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Abstract: The deployment of autonomous vehicles (AVs) in unstructured and dynamic
environments such as construction, military, and commercial operations demands
robust navigation strategies capable of adapting to continuously changing obstacles.
Traditional graph-based path planning methods often fail in these settings, leading to
inefficient and suboptimal trajectories. In this paper, we propose a dynamically updating
navigation framework that integrates real-time obstacle clustering, a Dynamically-
constrained Delaunay Triangulation (D2T ), and an enhanced Ant Colony Optimization
(eACO) algorithm. Our approach first clusters proximate obstacles using LiDAR data
to simplify the environment representation. A local D2T graph is then incrementally
constructed around the robot, facilitating efficient map updates. The eACO algorithm
leverages a greedy exploration strategy, enhanced by Lévy flight, to find near optimal
paths within the D2T graph. Finally, a velocity obstacle-based local reactive navigator
ensures safe real-time obstacle avoidance. Extensive simulations and comparison
studies validate the framework’s superior performance in path length, computational
speed, and overall adaptability compared to state-of-the-art path planning techniques.

Keywords: delaunay triangulation; autonomous vehicle; graph-based path planning;
navigation; obstacle clustering

1. Introduction

Robotics has profoundly transformed industries such as medicine, transportation, and agriculture [1–4]. The
growing trend toward full autonomy enables robots and autonomous vehicles to operate autonomously, thereby
enhancing operational efficiency and safety [5–8]. A cornerstone of this autonomy is the capability for intelligent
navigation and environmental mapping. To this end, graph-based methodologies are widely employed, modeling the
environment as mathematical structures of interconnected nodes and edges. These graph-based techniques facilitate
spatial understanding for path planning and obstacle avoidance, enable adaptation to real-time environmental
changes, and enhance a system’s ability to manage uncertainty in complex and dynamic settings [9–13].

1.1. Related Work

Graph-based methods are foundational to solving complex problems in robotics and autonomous systems,
particularly in optimization, navigation, and motion planning. Their application spans autonomous vehicle (AV)
navigation [14–24], motion planning [25–31], and sensor based perception [32–36]. A primary challenge in this
domain is managing computational complexity. To this end, algorithms like Lazy Receding Horizon A* [14] reduce
computational burden by balancing edge evaluation and path generation, while others like the L* algorithm [20]
achieve linear computational complexity for mobile robot path planning.
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Recent advancements have increasingly leveraged learning based methods for dynamic navigation. Deep
reinforcement learning (DRL) has been applied to learn complex obstacle avoidance policies directly from sensor
data, demonstrating robust performance in unstructured environments [37]. Concurrently, there has been a growing
integration of graph structures with learning algorithms. For instance, Graph Neural Networks (GNNs) have
been utilized to model the spatiotemporal relationships between agents and obstacles for predictive navigation in
dynamic scenes [38], while other works have combined graph-based representations with reinforcement learning to
enhance decision making [39]. Furthermore, Transformer based architectures are emerging as a powerful tool for
path planning, capable of handling long range dependencies in crowded environments [40]. While these learning
based approaches show significant promise, they often require extensive training data and computational resources.
In contrast, our work focuses on an efficient geometric graph framework that guarantees performance without
dependency on training data, providing a complementary approach to the learning based paradigm.

However, a key limitation persists in many graph-based methods: the generation of dense graphs with excessive
vertices and edges for dynamic environments, leading to high computational load and inefficient path planning when
obstacles change configuration [41]. This is particularly problematic in real-time settings where computational
resources are constrained. While sampling-based planners like RRT* [42] address continuous spaces, their inherent
randomness can lead to slow convergence and unpredictable computation times, making them less suitable for
scenarios requiring deterministic performance. Unlike prior static graph-based methods, our approach dynamically
reconstructs a sparse topological graph with lower computational cost, specifically designed for unstructured and
dynamic environments.

