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Abstract: This study develops soft-computing models to predict the compressive 
strength of Fly Ash Composite Foam Concrete (FFC), a lightweight, sustainable 
cementitious material. A database of 302 experimental records was compiled from 
previous studies, including wet density, cement content, fly ash content, sand 
content, water–binder ratio, foam content, and curing age. Five predictive models 
were evaluated, with the Artificial Neural Network (ANN) achieving the best 
performance, yielding an accuracy of 98% and the lowest prediction error. 
Sensitivity analysis identified wet density, cement content, and foam content as the 
most influential variables. The results demonstrate that soft computing approaches 
can significantly reduce experimental effort, lower costs, and support the 
sustainable design of FFC mix ratios for diverse applications. 

 Keywords: FFC (fly ash composite foam concrete); compressive strength; soft 
computing; mix design optimization; artificial neural network (ANN); sustainability 

1. Introduction 

Approximately 8% of global CO2 emissions are from cement production, making it a significant contributor 
to climate change [1,2]. Cement, the second-most widely used product on Earth after water, underscores the urgent 
need for sustainable alternatives. This study presents Fly Ash Composite Foam Concrete (FFC) as a feasible 
alternative, in which a fraction of cement is substituted with fly ash, a byproduct of coal combustion. Compared 
to traditional concrete, FFC reduces density and carbon footprint, and improves thermal insulation qualities [3,4]. 
FFC provides significant technical advantages in addition to environmental benefits. Its porous microstructure 
increases durability, resists cracking, and improves acoustic insulation [5,6]. The lightweight nature of FFC makes it 
suitable for both structural and non-structural applications by reducing dead load. The chemical interactions among 
foam components produce a strong microstructure that balances mechanical strength with reduced weight [4]. 
Furthermore, by using recycled materials and minimizing embodied energy, FFC contributes to the circular 
economy [6]. Traditional evaluation requires a 28-day curing period and substantial effort, resulting in increased 
costs and building duration [1]. As a result, there is an increased demand for quicker, non-destructive prediction 
approaches. Soft computing models have demonstrated significant potential in this field, offering data-driven 
models that can capture complex nonlinear interactions and yield accurate strength estimates with reduced reliance 
on physical testing [1,6]. Predictive models, such as Artificial Neural Networks (ANNs) and Interaction Models 
(INs), have proven effective for estimating the compressive strength of complex concrete mixes. These methods 
excel at processing large datasets, identifying patterns, and modeling behaviors that are difficult to detect with 
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traditional statistical techniques. In this study, 302 mix design datasets (filtered from an initial 320 samples after 
outlier removal) were used to build predictive models for FFC compressive strength. 

The dataset was divided into 66% for training, 17% for testing, and 17% for validation. To assess the model’s 
performance and accuracy, several statistical metrics were used, including R2, Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), and Scatter Index. This study employs multiple soft computing models, including 
Linear Regression (LR), Multilinear Regression (MLR), Full Quadratic Model (FQ), Interaction Model (IN), and 
Artificial Neural Network (ANN), and compares them. The results of this study indicate that the ANN performed 
exceptionally well, achieving higher accuracy in predicting compressive strength and outperforming all other 
techniques. This study presents an analytical approach to predict and optimize FFC mix design, thereby supporting 
the broader adoption of sustainable building materials. The application of soft computing promotes economical, 
ecologically friendly building processes while increasing efficiency by reducing dependency on conventional 
laboratory techniques. This study further explores the sustainability potential of FFC, emphasizing its energy-
saving, environmental, and practical benefits. The partial replacement of cement with fly ash significantly reduces 
CO2 emissions, aligning with ecological goals [2,3]. This substitution also limits construction waste and supports 
the reuse of industrial byproducts [4,5]. By minimizing resource extraction, FFC contributes to long-term 
environmental conservation [6]. In addition, soft computing models facilitate the rapid and precise optimization 
of mix designs [1,7], improving performance while lowering material and energy demands [8]. These models can 
incorporate real-time data to enable dynamic, on-site adjustments [9,10]. Such features enhance construction 
efficiency and reduce the need for repeated laboratory testing [11]. Overall, these innovations position FFC as a 
scalable, sustainable material aligned with global development goals [6,12]. 

Fly Ash Composite Foam Concrete (FFC) comprises fly ash, cement, sand, foam, and a specific water-binder 
ratio. Fly ash, derived from the burning of coal, can replace cement, making it a recycled, eco-friendly material 
that is also more cost-effective. Adding foam to FFC reduces the concrete’s weight by incorporating air bubbles 
and providing additional thermal insulation. The water-binder mix affects the concrete’s strength and workability. 
Decreasing the water content results in stronger concrete; however, it reduces workability [13]. FFC must be 
significantly lighter than regular concrete, requiring less structural support [1]. Its air pockets will make it 
soundproof and more temperature-controlled [5]. 

Due to FFC’s lightweight properties, it simplifies application on construction sites. Additionally, FFC can be 
used to fill gaps due to its lightweight nature, strength, and insulating properties. With FFC’s heat-retention 
prowess, it can maintain lower interior temperatures in summer while keeping them higher in winter, allowing 
houses to use less electricity and making the environment cleaner. FFC can also work as a waterproof shield, 
making walls more energy-efficient [6]. FFC could effectively minimize external noise. Furthermore, FFC requires 
a lower water-binder ratio, which makes it easier to work with by reducing the needed curing time. 

FFC is eco-friendly because it uses fly ash, a waste material [5]. Additionally, cement production can produce 
more CO2 than FFC, making it less environmentally sustainable [5]. Cement is not a reliable insulator, which 
makes it less eco-friendly because it requires more electricity to maintain a consistent temperature difference 
between the inside and outside. In contrast, FFC offers better insulation and sustainability. Additionally, Soft 
computing models will help the industry by conserving resources, eliminating material waste, and enabling tests 
to be conducted as frequently as needed. This will help the global industry become more efficient with its resource 
expenditure. The combination of different soft computing models can aid faster, more error-free mix design 
optimization, thereby enhancing their applicability in real-life construction. 

The waste-derived and nano-enhanced materials were studied to evaluate their effect on the residual 
compressive strength (RCS) of concrete exposed to high temperatures. Granite and marble waste powders (1–9% 
cement replacement) were initially tested for their impact on compressive strength, followed by the creation of 
hybrid mixes incorporating nano carbon tubes (NCTs) and nano alumina (NAl). A total of 288 and 156 
experimental data points were used to train several machine learning (ML) and metaheuristic models, including 
the Water Cycle Algorithm (WCA), Genetic Algorithm (GA), Artificial Neural Networks (ANN), Fuzzy Logic 
(FL), and Multiple Linear Regression (MLR). The WCA model consistently showed the highest predictive 
accuracy, closely followed by ANN and FL, with mean absolute errors below 4 kg/cm2. The best mixture included 
9% waste granite powder (WGP) and 5% waste marble powder (WMP), which retained 59.6% more RCS after 
exposure to 800 °C for 2 h. The nonlinear RCS prediction equations derived from WCA and GA exhibited excellent 
regression performance. Sensitivity analyses (using ANN weights and SHAP interpretation) indicated that 
temperature and exposure duration were the most influential factors, followed by the proportions of NAl, NCTs, 
WGP, and WMP, respectively [14,15]. 
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Research Objectives 

In this study, 302 mix design datasets (filtered from an initial 320 samples after outlier removal) were used 
to develop predictive models for the compressive strength of FFC. The dataset was divided into 66% for training, 
17% for testing, and 17% for validation. Model performance was evaluated using statistical error metrics, including 
R2, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Scatter Index (SI). Multiple soft 
computing models were employed, namely Linear Regression (LR), Multilinear Regression (MLR), Full Quadratic 
Model (FQ), Interaction Model (IN), and Artificial Neural Network (ANN). Among these, the ANN model 
demonstrated the best performance, achieving the highest predictive accuracy for compressive strength. This 
analytical approach provides a framework for optimizing FFC mix design and supports the broader adoption of 
sustainable building materials. 

