x (CA))
+ (4J(FC) x (CA))+I(WD)? + J(CC)? + K(FAC)? + L(SC)? + M(WBR)? + N(FC)? + 0(CA)?

where A to AJ are representing the model parameters.
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2.1.4. Interaction Model

The fourth model used in this study is the multiplicative interaction regression model, which is employed to
examine the influence of one independent variable on changes in the dependent variable in relation to another
variable. This structure enables the modeling of conditional relationships and mitigates bias associated with key
components. Particularly useful for capturing moderation effects, the model explains that coefficients on
constitutive terms represent effects only when the interacting variable is zero. This approach is crucial for
analyzing systems where relationships among variables are not uniform across conditions. The general form of the
interaction model is expressed as:

CS (MPa) = A+ B(WD) + C(CC) + D(FAC) + E(SC) + F(WBR) + G(FC) + H(CA)
+ (IWD) x (€C)) + JWD) x (FAC)) + (K(WD) x (SC)) + (L(WD) x (WBR))
+ (MWD) x (FC)) + (N(WD) x (CA)) + (0(CC) x (FAC)) + (P(CC) % (SC))
+(Q(€C) x (WBR)) + (R(CC) x (FC)) + (S(CC) x (CA)) + (T(FAC) x (SC)) (4)
+ (U(FAC) x (WBR)) + (V(FAC) x (FC)) + (W(FAC) x +(CA))
+ (X(SC) x (WBR)) + (Y(SC) X (FC)) + (Z(SC) x (CA)) + (AA(WBR) x (FC))
+ (AB(WBR) x (CA)) + (AC(FC) x (CA))

where A to AC are representing the model parameters.

2.1.5. Artificial Neural Network Model

Artificial Neural Networks (ANNs) help predict the strength of Fly Ash Composite Foam Concrete (FFC),
indicating its ability to withstand heavy loads without breaking. In this study, an artificial neural network (ANN)
was employed to analyze factors such as the material mix, curing time, and fly ash quality to examine the impact
and strength of FFC. The model was highly accurate, with a score of 0.99, indicating that it could predict the strength
almost perfectly. It helps analyze the data more effectively to determine the ideal compressive strength. This is
beneficial because it is more time- and cost-efficient than conducting multiple lab tests. ANN also helps determine
the optimal material combination to enhance FFC strength, which is particularly useful for building projects [31]. It
can handle large amounts of data and identify patterns that older methods might neglect, making it ideal for FFC,
where success depends on many factors working together. Once trained, the ANN can make more accurate
predictions, assisting engineers in making decisions. The ANN model predicts compressive strength by directing
input variables through a network of hidden nodes (Node 1, Node 2, Node n) to an output node (Node 0). The model
computes its output from weighted inputs and a bias term. The bias allows the activation level of each node to be
shifted, thereby improving the model's fit to the data by altering the response curve of the activation function.

3. Performance Evaluation of ML Models

Coefficient of determination (R?), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Objective function (OBJ), and Scatter Index (SI) were used to assess the models’ dependence on the collected
database. These correlations are visualized in Figure 2. These measures help evaluate the work efficiency of the
soft computing methods. Several tests were conducted to determine the optimal settings for the key factors.
Equations (5)—(9) represent the statistical parameters used to determine each of the mentioned criteria.

Yi(Yp - Yi)? )2

Yi(Yi — mean Yi)? ©®)

RMSE = FL(YPT_YI)Z (6)

_ Lillyp —vip?
- n

R2=1+(

MAE @)

ny  RMSE, + MAEtr) N (nm | RMSEys + MAEtst) N (nvdt  RMSE,q0 + MAEvdt> ©
Nay RZ +1 Nay RE +1 Nay Rig +1

OB]=<
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e  Yp denotes the predicted value of CS,

e  Yi represents the tested value of CS,

e meanVi isthe average of the tested data,
e ngy refers to the total number of datasets used (all training, testing, and validating),
e  n, isavalue representing the number of training datasets,

e  n. is avalue representing the number of testing datasets,

e n,4 is avalue representing the number of validating datasets,

e N is the total number of datasets in the dataset.