A significant body of research has sought to enhance path planning for complex environments. This includes
work on unstructured terrain [19], high dimensional spaces using topological constraints [22], and specific domains
like multi-agent systems [17] and real-time adaptation [15]. However, a key limitation persists in many graph-based
methods: the generation of dense graphs with excessive vertices and edges for dynamic environments, leading to
high computational load and inefficient path planning when obstacles change configuration. Our work addresses
this gap by introducing a framework that dynamically constructs a sparse, locally relevant graph, enabling efficient
replanning and robust navigation.

1.2. Proposed Framework and Contributions

This paper introduces a novel framework for dynamic robot navigation and mapping designed to overcome
key limitations in existing graph-based planners. Specifically, many current methods suffer from the computational
burden of merging subgraphs and generate excessively dense graphs with redundant edges. These issues lead to slow
search times and inefficiency in dynamic environments. To address these challenges, we propose a path planning
scheme that uses a dynamically updating graph, emphasizing sparse and efficient local graph construction. The
overall architecture of our framework is illustrated in Figure 1.
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Figure 1. Illustration of the proposed hierarchical navigation framework. The system operates in a closed loop:
LiDAR data is processed for Obstacle Clustering, which groups nearby obstacles to simplify the environment. The
D2T module then constructs a sparse, local graph of the free space. The eACO planner finds a globally efficient
path on this graph. Finally, the Velocity Obstacle (VO) Local Reactive Navigator handles real-time avoidance of
dynamic obstacles, with the robot’s new position feeding back to restart the cycle. This tiered structure ensures both
long term optimality and immediate safety.

Our main contributions are summarized as follows:

(1) A Hierarchical Navigation Framework: We introduce a tiered structure that systematically decomposes the
navigation task. This design integrates high level global routing, based on a locally constructed Delaunay
Triangulation (DT), with a low level reactive navigator. This leverages the computational efficiency of DT for
precise planning in complex environments.

(2) An Efficient Obstacle Clustering and Mapping Pipeline: We developed a methodology that fuses LiDAR data
to cluster proximate obstacles, thereby simplifying the environment representation. This pipeline reduces
navigational uncertainty and accelerates the subsequent Delaunay Triangulation process, enabling faster and
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more reliable spatial reasoning.
(3) An Enhanced Ant Colony Optimization (eACO) Algorithm: We propose an improved graph-based path

planner that incorporates a Lévy flight strategy into a greedy exploration mechanism. This enhancement
allows the algorithm to find efficient, near optimal paths within the sparse DT graph, particularly in challenging
and irregular terrains.

(4) A Velocity Obstacle based Local Reactive Navigator: We implemented a real-time module to handle sudden
environmental changes. This local reactive planner provides immediate adjustments for dynamic obstacles,
ensuring safe motion without triggering a computationally expensive global replanning cycle.

The remainder of this paper is organized as follows: Section 2 details the obstacle clustering method. Section 3
presents the Dynamically-constrained Delaunay Triangulation (D2T ). Section 4 describes the enhanced ACO
(eACO) algorithm. Section 5 explains the reactive local navigation strategy. Section 6 illustrates the theoretical
analysis and complexity of the proposed model. Section 7 provides simulation results and comparative studies.
Finally, Section 8 concludes the paper and discusses future work.

2. Obstacle Clustering

This section details our obstacle clustering methodology, which simplifies environmental complexity by
merging proximate obstacles into larger convex hulls. This reduction facilitates more efficient graph construction
and path planning [43]. We consider a robot operating in a two dimensional space populated by n polygonal
obstacles, as illustrated in Figure 2a. The core of our technique is a proximity threshold, Ψ, which is set based on
the robot’s physical dimensions and desired clearance. Specifically, Ψ is chosen to be slightly larger than the robot’s
diameter to ensure that gaps which the robot cannot safely traverse are merged into a single navigational obstacle.
The distance D(Ui, Uj) between two obstacles is computed as the minimum Euclidean distance between their
boundary points. If D(Ui, Uj) < Ψ, the obstacles are considered adjacent. This relationship defines a Ψ proximity
graph (Figure 2(C-1)) [43], which is subsequently refined into a Ψ planner graph by removing connections impeded
by other obstacles.
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Figure 2. The obstacle clustering pipeline. (a) The original environment with numerous discrete polygonal obstacles.
Potential clusters are intuitively outlined. (b) The application of the proximity threshold Ψ to determine adjacency
between obstacles. (C-1) The resulting Ψ proximity graph, where nodes represent obstacles and edges connect those
within distance Ψ. (C-2) The final, simplified environment where connected obstacles in (C-1) have been merged
into larger, consolidated convex hulls (shown in purple). This process dramatically reduces the number of entities the
planner must consider, lowering computational complexity.