2. Methodology 

The methodology of this study is illustrated in Figure 1, which outlines the steps undertaken. The dataset 
used for this research was compiled from prior FFC-based research, comprising 302 datasets. The summary of the 
data used in this research, including averages for the seven inputs, the strength result, units, and ranges, is shown in 
Table 1. The data was split into training, testing, and validation sets to ensure more accurate models. The initial 
set, comprising 202 datasets, was designated as the training dataset. The second group was defined as the test set, 
and the third as the validation dataset. The dataset was divided into 66% for training, 17% for testing, and 17% for 
validation. After analyzing the data, the overall R2 increased to a very suitable number. The parameters that are 
selected as input variables are wet density (WD), cement content (CC), fly ash content (FAC), sand content (SC), 
water/binder ratio (WBD), foam content (FC), curing age (CA), and compressive strength (CS). The training, 
testing, and validating dataset groups were applied to multiple models to determine the coefficient of determination 
(R2), root mean squared error (RMSE), mean absolute error (MAE), scatter Index (SI), and objective (OBJ). These 
numbers indicate how well the model aligns with the data. The predictive models used in this study are linear 
regression (LR), complete multilinear regression (MLR), full quadratic model (FQ), interaction model (IN), and 
artificial neural networks (ANN).  

 

Figure 1. The flowchart diagram for the study. 



Muhammed et al.   Bull. Comput. Intell. 2026, 2(1), 83–102 

https://doi.org/10.53941/bci.2026.100005  86 

Table 1. Dataset information. 

Sources Numbers Proportion (%) Sources Numbers Proportion (%) 
[16] 36 11 [17] 17 5 
[18] 35 11 [19] 16 5 
[20] 24 8 [21] 16 5 
[20] 24 8 [22] 15 5 
[23] 18 6 [24] 15 5 
[25] 18 6 [26] 14 4 
[27] 18 6 [16] 7 2 
[28] 18 6 [26] 6 2 
[29] 18 6 [30] 5 2 

2.1. Overview of Applied Models 

2.1.1. Linear Regression Model 

Linear regression (LR) modeling is a statistical approach used to predict the relationship between independent 
and dependent variables by fitting a linear equation to observed data, thereby predicting the compressive strength 
of FFC. This model demonstrates that soft computing models, particularly linear regression, can enhance the 
efficiency of concrete mix design by reducing the need for extensive laboratory testing. Training, testing, and 
validating the LR model ensures its predictive accuracy and reliability, making it a viable alternative for 
preliminary strength assessments. The linear model uses Equation (1) to determine the optimal compressive 
strength. LR model’s compressive strength is based on input parameters, as shown in Equation (1). 

𝐶𝑆 ሺ𝑀𝑃𝑎ሻ ൌ 𝐴 ൅ 𝐵ሺ𝑊𝐷ሻ ൅ 𝐶ሺ𝐶𝐶ሻ ൅ 𝐷ሺ𝐹𝐴𝐶ሻ ൅ 𝐸ሺ𝑆𝐶ሻ ൅ 𝐹ሺ𝑊𝐵𝑅ሻ ൅ 𝐺ሺ𝐹𝐶ሻ   ൅𝐻ሺ𝐶𝐴ሻ (1)

The independent parameters are wet density (WD), cement content (CC), fly ash content (FAC), sand content 
(SC), water/binder ratio (WBR), foam content (FC), and curing age (CA). The dependent parameter is compressive 
strength (CS). The A to H are the model parameters. 

2.1.2. Multi-Linear Regression Model 

The third model employed in this study was a statistical soft-computing technique, specifically the multiple 
linear regression (MLR) model. It was used to analyze the Fly Ash Composite Foam Concrete (FCC) and its 
compressive strength. The MLR model is the relationship between various independent variables, including wet 
density, cement content, fly ash content, sand content, water-binder ratio, foam content, and curing age. To ensure 
that only the most significant independent variables have a meaningful effect on the dependent variable, each 
relationship was assessed by estimating a regression coefficient for each independent variable. The general formula 
for the multi-linear regression model is: 
𝐶𝑆 ሺ𝑀𝑃𝑎ሻ ൌ 𝐴 ൈ ሺ𝐵 ൈ ሺ𝑊𝐷ሻ஻భሻ ൈ ሺ𝐶 ൈ ሺ𝐶𝐶ሻ஻మሻ ൈ ሺ𝐷 ൈ ሺ𝐹𝐴𝐶ሻ஻యሻ ൈ ሺ𝐸 ൈ ሺ𝑆𝐶ሻ஻రሻ ൈ ሺ𝐹 ൈ ሺ𝑊𝐵𝑅ሻ஻ఱሻ

ൈ ሺ𝐺 ൈ ሺ𝐹𝐶ሻ஻లሻ ൈ ሺ𝐻 ൈ ሺ𝐶𝐴ሻ஻ళሻ 
(2)

where 𝐵ଵ to 𝐵଻ represent the model parameters. 

2.1.3. Full Quadratic Model 

The Full quadratic model (FQ) was the third model used; a higher-order statistical technique employed to 
achieve complex nonlinear relationships among variables. This model was applied to predict the compressive strength 
of FFC concrete. The FQ model captures the linear relationship between input and output variables, including their 
interactions and squared terms, providing a more comprehensive analysis than simpler regression methods. Including 
quadratic terms helps the model capture the complex patterns in concrete mixes containing recycled materials, such 
as fly ash. The general form of the Full Quadratic regression model is expressed as: 

𝐶𝑆 ሺ𝑀𝑃𝑎ሻ ൌ 𝐴 ൅ 𝐵ሺ𝑊𝐷ሻ ൅ 𝐶ሺ𝐶𝐶ሻ ൅ 𝐷ሺ𝐹𝐴𝐶ሻ ൅ 𝐸ሺ𝑆𝐶ሻ ൅ 𝐹ሺ𝑊𝐵𝑅ሻ ൅ 𝐺ሺ𝐹𝐶ሻ  ൅ 𝐻ሺ𝐶𝐴ሻ ൅ ൫𝑃ሺ𝑊𝐷ሻ ൈ ሺ𝐶𝐶ሻ൯ ൅ ൫𝑄ሺ𝑊𝐷ሻ ൈ ሺ𝐹𝐴𝐶ሻ൯