RMSE
meanYi
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The coefficient of determination (R?) ranges between 0 and 1, where 1 indicates a perfect model fit. For
RMSE (Root Mean Square Error), MAE (Mean Absolute Error), and OBJ (Objective Function) values, the range
extends from O to infinity. As the value decreases, it will be shown. As the value decreases, it indicates superior
model performance, with zero being the ideal case. Figure 3 illustrates marginal plots of the distributions of these
variables. The Scatter Index (SI) is a key metric for evaluating model accuracy. An SI value below 0.1 is generally
considered acceptable. The results showed that the Artificial Neural Network (ANN) performed best in predicting
compressive strength values. The comparative RMSE and MAE values for each model are summarized in Table 2.
Figure 4 shows the frequency distribution of compressive strength, highlighting the most frequent values.

WD CcC FAC

SC

WBR

FC CA |CS

WD
CC
FAC
SC
WBR|-0.515
FC
CA
CS

-0.67

Figure 2. Correlation matrix for the coefficient of determination between dependent and independent variables.
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Table 2. Root mean squared error (RMSE) and mean absolute error (MAE) for the developed models in different
compressive strengths.

Training Testing Validation
Models No. of Datasets = 202 No. of Datasets = 50 No. of Datasets = 50
RMSE MAE RMSE MAE RMSE MAE
LR 6.07 448 5.73 3.76 4.37 4.37
MLR 4.30 3.10 5.31 3.43 422 3.1
FQ 3.2 2.57 3.86 2.74 2.81 2.20
IN 3.08 2.34 3.10 2.86 2.67 2.13
ANN 2.16 1.35 0.95 2.63 0.54 1.40
704 Loc -0.3368
b Scale 3.027
ol /"\ N 302
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Figure 4. Frequency plot for geopolymer concrete’s compressive strength, CS (MPa).
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3.2.1. LR Model

The linear regression model (LM) has been tested using three separate datasets: training, testing, and
validation. A high R? value, such as 0.8, indicates that the model can explain approximately 80% of the variation
in compressive strength. In other words, 80% of the variation in the strength can be predicted by your model [32].
The training set yielded an R? of 0.65, indicating that the model explained 65% of the variation in the data. After
testing and validation, different datasets were used for each of the 50 datasets. Other sets of data yielded R-squared
values of 0.74 for testing and 0.77 for validation. Figure 5 shows the LR model’s prediction accuracy. After using
different data, we can see that the model’s accuracy has changed. The next step was the root mean squared error
(RMSE). The three datasets were used for training, with a value of 6.1; however, this value was dropped for the
other datasets, which tested 5.72 and validated at 4.37. RMSE measures the average difference between predicted
and actual values, as shown in Equation (10). That means the lower the RMSE is, the better. The drop in RMSE
from training to testing indicates that the model performs adequately on new data. However, the slight increase in
RMSE during validation suggests that the model may struggle with some unseen datasets. In the combined training,
testing, and validation dataset, the error envelope spans —40% to 60%, indicating that 60% of all datasets fall
within the range 0.60 to 1.60 for the ratio of predicted to measured compressive strength.

€S (MPa) = —159.4 + 0.02(WD) + 1.8(CC) — 1.5(FAC) + 1.3(SC) + 59.2(WBR) + 0.84(FC) + 0.09(CA)  (10)
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Figure 5. Comparison of measured and predicted Compressive strength using the LR model for training, testing,
and validating datasets.

3.2.2. MLR Model

The data for the MLR model is split similarly to the LR model’s data. Starting with the training, the R?> was
0.82, indicating that the model explained 82% of the variation in compressive strength. Moving to the testing, the
R? decreased to 0.77 and then increased to 0.78 in the validating dataset. Both testing and training have 50 datasets
each, and 202 training samples. Moving towards the Root Mean Square Error (RMSE) for the same three datasets,
training, testing, and validation coincided with values of 4.3, 5.30, and 4.22, respectively, indicating a decline.
Figure 6 shows the MLR model’s prediction results. The Root Mean Square Error (RMSE) indicates the average
difference between the actual and the predicted values, as shown in Equation (11). Therefore, the lower the RMSE,
the more accurate the model is. The decline in RMSE across the three datasets from training to validation indicates
that the model performs well on new datasets when predicting compressive strength.

CS (MPa) = 0.12 x (0.05 x (WD)?1) x (0.01 x (€CC)*>) x (0.2 x (FAC)*°1) x (0.12 X (SC)~%0%)

X (0.21 X (WBR)™%7) x (0.7 X (FC)™%92) x (0.14 x (CA)®3) (i
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Figure 6. Comparison of measured and predicted Compressive strength using the MLR model for training, testing,
and validating datasets.