Algorithm 1 formalizes this process. It constructs the Ψ proximity graph G by connecting obstacles closer
than Ψ that also have an unobstructed line of sight. The connected components of G are then identified, forming the
initial clusters. Finally, each cluster is encapsulated by its convex hull, resulting in a simplified set of obstacles for
path planning. For convex polygons, the distance check between a pair can be performed efficiently in O(logn)

time after an O(n) preprocessing step. Identifying the connected components using a depth-first or breadth-first
search runs in O(V +E) time for a graph with V vertices (obstacles) and E edges (proximity links). This clustering
step is crucial for reducing the perceptual and computational load in subsequent planning stages, leading to a more
scalable navigation system.
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Algorithm 1: Obstacle Clustering
Input: Set of obstacles U = {U1, U2, . . . , Un}, Proximity threshold Ψ

Output: A set of clusters C = {C1, C2, . . . , Ck}, where each Ci is a connected component in the Ψ

proximity graph.

Initialize an empty adjacency list G;
for each unique pair of obstacles (Ui, Uj) do

dmin ← minimum Euclidean distance between boundaries of Ui and Uj ;
if dmin < Ψ and the line of sight between Ui and Uj is unobstructed then

Add an undirected edge between Ui and Uj in G;
end

end
C ← FindConnectedComponents(G);
for each cluster c ∈ C do

c← ComputeConvexHull(
⋃

Ui∈c Ui);
end
return C;

3. Dynamically Constrained Delaunay Triangulation Formation

Delaunay Triangulation (DT) is a fundamental geometric structure widely used in path planning due to its
optimal properties, which promote well shaped triangles and efficient spatial reasoning. Among its most important
characteristics are the empty circumcircle property ensuring no vertex lies inside the circumcircle of any triangle and
the max-min angle property, which maximizes the minimum angle among all triangles to avoid skinny geometries.
These properties yield a graph that provides a natural and efficient representation of the free space [44].

However, a standard DT of all obstacle vertices includes edges that pass through obstacles, rendering it
unsuitable for collision free path planning. To overcome this, we introduce the Dynamically-constrained Delaunay
Triangulation (D2T ). The D2T algorithm incrementally constructs a local triangulation around the robot’s position
while respecting two critical constraints:

• Obstacle Constraints: Edges that intersect obstacles are explicitly forbidden.
• Dynamic Updates: The graph is continuously rebuilt based on the robot’s sensory horizon rather than once for

the entire environment.

This approach allows the graph to adapt to new or moving obstacles. The result is a sparse, locally relevant
graph that accurately represents the traversable space, providing a robust foundation for global path planning within
the current field of view.

The core objective of D2T is to incrementally construct a sparse, locally valid Delaunay Triangulation graph
that explicitly avoids obstacle regions, based on the robot’s current sensor data. The algorithm takes as input the
clustered obstacles from the previous stage and the robot’s current position and sensor range.

The D2T algorithm, formalized in Algorithm 2, proceeds as follows. First, a set of points Pfree is sampled
within the robot’s sensor range, excluding areas occupied by obstacles. The extreme vertices of the clustered
obstacles are added to this set to ensure the graph captures the environment’s structure. An initial Delaunay
Triangulation Gdt is computed from the combined point set Pall.