൅ ൫𝑅ሺ𝑊𝐷ሻ ൈ ሺ𝑆𝐶ሻ൯ ൅ ൫𝑆ሺ𝑊𝐷ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯ ൅ ൫𝑇ሺ𝑊𝐷ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫𝑈ሺ𝑊𝐷ሻ ൈ ሺ𝐶𝐴ሻ൯  ൅ ൫𝑉ሺ𝐶𝐶ሻ ൈ ሺ𝐹𝐴𝐶ሻ൯

൅ ൫𝑊ሺ𝐶𝐶ሻ ൈ ሺ𝑆𝐶ሻ൯ ൅ ൫𝑋ሺ𝐶𝐶ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯ ൅ ൫𝑌ሺ𝐶𝐶ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫𝑍ሺ𝐶𝐶ሻ ൈ ሺ𝐶𝐴ሻ൯ ൅ ൫𝐴𝐴ሺ𝐹𝐴𝐶ሻ ൈ ሺ𝑆𝐶ሻ൯

൅ ൫𝐴𝐵ሺ𝐹𝐴𝐶ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯ ൅ ൫𝐴𝐶ሺ𝐹𝐴𝐶ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫𝐴𝐷ሺ𝐹𝐴𝐶ሻ ൈ ൅ሺ𝐶𝐴ሻ൯ ൅ ൫𝐴𝐸ሺ𝑆𝐶ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯

൅ ൫𝐴𝐹ሺ𝑆𝐶ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫𝐴𝐺ሺ𝑆𝐶ሻ ൈ ሺ𝐶𝐴ሻ൯ ൅ ൫𝐴𝐻ሺ𝑊𝐵𝑅ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫𝐴𝐼ሺ𝑊𝐵𝑅ሻ ൈ ሺ𝐶𝐴ሻ൯

൅ ൫𝐴𝐽ሺ𝐹𝐶ሻ ൈ ሺ𝐶𝐴ሻ൯൅𝐼ሺ𝑊𝐷ሻଶ ൅ 𝐽ሺ𝐶𝐶ሻଶ ൅ 𝐾ሺ𝐹𝐴𝐶ሻଶ ൅ 𝐿ሺ𝑆𝐶ሻଶ ൅ 𝑀ሺ𝑊𝐵𝑅ሻଶ ൅ 𝑁ሺ𝐹𝐶ሻଶ ൅ 𝑂ሺ𝐶𝐴ሻଶ 

(3)

where 𝐴 to 𝐴𝐽 are representing the model parameters. 
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2.1.4. Interaction Model 

The fourth model used in this study is the multiplicative interaction regression model, which is employed to 
examine the influence of one independent variable on changes in the dependent variable in relation to another 
variable. This structure enables the modeling of conditional relationships and mitigates bias associated with key 
components. Particularly useful for capturing moderation effects, the model explains that coefficients on 
constitutive terms represent effects only when the interacting variable is zero. This approach is crucial for 
analyzing systems where relationships among variables are not uniform across conditions. The general form of the 
interaction model is expressed as: 

𝐶𝑆 ሺ𝑀𝑃𝑎ሻ ൌ 𝐴 ൅ 𝐵ሺ𝑊𝐷ሻ ൅ 𝐶ሺ𝐶𝐶ሻ ൅ 𝐷ሺ𝐹𝐴𝐶ሻ ൅ 𝐸ሺ𝑆𝐶ሻ ൅ 𝐹ሺ𝑊𝐵𝑅ሻ ൅ 𝐺ሺ𝐹𝐶ሻ  ൅𝐻ሺ𝐶𝐴ሻ
൅ ൫𝐼ሺ𝑊𝐷ሻ ൈ ሺ𝐶𝐶ሻ൯ ൅ ൫𝐽ሺ𝑊𝐷ሻ ൈ ሺ𝐹𝐴𝐶ሻ൯ ൅ ൫𝐾ሺ𝑊𝐷ሻ ൈ ሺ𝑆𝐶ሻ൯ ൅ ൫𝐿ሺ𝑊𝐷ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯
൅ ൫𝑀ሺ𝑊𝐷ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫𝑁ሺ𝑊𝐷ሻ ൈ ሺ𝐶𝐴ሻ൯  ൅ ൫𝑂ሺ𝐶𝐶ሻ ൈ ሺ𝐹𝐴𝐶ሻ൯ ൅ ൫𝑃ሺ𝐶𝐶ሻ ൈ ሺ𝑆𝐶ሻ൯
൅ ൫𝑄ሺ𝐶𝐶ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯ ൅ ൫𝑅ሺ𝐶𝐶ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫𝑆ሺ𝐶𝐶ሻ ൈ ሺ𝐶𝐴ሻ൯ ൅ ൫𝑇ሺ𝐹𝐴𝐶ሻ ൈ ሺ𝑆𝐶ሻ൯
൅ ൫𝑈ሺ𝐹𝐴𝐶ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯ ൅ ൫𝑉ሺ𝐹𝐴𝐶ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫𝑊ሺ𝐹𝐴𝐶ሻ ൈ ൅ሺ𝐶𝐴ሻ൯
൅ ൫𝑋ሺ𝑆𝐶ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯ ൅ ൫𝑌ሺ𝑆𝐶ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫𝑍ሺ𝑆𝐶ሻ ൈ ሺ𝐶𝐴ሻ൯ ൅ ൫𝐴𝐴ሺ𝑊𝐵𝑅ሻ ൈ ሺ𝐹𝐶ሻ൯
൅ ൫𝐴𝐵ሺ𝑊𝐵𝑅ሻ ൈ ሺ𝐶𝐴ሻ൯ ൅ ൫𝐴𝐶ሺ𝐹𝐶ሻ ൈ ሺ𝐶𝐴ሻ൯            

(4)

where 𝐴 to 𝐴𝐶 are representing the model parameters. 

2.1.5. Artificial Neural Network Model 

Artificial Neural Networks (ANNs) help predict the strength of Fly Ash Composite Foam Concrete (FFC), 
indicating its ability to withstand heavy loads without breaking. In this study, an artificial neural network (ANN) 
was employed to analyze factors such as the material mix, curing time, and fly ash quality to examine the impact 
and strength of FFC. The model was highly accurate, with a score of 0.99, indicating that it could predict the strength 
almost perfectly. It helps analyze the data more effectively to determine the ideal compressive strength. This is 
beneficial because it is more time- and cost-efficient than conducting multiple lab tests. ANN also helps determine 
the optimal material combination to enhance FFC strength, which is particularly useful for building projects [31]. It 
can handle large amounts of data and identify patterns that older methods might neglect, making it ideal for FFC, 
where success depends on many factors working together. Once trained, the ANN can make more accurate 
predictions, assisting engineers in making decisions. The ANN model predicts compressive strength by directing 
input variables through a network of hidden nodes (Node 1, Node 2, Node n) to an output node (Node 0). The model 
computes its output from weighted inputs and a bias term. The bias allows the activation level of each node to be 
shifted, thereby improving the model's fit to the data by altering the response curve of the activation function. 

3. Performance Evaluation of ML Models 

Coefficient of determination (R2), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 
Objective function (OBJ), and Scatter Index (SI) were used to assess the models’ dependence on the collected 
database. These correlations are visualized in Figure 2. These measures help evaluate the work efficiency of the 
soft computing methods. Several tests were conducted to determine the optimal settings for the key factors. 
Equations (5)–(9) represent the statistical parameters used to determine each of the mentioned criteria. 