3.2.3. FQ Model

Another tested model was the full quadratic model (FQ), which was separated into three parts: training,
testing, and validation. The R? for each of them is a fair point to mention in this model, which, during training,
was 0.90, explaining 90% of the variability in the data. Then, the testing R? is 0.88, which is lower than that of the
pure quadratic model. After that, the validating data rose to 0.90, making it less reliable. Tables 3 and 4 compare
model performance measures and ranks. Then they tested the root-mean-square error for each dataset. The Root
Mean Squared Error (RMSE) is a measure of that the well a prediction model performs. It indicates the average
difference between the predicted and actual values. A smaller RMSE suggests that the model makes more accurate
predictions [31]. After that, it squares those differences, averages them, and takes the square root. The RMSE
values were 3.2 for training, 3.9 for testing, and 2.8 for validation. The predicted versus actual compressive strength
using the FQ model is shown in Figure 7. The lower the error, the better the data predicts. It performs well on
training data but struggles somewhat with new information.

CS (MPa) = 0.98 — 0.02(WD) + 0.4(CC) + 0.67(FAC) + 1.12(SC) + 0.97(WBR) + 1.1(FC)

+0.43(CA) + €S (MPa) + (0,001(WD) x (CC)) + (0.0003(WD) X (FAC))
+ (0.0002(WD) x (SC)) — (0.1(WD) x (WBR)) — (0.001(WD) X (FC))
+(0.0002(WD) x (CA)) — (0.02(CC) x (FAC)) — (0.03(CC) % (SC))
+(0.03(CC) x (WBR)) — (0.02(CC) x (FC)) — (0.01(CC) % (CA))

— (0.02(FAC) x (SC)) + (0.5(FAC) x (WBR)) — (0.02(FAC) x (FC))
—(0.005(FAC) x +(CA)) + (1.3(SC) x (WBR)) — (0.002(SC) x (FC))
—(0.01(5C) x (€CA)) + (1.24(WBR) x (FC)) + (0.1(WBR) x (CA))

- (0.0l(FC) X (CA))+1.2(WD)2 —0.01€C)% — 0.03(FAC)? — 0.01(SC)?

— 0.9(WBR)? — 0.002(FC)? — 0.001(CA)?

(12)
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Figure 7. Comparison of measured and predicted Compressive strength using the FQ for training, testing, and

validating data.

Table 3. Summary of the parameters used to evaluate the performance of the produced models.

Database Models R? RMSE (MPa) MAE(MPa) Ranking
LR 0.65 6.07 4.48 5
MLR 0.82 4.30 3.10 4
Training FQ 0.90 32 2.57 3
IN 0.91 3.08 2.34 2
ANN 0.96 2.16 1.35 1
LR 0.74 5.73 3.76 5
MLR 0.77 531 343 4
Testing FQ 0.88 3.86 2.74 3
IN 0.88 3.10 2.86 2
ANN 0.99 0.95 2.63 1
LR 0.77 4.37 4.37 5
MLR 0.78 4.22 3.1 4
Validating FQ 0.90 2.81 2.20 3
IN 0.91 2.67 2.13 2
ANN 0.96 0.54 1.40 1
Table 4. Summary of statistical analysis of the FFC mixtures.
Variables WD CC FAC SC WBR FC CA CS
Mean 1406.2 32.7 12.2 22.6 0.1 14.2 22.7 7.6
Median 1400 29 4 24.5 0.27 9.5 28 4.2
Mode 1199 21 1x1071% 1x10710 0.3 4 28 0.8
SD 400.1 15.1 16.4 20.9 0.2 13.4 14.7 10.3
Var 160,063.1 2274 2674 434.1 0.02 178.9 214.9 105.9
Kurt -0.6 0.2 0.03 -13 -0.5 —-0.23 2.6 14.7
Skew -0.2 0.9 1.2 0.23 0.84 0.9 1.15 35
Min 496 4 0 0 0.09 1x1072% 3 0.2
Max 2227 77 59 68 0.7 60 90 73
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3.2.4. IN Model