The key step is enforcing constraints: any edge in Gdt that intersects an obstacle polygon is removed. This
violates the standard Delaunay property for those edges but is necessary for navigability. Finally, the largest
connected component of the resulting graph is extracted to form Gcdt, the Constrained Delaunay Graph. This graph
provides a sparse representation of the free space, connecting the robot’s position to nearby navigable areas and
goal points while guaranteeing that all edges are obstacle free. The process is repeated periodically as the robot
moves and new sensor data is received, ensuring the graph remains dynamically updated.
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Algorithm 2: Dynamically-constrained Delaunay Triangulation (D2T )
Input: Clustered obstacle points Pobs, Robot position Pr, Sensor range D

Output: Constrained Delaunay Graph Gcdt

// Step 1: Sample points in local free space

Pfree ← SamplePointsInCircle(Pr, D) \ Pobs;
Pall ← Pfree ∪ {ExtremePoints(Pobs)};

// Step 2: Build initial Delaunay Triangulation

Gdt ← DelaunayTriangulation(Pall);

// Step 3: Impose obstacle constraints

foreach edge eij ∈ Gdt do
if eij intersects any obstacle polygon U ∈ Pobs then

Gdt.remove edge(eij);
end

end

// Step 4: Extract traversable graph component

Gcdt ← LargestConnectedComponent(Gdt);

return Gcdt;

4. Path Optimization on the Dynamically Updated Delaunay Graph

The constrained Delaunay graph Gcdt provides a topologically correct representation of the free space. While
a simple graph search (e.g., Dijkstra’s algorithm) on Gcdt can find a feasible path from start S to goal T , the result is
often suboptimal. Such a path is constrained to the graph edges and may take unnecessary detours instead of cutting
directly across large triangles, particularly in areas with low obstacle density.

To overcome this limitation, we formulate the path planning task as a continuous optimization problem. Let the
initial path from the graph search traverse the sequence of edges {L1, L2, . . . , Ln}, where each edge Li connects
vertices P 1

i and P 2
i . We parameterize a more efficient path by allowing it to intersect each edge Li at any point,

rather than being restricted to its vertices. This is defined by a vector of scale factors γ = (γ1, γ2, . . . , γn), where
each γi ∈ [0, 1]. The corresponding point on edge Li is:

Pi(γi) = P 1
i + γi(P

2
i − P 1

i ) (1)

The total path length is then the sum of the Euclidean distances between consecutive points:

L(γ) =
n∑

i=0

∥Pi+1(γi+1)− Pi(γi)∥ (2)

where P0 ≡ S and Pn+1 ≡ T are the fixed start and goal points, respectively.
Our objective is to find the optimal scaling vector γ∗ that minimizes the total path length:

γ∗ = arg min
γi∈[0,1]

L(γ) (3)

This formulation transforms the discrete graph search into a continuous optimization over an n-dimensional unit
cube. The structure of Gcdt guarantees that the straight line segments between consecutive points Pi(γi)Pi+1(γi+1)

remain collision free, as the entire path is contained within the triangulation’s triangles. Solving Equation (3) thus
yields a smooth, near optimal path that is significantly shorter than the original graph-based solution.

4.1. Enhanced Ant Colony Optimization (eACO)

To solve the path optimization problem defined in Equation (3), we propose an eACO algorithm. While
standard ACO metaheuristics are effective, they can converge prematurely or struggle with exploration in complex
search spaces. Our eACO enhances exploration by integrating a Lévy flight strategy into the state transition rule,
helping to escape local minima and navigate the high dimensional unit cube defined by the scaling factors γ.

The Ant Colony System (ACS) forms the basis of our approach. In ACS, an ant k at node i chooses the next
node j probabilistically. The core elements are:
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• Pheromone Trail (τij): Represents the learned desirability of edge (i, j).
• Heuristic Information (ηij): Typically ηij = 1/dij , where dij is the distance, providing greedy guidance.
• State Transition Rule: A pseudo random proportional rule balances exploration and exploitation:

j =

{
argmaxu∈Nk

i

{
[τiu]

α[ηiu]
β
}

if q ≤ q0

J otherwise
(4)

where q is a random variable uniformly distributed in [0, 1], q0 is a parameter, and J is a node selected
probabilistically according to:

pkij =
[τij ]

α[ηij ]
β∑

l∈Nk
i
[τil]α[ηil]β

if j ∈ Nk
i (5)

• Pheromone Update: Global updating is performed only on the best so far path:

τij ← (1ρ) · τij + ρ ·∆τ bsij (6)

where ∆τ bsij = 1/Lbs if edge (i, j) belongs to the best so far tour of length Lbs.