𝑅ଶ ൌ 1 ൅ ቆ
 ∑ ሺ𝑌𝑝 െ 𝑌𝑖ሻଶ௜

∑ ሺ𝑌𝑖 െ 𝑚𝑒𝑎𝑛 𝑌𝑖ሻଶ௜
ቇ
ଶ

 (5)

𝑅𝑀𝑆𝐸 ൌ ඨ
∑ ሺ𝑌𝑝 െ 𝑌𝑖ሻଶ௜

𝑁
 (6)

𝑀𝐴𝐸 ൌ
∑ ሺ|𝑌𝑝 െ 𝑌𝑖|ሻଶ௜

𝑛
 (7)

𝑂𝐵𝐽 ൌ ቆ
𝑛௧௥
𝑛௔௟௟

ൈ
𝑅𝑀𝑆𝐸௧௥ ൅  𝑀𝐴𝐸௧௥

𝑅௧௥
ଶ ൅ 1

ቇ ൅ ቆ
𝑛௧௦௧
𝑛௔௟௟

ൈ
𝑅𝑀𝑆𝐸௧௦௧ ൅  𝑀𝐴𝐸௧௦௧

𝑅௧௦௧
ଶ ൅ 1

ቇ ൅ ቆ
𝑛௩ௗ௧
𝑛௔௟௟

ൈ
𝑅𝑀𝑆𝐸௩ௗ௧ ൅  𝑀𝐴𝐸௩ௗ௧

𝑅௩ௗ௧
ଶ ൅ 1

ቇ (8)
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𝑆𝐼  ൌ  
𝑅𝑀𝑆𝐸
𝑚𝑒𝑎𝑛 𝑌𝑖

 (9)

 𝑌𝑝 denotes the predicted value of CS, 
 𝑌𝑖 represents the tested value of CS, 
 𝑚𝑒𝑎𝑛 𝑌𝑖 is the average of the tested data, 
 𝑛௔௟௟ refers to the total number of datasets used (all training, testing, and validating), 
 𝑛௧௥ is a value representing the number of training datasets, 
 𝑛௧௦௧ is a value representing the number of testing datasets, 
 𝑛௩ௗ௧ is a value representing the number of validating datasets, 
 𝑁 is the total number of datasets in the dataset. 

The coefficient of determination (R2) ranges between 0 and 1, where 1 indicates a perfect model fit. For 
RMSE (Root Mean Square Error), MAE (Mean Absolute Error), and OBJ (Objective Function) values, the range 
extends from 0 to infinity. As the value decreases, it will be shown. As the value decreases, it indicates superior 
model performance, with zero being the ideal case. Figure 3 illustrates marginal plots of the distributions of these 
variables. The Scatter Index (SI) is a key metric for evaluating model accuracy. An SI value below 0.1 is generally 
considered acceptable. The results showed that the Artificial Neural Network (ANN) performed best in predicting 
compressive strength values. The comparative RMSE and MAE values for each model are summarized in Table 2. 
Figure 4 shows the frequency distribution of compressive strength, highlighting the most frequent values. 

 

Figure 2. Correlation matrix for the coefficient of determination between dependent and independent variables. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

 
(g) 

Figure 3. Marginal plot between compressive strength of fly ash composite foam concrete and (a) Wet density WD 
(Kg/m3); (b) Cement Content CC (%); (c) Fly Ash Content FAC (%); (d) Sand Content SC (%); (e) Water-binder 
ratio WBR (Unitless); (f) Foam Content FC (%); (g) Curing age CA. 

Table 2. Root mean squared error (RMSE) and mean absolute error (MAE) for the developed models in different 
compressive strengths. 

Models 
Training Testing  Validation 

No. of Datasets = 202 No. of Datasets = 50 No. of Datasets = 50 
RMSE MAE RMSE MAE RMSE MAE 

LR 6.07 4.48 5.73 3.76 4.37 4.37 
MLR 4.30 3.10 5.31 3.43 4.22 3.1 
FQ 3.2 2.57 3.86 2.74 2.81 2.20 
IN 3.08 2.34 3.10 2.86 2.67 2.13 

ANN 2.16 1.35 0.95 2.63 0.54 1.40 

 

Figure 4. Frequency plot for geopolymer concrete’s compressive strength, CS (MPa). 
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3.2.1. LR Model 

The linear regression model (LM) has been tested using three separate datasets: training, testing, and 
validation. A high R2 value, such as 0.8, indicates that the model can explain approximately 80% of the variation 
in compressive strength. In other words, 80% of the variation in the strength can be predicted by your model [32]. 
The training set yielded an R2 of 0.65, indicating that the model explained 65% of the variation in the data. After 
testing and validation, different datasets were used for each of the 50 datasets. Other sets of data yielded R-squared 
values of 0.74 for testing and 0.77 for validation. Figure 5 shows the LR model’s prediction accuracy. After using 
different data, we can see that the model’s accuracy has changed. The next step was the root mean squared error 
(RMSE). The three datasets were used for training, with a value of 6.1; however, this value was dropped for the 
other datasets, which tested 5.72 and validated at 4.37. RMSE measures the average difference between predicted 
and actual values, as shown in Equation (10). That means the lower the RMSE is, the better. The drop in RMSE 
from training to testing indicates that the model performs adequately on new data. However, the slight increase in 
RMSE during validation suggests that the model may struggle with some unseen datasets. In the combined training, 
testing, and validation dataset, the error envelope spans −40% to 60%, indicating that 60% of all datasets fall 
within the range 0.60 to 1.60 for the ratio of predicted to measured compressive strength. 

𝐶𝑆 ሺ𝑀𝑃𝑎ሻ ൌ െ159.4 ൅ 0.02ሺ𝑊𝐷ሻ ൅ 1.8ሺ𝐶𝐶ሻ െ 1.5ሺ𝐹𝐴𝐶ሻ ൅ 1.3ሺ𝑆𝐶ሻ ൅ 59.2ሺ𝑊𝐵𝑅ሻ ൅ 0.84ሺ𝐹𝐶ሻ   ൅ 0.09ሺ𝐶𝐴ሻ (10)

 

Figure 5. Comparison of measured and predicted Compressive strength using the LR model for training, testing, 
and validating datasets. 

3.2.2. MLR Model 

The data for the MLR model is split similarly to the LR model’s data. Starting with the training, the R2 was 
0.82, indicating that the model explained 82% of the variation in compressive strength. Moving to the testing, the 
R2 decreased to 0.77 and then increased to 0.78 in the validating dataset. Both testing and training have 50 datasets 
each, and 202 training samples. Moving towards the Root Mean Square Error (RMSE) for the same three datasets, 
training, testing, and validation coincided with values of 4.3, 5.30, and 4.22, respectively, indicating a decline. 
Figure 6 shows the MLR model’s prediction results. The Root Mean Square Error (RMSE) indicates the average 
difference between the actual and the predicted values, as shown in Equation (11). Therefore, the lower the RMSE, 
the more accurate the model is. The decline in RMSE across the three datasets from training to validation indicates 
that the model performs well on new datasets when predicting compressive strength. 
𝐶𝑆 ሺ𝑀𝑃𝑎ሻ ൌ 0.12 ൈ ሺ0.05 ൈ ሺ𝑊𝐷ሻଶ.ଵሻ ൈ ሺ0.01 ൈ ሺ𝐶𝐶ሻ଴.ହሻ ൈ ሺ0.2 ൈ ሺ𝐹𝐴𝐶ሻ଴.଴ଵሻ ൈ ሺ0.12 ൈ ሺ𝑆𝐶ሻି଴.଴ସሻ

ൈ ሺ0.21 ൈ ሺ𝑊𝐵𝑅ሻି଴.଻ሻ ൈ ሺ0.7 ൈ ሺ𝐹𝐶ሻି଴.଴ଶሻ ൈ ሺ0.14 ൈ ሺ𝐶𝐴ሻ଴.ଷሻ 
(11)
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Figure 6. Comparison of measured and predicted Compressive strength using the MLR model for training, testing, 
and validating datasets. 