The dataset used in this study was divided into three subsets: training, testing, and validation, to further
evaluate the performance of the interaction model. A high R? value, such as 0.9 or higher, indicates that the model
can explain variation in compressive strength with high accuracy [32]. Figure 8 presents the prediction outcomes
for this interaction model. Regarding the training set, the R? value was 0.91, indicating a positive correlation. The
testing stage showed a decrease in the R? value to 0.88, which subsequently increased to 0.91 throughout the
validation stage. Both the testing and validation stages include 50 samples each, for a total of 100 samples per
stage. The Root Mean Square Error (RMSE) indicates the average difference between the actual values and the
predicted ones, as shown in Equation (6). The RMSEs for the three subsets, training, testing, and validation, are
3.1, 3.9, and 2.7, respectively. Therefore, the value of the RSME is inversely proportional to the quality of the
results obtained with this model. Table 4 presents simple statistics for all input and output variables in the FFC
dataset. The decline in RSME values across the three datasets indicates that the model’s predictive accuracy is
maintained with new data.

CS (MPa) = 268 — 0.1(WD) — 3.6(CC) — 3.3(FAC) — 2.6(SC) — 45(WBR) — 1.6(FC) — 3.4(CA)
+ (0.01(WD) x (€C)) + (0.001(WD) x (FAC)) + (0.001(WD) X (SC))
— (0.03(WD) x (WBR)) + (0.0002(WD) x (FC)) + (0.0002(WD) x (CA))
+ (0.001(CC) x (FAC)) — (0.012(CC) x (SC)) — (0.5(CC) x (WBR))
—(0.012(CC) % (FC)) + (0.04(CC) x (€A)) — (0.01(FAC) x (SC)) (13)
— (0.4(FAC) x (WBR)) — (0.001(FAC) X (FC)) + (0.04(FAC) x +(CA))
+ (0.9(5C) x (WBR)) + (0.004(SC) x (FC)) + (0.03(SC) x (CA))
+ (0.6(WBR) x (FC)) + (1.5(WBR) x (CA)) + (0.02(FC) x (CA))
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Figure 8. Comparison of measured and predicted Compressive strength using the IN for training, testing, and
validating data.

3.2.5. ANN Model

An artificial neural network was employed for the research, and the data were separated into three categories:
training, testing, and validation. Then, R? values are calculated for each dataset. The Artificial Neural Network
(ANN) predictor model for the compressive strength of Fly Ash Composite Foam Concrete (FFC) utilizes each
input parameter via linked nodes, resulting in an output node (Node 0) as shown in Equations (14)—(20). Each
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node’s operation is to weigh inputs and add a bias component. The bias term allows the activation function to
change its response. This modification enhances the model’s capacity to fit complex patterns in data by allowing
greater flexibility when the model is active. It shows the rate at which the model captures data variance. R? ranges
from 0 to 1 [31]. A value close to 1 indicates that the model accurately predicts the target. For training, the R? was
0.96, which is a very reliable number for the fly ash data. Then, the testing R? increased to 0.99, which remains an
excellent value. Ultimately, the validation with the best data was raised to 0.96. Then, for each dataset, the Root
Mean Square Error (RMSE) was calculated, with a training RMSE of 2.16, indicating a low root error, and it
decreased further to 0.95 for testing. The RMSE value decreased to 0.54 for the validation set. This shows that the
ANN data are very reliable for predicting the compressive strength of FFC. The ANN’s predicted and actual values
are shown in Figure 9.

Node 1 = —0.60 + 2.02(WD) + 0.41(CC) — 1.17(FAC) — 0.06(SC) — 0.20(WBR) + 2.13(FC) + 0.81(CA)  (14)
Node 2 = —1.24 + 1.15(WD) + 2.01(CC) + 2.54(FAC) + 0.02(SC) — 1.28(WBR) — 2.60(FC) + 1.42(CA)  (15)
Node 3 = 0.47 + 0.80(WD) + 2.54(CC) — 2.26(FAC) — 2.10(SC) — 0.57(WBR) + 0.30(FC) — 0.64(CA)  (16)
Node 4 = 0.67 + 2.10(WD) + 2.65(CC) — 0.69(FAC) — 3.83(SC) + 0.61(WBR) + 0.59(FC) —0.01(C4)  (17)
Node 5 = —2.01 + 1.38(WD) + 1.76(CC) + 0.91(FAC) + 0.58(SC) — 0.41(WBR) — 0.24(FC) + 0.90(CA)  (18)
Node 6 = —1.50 + 4.36(WD) + 3.00(CC) + 1.62(FAC) — 2.02(SC) + 0.82(WBR) — 0.20(FC) + 0.15(CA)  (19)
Node 7 = 5.01 — 1.90(Node 1) — 3.20(Node 2) — 2.80(Node 3) + 3.10(Node 4) — 1.14(Node 5) — 2.50(Node 6)  (20)