4.2. Lévy Flight Integration

The standard probabilistic selection in Equation (5) can lead to slow exploration in high dimensional search
spaces, as it tends to focus on immediate, high pheromone neighbors. To enhance global exploration and help the
algorithm escape local optima, we integrate a strategy inspired by Lévy flights into the state transition rule.

A Lévy flight is a type of random walk characterized by a step length distribution with a heavy tail. This
property promotes a pattern of many small steps interspersed with occasional long jumps, which is often more
efficient for exploring unknown spaces than a standard random walk.

In our eACO, when an ant is in the exploration phase (q > q0 in Equation (4)), we modify the selection
probability. With a probability pl (the Lévy application rate), we use a modified probability distribution pk,levy

ij

instead of the standard pkij from Equation (5). The modified probability is defined as:

pk,levy
ij =

[τij ]
α[ηij ]

β + λ · L(βL)∑
l∈Nk

i
([τil]α[ηil]β + λ · L(βL))

(7)

where λ is a scaling factor that controls the influence of the Lévy component, and L(βL) is a step size generated
from a Lévy distribution with parameter βL, calculated using the Mantegna algorithm [45]:

L(βL) =
u

|v|1/βL
, u, v ∼ N (0, σ2) (8)

The standard deviation σ is calculated as:

σ =

[
Γ(1 + βL) · sin(πβL/2)

βL · Γ((1 + βL)/2) · 2(βL−1)/2

]1/βL

(9)

Mechanism Interpretation: The term λ · L(βL) acts as an exploration bonus. When a large step L(βL) is
generated, it significantly boosts the selection probability of edges that might otherwise have low pheromone or
heuristic values. This encourages ants to explore less traveled paths, effectively widening the search scope and
reducing the risk of premature convergence to a sub optimal path.

4.2.1. Application to Path Optimization

In our path optimization context, the “graph” for the eACO is the sequence of DT edges {L1, . . . , Ln}. An
ant’s solution is a vector γ = (γ1, . . . , γn). The heuristic desirability ηi for a value γi on edge Li can be related to
its contribution to a straight line path towards the goal. The pheromone τi(γi) is reinforced on values of γi that
belong to shorter overall paths.

Algorithm 3 outlines the complete eACO procedure for solving our path optimization problem. By combining
the exploitation strength of ACS with the enhanced exploration of Lévy flights, eACO efficiently finds high quality
solutions for the continuous path optimization problem.
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Algorithm 3: eACO for Path Optimization
Input: Sequence of edges {L1, . . . , Ln}, Start S, Goal T , eACO parameters
Output: Optimal scaling factors γ∗

Initialize pheromone trails τ ;
while termination condition not met do

foreach ant k in colony do
Construct path by selecting γi for each edge Li using eACO rules;
Evaluate path length L(γ) using Equation (2);

end
Update best so far solution γbs;
Update pheromone trails based on γbs;

end
return γbs

4.3. Parameter Settings

The parameters (Table 1) for the eACO algorithm were determined through empirical tuning on a set of
representative benchmark environments, balancing convergence speed and solution quality. The core ACS parameters
were set to classic values found in the literature: the pheromone influence α = 1.0, the heuristic influence β = 2.0

(giving slightly more weight to greedy distance minimization), the exploitation probability q0 = 0.7 to favor
convergence, and the pheromone evaporation rate ρ = 0.1 to allow a slow decay of trail information.

Table 1. Parameters for the eACO algorithm determining through empirical tuning on a set of representative
benchmark environments, balancing convergence speed and solution quality.