3.2.3. FQ Model 

Another tested model was the full quadratic model (FQ), which was separated into three parts: training, 
testing, and validation. The R2 for each of them is a fair point to mention in this model, which, during training, 
was 0.90, explaining 90% of the variability in the data. Then, the testing R2 is 0.88, which is lower than that of the 
pure quadratic model. After that, the validating data rose to 0.90, making it less reliable. Tables 3 and 4 compare 
model performance measures and ranks. Then they tested the root-mean-square error for each dataset. The Root 
Mean Squared Error (RMSE) is a measure of that the well a prediction model performs. It indicates the average 
difference between the predicted and actual values. A smaller RMSE suggests that the model makes more accurate 
predictions [31]. After that, it squares those differences, averages them, and takes the square root. The RMSE 
values were 3.2 for training, 3.9 for testing, and 2.8 for validation. The predicted versus actual compressive strength 
using the FQ model is shown in Figure 7. The lower the error, the better the data predicts. It performs well on 
training data but struggles somewhat with new information. 

𝐶𝑆 ሺ𝑀𝑃𝑎ሻ ൌ 0.98 െ 0.02ሺ𝑊𝐷ሻ ൅ 0.4ሺ𝐶𝐶ሻ ൅ 0.67ሺ𝐹𝐴𝐶ሻ ൅ 1.12ሺ𝑆𝐶ሻ ൅ 0.97ሺ𝑊𝐵𝑅ሻ ൅ 1.1ሺ𝐹𝐶ሻ  

൅ 0.43ሺ𝐶𝐴ሻ ൅ 𝐶𝑆 ሺ𝑀𝑃𝑎ሻ ൅ ൫0,001ሺ𝑊𝐷ሻ ൈ ሺ𝐶𝐶ሻ൯ ൅ ൫0.0003ሺ𝑊𝐷ሻ ൈ ሺ𝐹𝐴𝐶ሻ൯

൅ ൫0.0002ሺ𝑊𝐷ሻ ൈ ሺ𝑆𝐶ሻ൯ െ ൫0.1ሺ𝑊𝐷ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯ െ ൫0.001ሺ𝑊𝐷ሻ ൈ ሺ𝐹𝐶ሻ൯

൅ ൫0.0002ሺ𝑊𝐷ሻ ൈ ሺ𝐶𝐴ሻ൯  െ ൫0.02ሺ𝐶𝐶ሻ ൈ ሺ𝐹𝐴𝐶ሻ൯ െ ൫0.03ሺ𝐶𝐶ሻ ൈ ሺ𝑆𝐶ሻ൯

൅ ൫0.03ሺ𝐶𝐶ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯ െ ൫0.02ሺ𝐶𝐶ሻ ൈ ሺ𝐹𝐶ሻ൯ െ ൫0.01ሺ𝐶𝐶ሻ ൈ ሺ𝐶𝐴ሻ൯

െ ൫0.02ሺ𝐹𝐴𝐶ሻ ൈ ሺ𝑆𝐶ሻ൯ ൅ ൫0.5ሺ𝐹𝐴𝐶ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯ െ ൫0.02ሺ𝐹𝐴𝐶ሻ ൈ ሺ𝐹𝐶ሻ൯

െ ൫0.005ሺ𝐹𝐴𝐶ሻ ൈ ൅ሺ𝐶𝐴ሻ൯ ൅ ൫1.3ሺ𝑆𝐶ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯ െ ൫0.002ሺ𝑆𝐶ሻ ൈ ሺ𝐹𝐶ሻ൯

െ ൫0.01ሺ𝑆𝐶ሻ ൈ ሺ𝐶𝐴ሻ൯ ൅ ൫1.24ሺ𝑊𝐵𝑅ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫0.1ሺ𝑊𝐵𝑅ሻ ൈ ሺ𝐶𝐴ሻ൯

െ ൫0.01ሺ𝐹𝐶ሻ ൈ ሺ𝐶𝐴ሻ൯൅1.2ሺ𝑊𝐷ሻଶ െ 0.01𝐶𝐶ሻଶ െ 0.03ሺ𝐹𝐴𝐶ሻଶ െ 0.01ሺ𝑆𝐶ሻଶ

െ 0.9ሺ𝑊𝐵𝑅ሻଶ െ 0.002ሺ𝐹𝐶ሻଶ െ 0.001ሺ𝐶𝐴ሻଶ 

(12)
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Figure 7. Comparison of measured and predicted Compressive strength using the FQ for training, testing, and 
validating data. 

Table 3. Summary of the parameters used to evaluate the performance of the produced models. 

Database Models R2 RMSE (MPa) MAE(MPa) Ranking 

Training 

LR 0.65 6.07 4.48 5 
MLR 0.82 4.30 3.10 4 
FQ 0.90 3.2 2.57 3 
IN 0.91 3.08 2.34 2 

ANN 0.96 2.16 1.35 1 

Testing 

LR 0.74 5.73 3.76 5 
MLR 0.77 5.31 3.43 4 
FQ 0.88 3.86 2.74 3 
IN 0.88 3.10 2.86 2 

ANN 0.99 0.95 2.63 1 

Validating 

LR 0.77 4.37 4.37 5 
MLR 0.78 4.22 3.1 4 
FQ 0.90 2.81 2.20 3 
IN 0.91 2.67 2.13 2 

ANN 0.96 0.54 1.40 1 

Table 4. Summary of statistical analysis of the FFC mixtures. 