Node 0 = 1.30 — 2.32(Node 7)
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Figure 9. Comparison of measured and predicted Compressive strength using the ANN for training, testing, and
validating data.

https://doi.org/10.53941/bci.2026.100005 94



Muhammed et al. Bull. Comput. Intell. 2026, 2(1), 83-102

3.2. Advantages and Limitations of Soft Computing Models

Soft computing models can be advantageous for laboratory testing due to their improved predictive accuracy.
Artificial Neural Networks (ANNs) achieve a superior R? and lower root mean squared error (RMSE) than
laboratory regression techniques. This is because they can comprehend complex relationships [7]. A summary of
the comparison of model metrics across ANN and traditional models is shown in Figure 10. This includes the cost
of resources and the time consumed. ANNs handle non-linear interactions among input variables, which are
beyond the capabilities of traditional regression models. For example, the impact of curing age on compressive
strength and sustainability is further enhanced by soft computing models, which enable dynamic adjustment of
mix ratios while allowing continuous tracking of material properties. Figure 11 shows that the ANN model
outperforms the other models in terms of the OBJ, SI, and MAE metrics for both the training and testing datasets.

Pareto Chart of the Standardized Effects
(response is Compressive Strength (Mpa), a = 0.05)

Term 197

Predictor Name

Wet Density (kg/m”)
Cement Content (%)

Fly Ash Content (%)

Sand Content (%)
Water-Binder Ratio (Unitless)
Foam Content (%)

Curing Age (d)

M mQogNnm>

0 5 10 15 20
Standardized Effect

Figure 10. Pareto chart of the standardized effects of each independent variable on CS.
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Figure 11. Comparison of (a) OBJ, (b) SI, and (¢) MAE performance metrics across the five employed models
using the training and testing datasets.

3.3. Limitations of Soft Computing Models

Various limitations accompany soft computing algorithms. First is the complexity of computation. More
advanced models require more computational resources. Additionally, handling large datasets is impossible for
applications with limited resources. However, soft computing models require large, high-quality datasets to enable
effective training. Otherwise, predictions can be inaccurate [7]. Another potential limitation is overfitting. Models
such as artificial neural networks (ANNs) can fail to generalize well on unseen data due to overfitting the training
data. Residual error comparisons between models are presented in Figure 12.
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Figure 12. Comparison between developed models for shear strength based on residual error (a) ANN and LR; (b)
ANN and NL; (¢) ANN and ML; and (d) ANN and FQ.

4. Sensitivity Analysis of Input Variables
4.1. Wet Density (kg/m’)

Wet density has been used as an input to determine the optimal compressive strength for FFC, with units
kg/m>. Wet density is the weight of wet concrete per unit volume. It is a method for measuring the degree of
compaction of a concrete mixture while it is still fresh and damp [33]. The distribution of compressive strength
across the dataset is shown in Figure 4. A higher density means the concrete has fewer air bubbles and less vacuum.
A denser mixture results in stronger, more reliable concrete. Due to the close-packed arrangement of particles,
such as sand and aggregates, the bonding between them strengthens the concrete. The highest wet density in the
data is 2227 kg/m?3, which results in higher compressive strength. The lowest, 496 kg/m?, means the compressive
strength will still be acceptable, but not as high as that of the highest wet density. The reason for choosing a low
wet density is to reduce the concrete’s weight, making it more suitable for FFC.

4.2. Cement Content (%)

The cement content (%) is another key input for the FFC concrete mixture, resulting in high compressive
strength. The higher the cement content, the higher the concrete’s compressive strength. In cement-treated
mixtures, curing times range from 7 to 28 days, indicating that longer curing times result in stronger concrete [34]
due to the mixture’s hydration. Additionally, the FFC plays a crucial role in concrete, adding strength and providing
reinforcement. Furthermore, fly ash will reduce the concrete’s weight. However, the cement content will also play a
significant role in determining the concrete’s weight while providing higher compressive strength. Using soft-
computing algorithms to predict compressive strength reduces the need for extensive laboratory testing. This
approach optimizes cement content and other variables to produce sustainable, efficient construction materials.