Parameter Value Justification

α (Pheromone Influence) 1.0 Standard value to balance heuristic influence.
β (Heuristic Influence) 2.0 Gives slightly more weight to greedy distance minimization.
ρ (Evaporation Rate) 0.1 Allows for slow decay of pheromone trails, preventing premature convergence.
q0 (Exploitation Probability) 0.7 Favors selection of the best edge to promote convergence.
pl (Lévy Application Rate) 0.2 Moderate probability to inject exploration without disrupting constructive heuristic.
βL (Lévy Exponent) 1.5 Generates heavy tailed step size distribution for effective exploration.
λ (Lévy Scaling Factor) 0.1 Scales exploration bonus to be comparable to pheromone/heuristic terms.
Colony Size 20 Standard size balancing solution diversity and computational cost.

The novel Lévy flight parameters were tuned to introduce substantial exploration without disrupting the
constructive heuristic. The Lévy exponent βL = 1.5 generates a heavy tailed distribution with a good mix of small
and large steps. The scaling factor λ = 0.1 was chosen to ensure the exploration bonus λ ·L(βL) is on a comparable
scale with the pheromone and heuristic terms, preventing it from dominating the selection process. The probability
of applying the Lévy modification, pl, was set to 0.2, ensuring it is a frequent but not constant occurrence. The
colony size was set to 20 ants. The algorithm terminates after 50 iterations or if no improvement is found for 15
consecutive iterations. A sensitivity analysis confirmed that the algorithm’s performance is robust to small variations
around these chosen values.

4.4. eACO Integration into the Proposed Model

The complete navigation pipeline integrates all previously described components into a cohesive framework,
as illustrated in Figure 3. The process begins with perception and clustering, where LiDAR data is processed to
detect obstacle points. The obstacle clustering algorithm (Algorithm 1) then groups proximate obstacles, simplifying
the environment representation, as shown in Figure 3a. Subsequently, the graph construction phase is initiated.
The D2T algorithm constructs a sparse, locally relevant graph around the robot’s position that explicitly avoids
obstacles, resulting in the structure depicted in Figure 3b.

Finally, path optimization is performed using the eACO algorithm (Algorithm 3) to find the optimal path
through the D2T graph. Unlike standard graph searches that are constrained to vertices, eACO treats the sequence of
graph edges {L1, . . . , Ln} traversed between start and goal as a continuous optimization problem. It optimizes the
scaling factors γi to determine the precise crossing point on each edge, effectively creating shortcuts through large
triangles and producing a smoother, shorter path than a vertex constrained route, as visualized in Figure 3c. This
integration creates a powerful synergy: the D2T provides a topologically correct and sparse graph foundation, while
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eACO performs continuous optimization over this graph structure to generate high quality paths. The framework
operates in a receding horizon fashion, where these steps repeat as the robot moves and new sensor data becomes
available, enabling robust navigation in dynamic environments.
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Figure 3. Illustration of the core navigation pipeline. (a) The perceived environment after LiDAR sensing and
obstacle clustering, where proximate obstacles are merged into convex hulls (blue borders). (b) The resulting sparse,
locally constructed D2T graph, which provides a topologically correct representation of the free space. (c) The final,
optimized path (in red) generated by the eACO algorithm. Note how the path cuts across large triangles, rather than
being constrained to graph vertices, resulting in a shorter and smoother trajectory. This sequence demonstrates the
effectiveness of the environmental simplification and continuous optimization stages.

5. The Local Reactive Navigator

The global path generated by the eACO algorithm provides a high level plan, but real-world navigation requires
reacting to unforeseen dynamic obstacles. To address this, we implement a Velocity Obstacle (VO) based local
reactive navigator for real-time obstacle avoidance and local mapping [46]. This module operates concurrently,
generating velocity commands that guide the robot toward its immediate subgoal while avoiding collisions. The VO
framework provides a mathematically rigorous method for collision checking. Consider an autonomous vehicle A

and a dynamic obstacle O. Let pA, pO denote their positions and vA, vO their velocities. The vehicle has a fixed
radius RA, a goal position pgoal, and a preferred speed vpref .