Variables WD CC FAC SC WBR FC CA CS 
Mean 1406.2 32.7 12.2 22.6 0.1 14.2 22.7 7.6 

Median 1400 29 4 24.5 0.27 9.5 28 4.2 
Mode 1199 21 1 × 10−10 1 × 10−10 0.3 4 28 0.8 

SD 400.1 15.1 16.4 20.9 0.2 13.4 14.7 10.3 
Var 160,063.1 227.4 267.4 434.1 0.02 178.9 214.9 105.9 
Kurt −0.6 0.2 0.03 −1.3 −0.5 −0.23 2.6 14.7 
Skew −0.2 0.9 1.2 0.23 0.84 0.9 1.15 3.5 
Min 496 4 0 0 0.09 1 × 10−23 3 0.2 
Max 2227 77 59 68 0.7 60 90 73 
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3.2.4. IN Model 

The dataset used in this study was divided into three subsets: training, testing, and validation, to further 
evaluate the performance of the interaction model. A high R2 value, such as 0.9 or higher, indicates that the model 
can explain variation in compressive strength with high accuracy [32]. Figure 8 presents the prediction outcomes 
for this interaction model. Regarding the training set, the R2 value was 0.91, indicating a positive correlation. The 
testing stage showed a decrease in the R2 value to 0.88, which subsequently increased to 0.91 throughout the 
validation stage. Both the testing and validation stages include 50 samples each, for a total of 100 samples per 
stage. The Root Mean Square Error (RMSE) indicates the average difference between the actual values and the 
predicted ones, as shown in Equation (6). The RMSEs for the three subsets, training, testing, and validation, are 
3.1, 3.9, and 2.7, respectively. Therefore, the value of the RSME is inversely proportional to the quality of the 
results obtained with this model. Table 4 presents simple statistics for all input and output variables in the FFC 
dataset. The decline in RSME values across the three datasets indicates that the model’s predictive accuracy is 
maintained with new data. 

𝐶𝑆 ሺ𝑀𝑃𝑎ሻ ൌ 268 െ 0.1ሺ𝑊𝐷ሻ െ 3.6ሺ𝐶𝐶ሻ െ 3.3ሺ𝐹𝐴𝐶ሻ െ 2.6ሺ𝑆𝐶ሻ െ 45ሺ𝑊𝐵𝑅ሻ െ 1.6ሺ𝐹𝐶ሻ െ 3.4ሺ𝐶𝐴ሻ
൅ ൫0.01ሺ𝑊𝐷ሻ ൈ ሺ𝐶𝐶ሻ൯ ൅ ൫0.001ሺ𝑊𝐷ሻ ൈ ሺ𝐹𝐴𝐶ሻ൯ ൅ ൫0.001ሺ𝑊𝐷ሻ ൈ ሺ𝑆𝐶ሻ൯
െ ൫0.03ሺ𝑊𝐷ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯ ൅ ൫0.0002ሺ𝑊𝐷ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫0.0002ሺ𝑊𝐷ሻ ൈ ሺ𝐶𝐴ሻ൯  
൅ ൫0.001ሺ𝐶𝐶ሻ ൈ ሺ𝐹𝐴𝐶ሻ൯ െ ൫0.012ሺ𝐶𝐶ሻ ൈ ሺ𝑆𝐶ሻ൯ െ ൫0.5ሺ𝐶𝐶ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯
െ ൫0.012ሺ𝐶𝐶ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫0.04ሺ𝐶𝐶ሻ ൈ ሺ𝐶𝐴ሻ൯ െ ൫0.01ሺ𝐹𝐴𝐶ሻ ൈ ሺ𝑆𝐶ሻ൯
െ ൫0.4ሺ𝐹𝐴𝐶ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯ െ ൫0.001ሺ𝐹𝐴𝐶ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫0.04ሺ𝐹𝐴𝐶ሻ ൈ ൅ሺ𝐶𝐴ሻ൯
൅ ൫0.9ሺ𝑆𝐶ሻ ൈ ሺ𝑊𝐵𝑅ሻ൯ ൅ ൫0.004ሺ𝑆𝐶ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫0.03ሺ𝑆𝐶ሻ ൈ ሺ𝐶𝐴ሻ൯
൅ ൫0.6ሺ𝑊𝐵𝑅ሻ ൈ ሺ𝐹𝐶ሻ൯ ൅ ൫1.5ሺ𝑊𝐵𝑅ሻ ൈ ሺ𝐶𝐴ሻ൯ ൅ ൫0.02ሺ𝐹𝐶ሻ ൈ ሺ𝐶𝐴ሻ൯       

(13)

 
Figure 8. Comparison of measured and predicted Compressive strength using the IN for training, testing, and 
validating data. 

3.2.5. ANN Model 

An artificial neural network was employed for the research, and the data were separated into three categories: 
training, testing, and validation. Then, R2 values are calculated for each dataset. The Artificial Neural Network 
(ANN) predictor model for the compressive strength of Fly Ash Composite Foam Concrete (FFC) utilizes each 
input parameter via linked nodes, resulting in an output node (Node 0) as shown in Equations (14)–(20). Each 

0

5

10

15

20

25

30

35

40

45

50

0 20 40

C
om

pr
es

iv
e S

tr
en

gt
h,

 C
S 

Pr
ed

ic
te

d 
(M

Pa
)

Compresive Strength, CS Measured (MPa) 

Training Testing Validating

IN Model
Training = 202

R2 =  0.91
RMSE = 3.0 MPa

IN Model
Validating = 50

R2 =  0.91
RMSE = 2.7 MPa

IN Model
Testing = 50

R2 =  0.88
RMSE = 2.9 MPa



Muhammed et al.   Bull. Comput. Intell. 2026, 2(1), 83–102 

https://doi.org/10.53941/bci.2026.100005  94 

node’s operation is to weigh inputs and add a bias component. The bias term allows the activation function to 
change its response. This modification enhances the model’s capacity to fit complex patterns in data by allowing 
greater flexibility when the model is active. It shows the rate at which the model captures data variance. R2 ranges 
from 0 to 1 [31]. A value close to 1 indicates that the model accurately predicts the target. For training, the R2 was 
0.96, which is a very reliable number for the fly ash data. Then, the testing R2 increased to 0.99, which remains an 
excellent value. Ultimately, the validation with the best data was raised to 0.96. Then, for each dataset, the Root 
Mean Square Error (RMSE) was calculated, with a training RMSE of 2.16, indicating a low root error, and it 
decreased further to 0.95 for testing. The RMSE value decreased to 0.54 for the validation set. This shows that the 
ANN data are very reliable for predicting the compressive strength of FFC. The ANN’s predicted and actual values 
are shown in Figure 9. 

𝑁𝑜𝑑𝑒 1 ൌ െ0.60 ൅ 2.02ሺ𝑊𝐷ሻ ൅ 0.41ሺ𝐶𝐶ሻ െ 1.17ሺ𝐹𝐴𝐶ሻ െ 0.06ሺ𝑆𝐶ሻ െ 0.20ሺ𝑊𝐵𝑅ሻ ൅ 2.13ሺ𝐹𝐶ሻ  ൅ 0.81ሺ𝐶𝐴ሻ   (14)

𝑁𝑜𝑑𝑒 2 ൌ െ1.24 ൅ 1.15ሺ𝑊𝐷ሻ ൅ 2.01ሺ𝐶𝐶ሻ ൅ 2.54ሺ𝐹𝐴𝐶ሻ ൅ 0.02ሺ𝑆𝐶ሻ െ 1.28ሺ𝑊𝐵𝑅ሻ െ 2.60ሺ𝐹𝐶ሻ  ൅ 1.42ሺ𝐶𝐴ሻ (15)

𝑁𝑜𝑑𝑒 3 ൌ 0.47 ൅ 0.80ሺ𝑊𝐷ሻ ൅ 2.54ሺ𝐶𝐶ሻ െ 2.26ሺ𝐹𝐴𝐶ሻ െ 2.10ሺ𝑆𝐶ሻ െ 0.57ሺ𝑊𝐵𝑅ሻ ൅ 0.30ሺ𝐹𝐶ሻ  െ 0.64ሺ𝐶𝐴ሻ (16)