4.3. Sand Content (%)

Sand content is a crucial ingredient that affects the compressive strength, weight, and durability of concrete.
The effectiveness of sand in the mixture depends on the materials with which it is mixed. Suppose the mix is
contaminated, resulting in reduced mechanical strength. The sand particle structure similarly affects the mix; the
sand’s properties, such as grain size, shape, and grading, either enhance or detract from the mix’s properties. If the
sand particles have a more textured surface, they will bond more effectively with the cement, leading to higher-
strength concrete and a better, stronger FFC [35]. In this study, using soft computing models to predict sand types
is significantly easier than relying on laboratory data, making it faster and less expensive. The sand should be
cleaned before use in the mixture [13]. Adding sand quality will enhance the accuracy and reliability of the
predictions for the data. Using soft computing algorithms, the FFC will be more eco-friendly and stronger, as the
projections require less time than the laboratory method.
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4.4. Foam Content (%)

Foam content (%) is a key parameter in the FFC mix, primarily influencing the material’s density. Foam is
generated by mixing a foaming agent with water [1], introducing air voids into the concrete. As foam content
increases, the number of entrained air bubbles rises, resulting in a lighter concrete with lower density. However,
excessive foam content can reduce the mechanical strength of FFC, as the increased void ratio diminishes the
material’s load-bearing capacity. Using soft computing models, the optimal foam content can be efficiently
determined. However, a foam content of around 25% strikes a decent balance between strength and lightweight
concrete [1].

4.5. Water-Binder Ratio

The water-binder (w/b) ratio is the ratio of particles, such as cement and fly ash, in FFC. An increase in the
water-binder ratio indicates a decrease in the amount of binder. A lower w/b ratio means more strength because it
is denser and has fewer holes [4]; the greater the w/b ratio, the weaker the concrete. However, workability at the
low w/b ratio will be more difficult because it will be more solid. Therefore, maintaining an optimal water-to-
binder (w/b) ratio is crucial for balancing strength and workability in concrete. For instance, concrete with a w/b
ratio of 0.50 exhibits greater strength than that with a w/b ratio of 0.65 [4]. In addition to durability, a reduced
water-to-binder ratio enhances it by preventing the entry of harmful chemicals into the mixture.

5. Sensitivity Analysis

The effect of each variable on the expected compressive strength of fly ash composite foam concrete (FFC)
was examined in the sensitivity analysis. Figure 11 shows the relative importance of the input variables using a
Pareto chart. A satisfactory artificial neural network (ANN) model, determined to be suitable for predicting
compressive strength (CS), was used for this analysis. Wet density, cement content, and foam content were found
to be the most significant factors affecting concrete properties. Compressive strength was most significantly
affected by wet density, cement content, and foam content. These three variables were crucial in defining the
structural behavior of FFC, as shown by their most notable contributions to the model’s output. The fly ash content,
curing age, sand content, and water-binder ratio all showed minor but visible impacts. As shown in Table 5, the
suggested mix design values are based on the sensitivity analysis results, which indicate that these factors have the
greatest effect on the compressive strength of Fly Ash Composite Foam Concrete (FFC). Higher compressive
strength results from a more compact, denser internal structure in the composite, which is correlated with increased
density. Cement content also promotes constant hydration and metallic reactions, which gradually increase
strength, as shown in Figure 11. Although foam content is essential for reducing the weight of FFC, its increased
porosity at higher values reduces compressive strength. Balanced proportions of fly ash and sand, along with
appropriate curing times, enhance workability and mechanical performance. Additionally, lower water--binder
ratios increase paste matrix density, thus improving structural integrity. This analysis highlights the significance
of all mix components and preparation steps, demonstrating that even minor variations, similar to those in pre-
processing conditions of other material systems, can significantly influence concrete properties. Overall, the
sensitivity analysis confirmed that wet density and cement content were the most influential parameters affecting
compressive strength, followed by foam content and fly ash content. These results emphasize the importance of
optimizing mix design to achieve both high structural performance and enhanced environmental sustainability in
FFC applications.