To account for the vehicle’s physical extent, the obstacle O is enlarged by the vehicle’s radius RA via the
Minkowski sum, while the vehicle A is treated as a point. The Minkowski sum and set inversion are defined as:

A⊕B = {a+ b | a ∈ A,b ∈ B}, −A = {−a | a ∈ A} (10)

A ray cast from position p with velocity v is given by:

Ray(p,v) = {p+ tv | t ≥ 0} (11)

The Velocity Obstacle V OA|O(vO) is defined as the set of all relative velocities vA − vO that would result in
a collision between A and O within a time horizon τ :

V OA|O(vO) = {vA | Ray(pA,vA − vO) ∩ (O ⊕−A) ̸= ∅} (12)

The vehicle is subject to dynamic and kinematic constraints that limit its achievable velocities to an admissible
set VA. Each planning iteration selects an optimal velocity v∗

A from the collision free velocities Vfree = VA \⋃
O V OA|O(vO), as illustrated in Figure 4b. This velocity command is executed for a short duration before the

process repeats. This reactive approach allows the robot to deviate temporarily from the global path to avoid
dynamic obstacles, then smoothly rejoin the original trajectory once the obstacle is passed. By leveraging efficient
geometric computations, the local reactive navigator maintains real-time performance while ensuring safety in
dynamic environments.
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Figure 4. Illustration of velocity obstacle (VO) formulation for dynamic collision avoidance. (a) The autonomous
vehicle A (reduced to a point) and a dynamic obstacle O (enlarged by the robot’s radius via Minkowski sum). Their
current velocities are vA and vO . (b) The corresponding Velocity Obstacle region V OA|O(vO) (red cone) in the
velocity space. This cone represents all relative velocities of A that would lead to a collision with O within a time
horizon τ . The optimal velocity v∗

A is selected from the admissible velocities VA (blue circle) that lie outside the
VO, ensuring safe and collision free motion.

6. Theoretical Analysis of the Computational Complexity

This section provides a theoretical analysis of the computational complexity of the core components of our
proposed framework. Understanding these properties is crucial for justifying the framework’s suitability for real-time
autonomous navigation.

6.1. Experimental Setup

All simulations were conducted in MATLAB R2020a on a Legion Slim 7 IRH8 laptop with an 13th Gen
Intel(R) Core(TM) i9-13900H processor, 16 GB of RAM, running the Windows 11 operating system. This consistent
hardware and software environment was used for all comparative studies and performance evaluations presented in
the following sections.

6.2. Complexity of Obstacle Clustering

The obstacle clustering method (Algorithm 1) involves two main steps: graph construction and connected
component analysis. For n obstacles, the naive distance check between all unique pairs has a time complexity of
O(n2). However, this can be significantly optimized to an average of O(n log n) using spatial data structures like
k-d trees for proximity queries. The subsequent step of finding connected components in the Ψ proximity graph via
Depth-First Search (DFS) or Breadth-First Search (BFS) has a complexity of O(V + E), where V = n (vertices)
and E is the number of edges in the proximity graph, which is typically O(n) for sparse environments. Therefore,
the overall complexity of the clustering step is dominated by the distance checks and is O(n2) in the worst case, but
O(n log n) on average with spatial indexing.

6.3. Complexity of Dynamically-Constrained Delaunay Triangulation (D2T )

The complexity of the D2T algorithm (Algorithm 2) is primarily determined by the Delaunay Triangulation (DT)
construction. Constructing a DT for m points has a well known worst case time complexity of O(m logm) [44]. In our
framework, m is the number of points sampled within the robot’s local sensor range, D, plus the extreme points of the
clustered obstacles. This value, m, is intentionally kept small and bounded due to the local sensing horizon, ensuring
that graph construction remains efficient. The subsequent steps of edge constraint checking and connected component
extraction are linear with respect to the number of edges and vertices in the initial DT, i.e., O(m). Thus, the overall
complexity for building the local D2T graph is O(m logm), which is efficient for real-time updates given the bounded
nature of m.
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6.4. Complexity and Convergence of Enhanced ACO (eACO)

The time complexity per iteration of the eACO algorithm (Algorithm 3) is O(K ·N), where K is the number
of ants in the colony and N is the number of edges in the path sequence being optimized (i.e., the length of the
vector γ). This is because each ant constructs a solution by making a decision for each of the N parameters.