𝑁𝑜𝑑𝑒 4 ൌ 0.67 ൅ 2.10ሺ𝑊𝐷ሻ ൅ 2.65ሺ𝐶𝐶ሻ െ 0.69ሺ𝐹𝐴𝐶ሻ െ 3.83ሺ𝑆𝐶ሻ ൅ 0.61ሺ𝑊𝐵𝑅ሻ ൅ 0.59ሺ𝐹𝐶ሻ  െ 0.01ሺ𝐶𝐴ሻ (17)

𝑁𝑜𝑑𝑒 5 ൌ െ2.01 ൅ 1.38ሺ𝑊𝐷ሻ ൅ 1.76ሺ𝐶𝐶ሻ ൅ 0.91ሺ𝐹𝐴𝐶ሻ ൅ 0.58ሺ𝑆𝐶ሻ െ 0.41ሺ𝑊𝐵𝑅ሻ െ 0.24ሺ𝐹𝐶ሻ  ൅ 0.90ሺ𝐶𝐴ሻ  (18)

𝑁𝑜𝑑𝑒 6 ൌ െ1.50 ൅ 4.36ሺ𝑊𝐷ሻ ൅ 3.00ሺ𝐶𝐶ሻ ൅ 1.62ሺ𝐹𝐴𝐶ሻ െ 2.02ሺ𝑆𝐶ሻ ൅ 0.82ሺ𝑊𝐵𝑅ሻ െ 0.20ሺ𝐹𝐶ሻ  ൅ 0.15ሺ𝐶𝐴ሻ (19)

𝑁𝑜𝑑𝑒 7 ൌ 5.01 െ 1.90ሺ𝑁𝑜𝑑𝑒 1ሻ െ 3.20ሺ𝑁𝑜𝑑𝑒 2ሻ െ 2.80ሺ𝑁𝑜𝑑𝑒 3ሻ ൅ 3.10ሺ𝑁𝑜𝑑𝑒 4ሻ െ 1.14ሺ𝑁𝑜𝑑𝑒 5ሻ െ 2.50ሺ𝑁𝑜𝑑𝑒 6ሻ   (20)

𝑁𝑜𝑑𝑒 0 ൌ 1.30 െ 2.32ሺ𝑁𝑜𝑑𝑒 7ሻ  

 
Figure 9. Comparison of measured and predicted Compressive strength using the ANN for training, testing, and 
validating data. 
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3.2. Advantages and Limitations of Soft Computing Models 

Soft computing models can be advantageous for laboratory testing due to their improved predictive accuracy. 
Artificial Neural Networks (ANNs) achieve a superior R2 and lower root mean squared error (RMSE) than 
laboratory regression techniques. This is because they can comprehend complex relationships [7]. A summary of 
the comparison of model metrics across ANN and traditional models is shown in Figure 10. This includes the cost 
of resources and the time consumed. ANNs handle non-linear interactions among input variables, which are 
beyond the capabilities of traditional regression models. For example, the impact of curing age on compressive 
strength and sustainability is further enhanced by soft computing models, which enable dynamic adjustment of 
mix ratios while allowing continuous tracking of material properties. Figure 11 shows that the ANN model 
outperforms the other models in terms of the OBJ, SI, and MAE metrics for both the training and testing datasets. 

 

Figure 10. Pareto chart of the standardized effects of each independent variable on CS. 

 

4.27

2.7

2.03 1.9

1.2
0.9 0.64

0.47 0.6
0.31

0.7 0.67
0.36 0.42

0.17

0

1

2

3

4

5

6

O
B

J,
 (

M
P

a)

Model

Training Testing Validating

LR MLR FQ IN ANN

(a)



Muhammed et al.   Bull. Comput. Intell. 2026, 2(1), 83–102 

https://doi.org/10.53941/bci.2026.100005  96 

 

 

Figure 11. Comparison of (a) OBJ, (b) SI, and (c) MAE performance metrics across the five employed models 
using the training and testing datasets. 
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such as artificial neural networks (ANNs) can fail to generalize well on unseen data due to overfitting the training 
data. Residual error comparisons between models are presented in Figure 12. 
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Figure 12. Comparison between developed models for shear strength based on residual error (a) ANN and LR; (b) 
ANN and NL; (c) ANN and ML; and (d) ANN and FQ. 

4. Sensitivity Analysis of Input Variables 

4.1. Wet Density (kg/m3) 

Wet density has been used as an input to determine the optimal compressive strength for FFC, with units 
kg/m3. Wet density is the weight of wet concrete per unit volume. It is a method for measuring the degree of 
compaction of a concrete mixture while it is still fresh and damp [33]. The distribution of compressive strength 
across the dataset is shown in Figure 4. A higher density means the concrete has fewer air bubbles and less vacuum. 
A denser mixture results in stronger, more reliable concrete. Due to the close-packed arrangement of particles, 
such as sand and aggregates, the bonding between them strengthens the concrete. The highest wet density in the 
data is 2227 kg/m3, which results in higher compressive strength. The lowest, 496 kg/m3, means the compressive 
strength will still be acceptable, but not as high as that of the highest wet density. The reason for choosing a low 
wet density is to reduce the concrete’s weight, making it more suitable for FFC. 

4.2. Cement Content (%) 

The cement content (%) is another key input for the FFC concrete mixture, resulting in high compressive 
strength. The higher the cement content, the higher the concrete’s compressive strength. In cement-treated 
mixtures, curing times range from 7 to 28 days, indicating that longer curing times result in stronger concrete [34] 
due to the mixture’s hydration. Additionally, the FFC plays a crucial role in concrete, adding strength and providing 
reinforcement. Furthermore, fly ash will reduce the concrete’s weight. However, the cement content will also play a 
significant role in determining the concrete’s weight while providing higher compressive strength. Using soft-
computing algorithms to predict compressive strength reduces the need for extensive laboratory testing. This 
approach optimizes cement content and other variables to produce sustainable, efficient construction materials. 

4.3. Sand Content (%) 

Sand content is a crucial ingredient that affects the compressive strength, weight, and durability of concrete. 
The effectiveness of sand in the mixture depends on the materials with which it is mixed. Suppose the mix is 
contaminated, resulting in reduced mechanical strength. The sand particle structure similarly affects the mix; the 
sand’s properties, such as grain size, shape, and grading, either enhance or detract from the mix’s properties. If the 
sand particles have a more textured surface, they will bond more effectively with the cement, leading to higher-
strength concrete and a better, stronger FFC [35]. In this study, using soft computing models to predict sand types 
is significantly easier than relying on laboratory data, making it faster and less expensive. The sand should be 
cleaned before use in the mixture [13]. Adding sand quality will enhance the accuracy and reliability of the 
predictions for the data. Using soft computing algorithms, the FFC will be more eco-friendly and stronger, as the 
projections require less time than the laboratory method. 