Table 5. Optimized mix design parameters for enhancing compressive strength in fly ash composite foam concrete
(FFC) based on sensitivity analysis.

Design Variable Optimized Range/Observed Performance Impact
~1800-1900 kg/m*—Higher density improved compressive strength
without compromising workability.
~35-45% of binder mix—Contributed significantly to early and
peak strength development.
~10-15%—Balanced mechanical strength and sustainability by
partially replacing cement.
~0.25-0.30—Optimized range for achieving desirable
strength and mix consistency.
~20-25%—Controlled density and insulation properties while
maintaining strength.
Curing Age >28 days—Strength reached peak after standard curing duration.

Wet Density

Cement Content

Fly Ash

Water/Binder Ratio

Foam Content
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6. Limitations

e  The study is based on a specific dataset size and composition, which may not fully capture the variability of
concrete produced under different mix proportions, curing conditions, and material sources.

e  Some Al model implementation details (e.g., hyperparameter tuning strategies) were constrained due to
computational limitations.

e  The current work focused primarily on compressive and tensile strength prediction; other mechanical and
durability properties (e.g., shrinkage, permeability, resistance to ASR) were not included.

7. Future Research Directions

e  Expanding the dataset to cover a broader range of concrete mixtures, including sustainable binders (e.g., glass
powder, rice husk ash, slag), to enhance generalizability.

e  Conducting sensitivity and uncertainty analyses is better to understand the influence of input parameters on
predictive performance.

e  Comparing additional advanced Al methods (e.g., Gradient Boosting, XGBoost, Deep Learning) with the
models used in this study.

e  Validating the models through experimental testing and benchmarking against international standards.

8. Conclusions

This study analyzed 302 FFC mix design datasets using soft computing models to predict compressive
strength based on six key input variables. This approach reduces reliance on traditional laboratory testing, which
can be time-consuming, resource-intensive, and less scalable. The study successfully developed and evaluated the
following multiple soft computing models: Linear Regression (LR), Multi-Linear Regression (MLR), Full
Quadratic Model (FQ), Interaction Model (IN), and Artificial Neural Network (ANN) for predicting the
compressive strength of Fly Ash Composite Foam Concrete (FFC). The most critical factors affecting compressive
strength, as determined by the sensitivity analysis, were wet density, cement content, and fly ash content. These
results highlight the investigation of vital mix design components to achieve optimal FFC performance. The ANN
model outperformed the other models in terms of predictive power and durability across performance indicators.
Based on the compiled dataset and detailed statistical evaluations, the following conclusions can be drawn:

I.  The dataset included several input parameters, including Wet Density, fly ash content, foam content, water-
to-binder ratio, curing time, cement content, and sand content. Higher wet density and optimized cement
content primarily contributed to increased compressive strength, confirming the efficacy of wet density as a
sustainable binder in FFC mixtures.

II. The optimized mix design results indicate that wet density in the range of 1800—~1900 kg/m? had the most
significant influence on compressive strength, with higher density contributing to improved mechanical
performance. A cement content of between 35-45% significantly enhanced strength development,
particularly during the early stages of curing. A foam content of around 20-25% effectively balances weight
reduction and thermal insulation without excessively compromising structural integrity. Fly ash replacement
at 10-15% provided a sustainable alternative to cement while maintaining acceptable strength.

III. The Artificial Neural Network (ANN) model also ranked highest based on Objective Function (OBJ) and
Scatter Index (SI) metrics. For the training, testing, and validation datasets, the SI values were 0.30, 0.12,
and 0.70, respectively, while the corresponding OBJ values were 1.2 MPa, 0.3 MPa, and 0.16 MPa.

IV. Sensitivity analysis confirmed that wet density and cement content were the most influential parameters,
followed by foam content and fly ash content. These findings highlight the critical role of mix design
optimization in producing high-performance, environmentally sustainable FFC.
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Abbreviations

FFC Fly Ash Composite Foam Concrete

LR Linear Regression

MLR Multi-linear Regression

FQ Full Quadratic

IN Interaction Model

ANN Artificial Neural Network

R? Coefficient of Determination

MAE Mean Absolute Error, MPa

SI Scatter Index, MPa

RMSE Root Mean Square Error, MPa

OBJ The objective function, MPa
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