-80
-60
-40
-20

0
20
40
60
80

0 40 80 120 160 200 240 280

R
es

id
ua

l E
rr

or
 (M

Pa
) 

Data Set Number

ANN IN

TestingTraining

Training Data = 202
Testing Data = 50

Validating= 50

(d)

Validating



Muhammed et al.   Bull. Comput. Intell. 2026, 2(1), 83–102 

https://doi.org/10.53941/bci.2026.100005  99 

4.4. Foam Content (%) 

Foam content (%) is a key parameter in the FFC mix, primarily influencing the material’s density. Foam is 
generated by mixing a foaming agent with water [1], introducing air voids into the concrete. As foam content 
increases, the number of entrained air bubbles rises, resulting in a lighter concrete with lower density. However, 
excessive foam content can reduce the mechanical strength of FFC, as the increased void ratio diminishes the 
material’s load-bearing capacity. Using soft computing models, the optimal foam content can be efficiently 
determined. However, a foam content of around 25% strikes a decent balance between strength and lightweight 
concrete [1]. 

4.5. Water-Binder Ratio 

The water-binder (w/b) ratio is the ratio of particles, such as cement and fly ash, in FFC. An increase in the 
water-binder ratio indicates a decrease in the amount of binder. A lower w/b ratio means more strength because it 
is denser and has fewer holes [4]; the greater the w/b ratio, the weaker the concrete. However, workability at the 
low w/b ratio will be more difficult because it will be more solid. Therefore, maintaining an optimal water-to-
binder (w/b) ratio is crucial for balancing strength and workability in concrete. For instance, concrete with a w/b 
ratio of 0.50 exhibits greater strength than that with a w/b ratio of 0.65 [4]. In addition to durability, a reduced 
water-to-binder ratio enhances it by preventing the entry of harmful chemicals into the mixture. 

5. Sensitivity Analysis 

The effect of each variable on the expected compressive strength of fly ash composite foam concrete (FFC) 
was examined in the sensitivity analysis. Figure 11 shows the relative importance of the input variables using a 
Pareto chart. A satisfactory artificial neural network (ANN) model, determined to be suitable for predicting 
compressive strength (CS), was used for this analysis. Wet density, cement content, and foam content were found 
to be the most significant factors affecting concrete properties. Compressive strength was most significantly 
affected by wet density, cement content, and foam content. These three variables were crucial in defining the 
structural behavior of FFC, as shown by their most notable contributions to the model’s output. The fly ash content, 
curing age, sand content, and water-binder ratio all showed minor but visible impacts. As shown in Table 5, the 
suggested mix design values are based on the sensitivity analysis results, which indicate that these factors have the 
greatest effect on the compressive strength of Fly Ash Composite Foam Concrete (FFC). Higher compressive 
strength results from a more compact, denser internal structure in the composite, which is correlated with increased 
density. Cement content also promotes constant hydration and metallic reactions, which gradually increase 
strength, as shown in Figure 11. Although foam content is essential for reducing the weight of FFC, its increased 
porosity at higher values reduces compressive strength. Balanced proportions of fly ash and sand, along with 
appropriate curing times, enhance workability and mechanical performance. Additionally, lower water--binder 
ratios increase paste matrix density, thus improving structural integrity. This analysis highlights the significance 
of all mix components and preparation steps, demonstrating that even minor variations, similar to those in pre-
processing conditions of other material systems, can significantly influence concrete properties. Overall, the 
sensitivity analysis confirmed that wet density and cement content were the most influential parameters affecting 
compressive strength, followed by foam content and fly ash content. These results emphasize the importance of 
optimizing mix design to achieve both high structural performance and enhanced environmental sustainability in 
FFC applications. 

Table 5. Optimized mix design parameters for enhancing compressive strength in fly ash composite foam concrete 
(FFC) based on sensitivity analysis. 

Design Variable Optimized Range/Observed Performance Impact 

Wet Density ~1800–1900 kg/m3—Higher density improved compressive strength  
without compromising workability. 

Cement Content ~35–45% of binder mix—Contributed significantly to early and  
peak strength development. 

Fly Ash ~10–15%—Balanced mechanical strength and sustainability by  
partially replacing cement. 

Water/Binder Ratio ~0.25–0.30—Optimized range for achieving desirable  
strength and mix consistency. 

Foam Content ~20–25%—Controlled density and insulation properties while  
maintaining strength. 

Curing Age ≥28 days—Strength reached peak after standard curing duration. 
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6. Limitations 

 The study is based on a specific dataset size and composition, which may not fully capture the variability of 
concrete produced under different mix proportions, curing conditions, and material sources. 

 Some AI model implementation details (e.g., hyperparameter tuning strategies) were constrained due to 
computational limitations. 

 The current work focused primarily on compressive and tensile strength prediction; other mechanical and 
durability properties (e.g., shrinkage, permeability, resistance to ASR) were not included. 

7. Future Research Directions 

 Expanding the dataset to cover a broader range of concrete mixtures, including sustainable binders (e.g., glass 
powder, rice husk ash, slag), to enhance generalizability. 

 Conducting sensitivity and uncertainty analyses is better to understand the influence of input parameters on 
predictive performance. 

 Comparing additional advanced AI methods (e.g., Gradient Boosting, XGBoost, Deep Learning) with the 
models used in this study. 

 Validating the models through experimental testing and benchmarking against international standards. 

8. Conclusions 

This study analyzed 302 FFC mix design datasets using soft computing models to predict compressive 
strength based on six key input variables. This approach reduces reliance on traditional laboratory testing, which 
can be time-consuming, resource-intensive, and less scalable. The study successfully developed and evaluated the 
following multiple soft computing models: Linear Regression (LR), Multi-Linear Regression (MLR), Full 
Quadratic Model (FQ), Interaction Model (IN), and Artificial Neural Network (ANN) for predicting the 
compressive strength of Fly Ash Composite Foam Concrete (FFC). The most critical factors affecting compressive 
strength, as determined by the sensitivity analysis, were wet density, cement content, and fly ash content. These 
results highlight the investigation of vital mix design components to achieve optimal FFC performance. The ANN 
model outperformed the other models in terms of predictive power and durability across performance indicators. 
Based on the compiled dataset and detailed statistical evaluations, the following conclusions can be drawn: 
I. The dataset included several input parameters, including Wet Density, fly ash content, foam content, water-

to-binder ratio, curing time, cement content, and sand content. Higher wet density and optimized cement 
content primarily contributed to increased compressive strength, confirming the efficacy of wet density as a 
sustainable binder in FFC mixtures. 

II. The optimized mix design results indicate that wet density in the range of 1800–1900 kg/m3 had the most 
significant influence on compressive strength, with higher density contributing to improved mechanical 
performance. A cement content of between 35–45% significantly enhanced strength development, 
particularly during the early stages of curing. A foam content of around 20–25% effectively balances weight 
reduction and thermal insulation without excessively compromising structural integrity. Fly ash replacement 
at 10–15% provided a sustainable alternative to cement while maintaining acceptable strength. 

III. The Artificial Neural Network (ANN) model also ranked highest based on Objective Function (OBJ) and 
Scatter Index (SI) metrics. For the training, testing, and validation datasets, the SI values were 0.30, 0.12, 
and 0.70, respectively, while the corresponding OBJ values were 1.2 MPa, 0.3 MPa, and 0.16 MPa. 

IV. Sensitivity analysis confirmed that wet density and cement content were the most influential parameters, 
followed by foam content and fly ash content. These findings highlight the critical role of mix design 
optimization in producing high-performance, environmentally sustainable FFC. 
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