Regarding convergence, Ant Colony Optimization (ACO) algorithms have been proven to converge to the
optimal solution with a probability that can be made arbitrarily close to 1 given a sufficiently long runtime [47].
Our eACO enhances the standard ACS with a Lévy flight strategy, which does not alter the fundamental global
convergence properties but is designed to improve the speed of convergence and the ability to escape local optima.
While a full theoretical proof of the convergence rate for our specific eACO variant is beyond the scope of this
paper, we provide strong empirical evidence of its performance. As shown in Figure 5(B2), the eACO algorithm
demonstrates rapid convergence towards a high quality solution within a few dozen iterations, making it highly
suitable for practical path planning applications where computational time is limited.

7. Simulation and Comparison Studies

7.1. Path Planning Comparison Studies

To evaluate the performance of the proposed framework, we conducted comparative simulations against several
classical and widely used path planning algorithms: Breadth-First Search (BFS), D*, Bi-Directional A*, and A*.
These algorithms were selected for their relevance in graph-based planning and their ability to handle obstacle filled
environments. All algorithms were tested in two distinct scenarios with varying obstacle configurations, as shown in
Figures 5 and 6. Performance was evaluated based on two key metrics: total path length and total execution time,
with results averaged over 50 executions for statistical significance.

The quantitative results in Table 2 demonstrate the effectiveness of our approach. The proposed framework
achieved the shortest path lengths in both scenarios while maintaining competitive execution times. Specifically, it
reduced path length by approximately 9% in Scenario 1 and 4% in Scenario 2 compared to the next best algorithm,
while also achieving the fastest computation time.
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Figure 5. Path planning results for Scenario 1. (a) Proposed framework result. (B1) Close up view of the proposed
path. (B2) Convergence behavior of the eACO algorithm. (c–f) Results from comparison algorithms. Axis units are
in meters (m) for all spatial dimensions.

Qualitative analysis of the generated paths provides further insight. As shown in Figure 5c–f, the compar-
ison algorithms tend to produce paths that closely follow obstacle boundaries, resulting in unnecessary detours,
particularly around irregular shapes. In contrast, our method (Figure 5a,b) generates smoother trajectories that cut
efficiently through large open spaces while maintaining safe clearance from obstacles. This is achieved through the
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combination of the sparse D2T graph representation and the eACO’s ability to optimize path points continuously
along graph edges rather than being constrained to vertices. The convergence behavior of eACO, illustrated in
Figure 5(B2), shows the algorithm’s efficiency in finding high quality solutions quickly. Similar performance
advantages are observed in Scenario 2 (Figure 6), where the proposed method again produces a more direct and
efficient path compared to the alternatives.

Table 2. Performance comparison of path planning algorithms. Values represent means from 50 executions. Best
results are highlighted in bold.

Scenario Parameter BFS D* Bi-A* A* Proposed

S1
Time (s) 3.37 3.44 7.10 2.59 2.43

Length (m) 49.28 51.52 50.69 50.69 46.02

S2
Time (s) 12.32 3.88 5.50 2.65 2.38

Length (m) 48.11 50.35 49.52 49.52 47.47
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Figure 6. Illustration of the path planning results for Scenario 2. (a) Proposed framework result. (b–e) Comparison
algorithm results. Axis units are in meters (m) for all spatial dimensions.

7.2. Computational Complexity Analysis

To quantitatively evaluate the impact of obstacle clustering on computational efficiency, we analyzed the
framework’s performance in a complex urban environment (Figure 7). Urban settings such as cities, military bases,
or college campuses present particular challenges due to their dense and structured obstacle layouts. The clustering
process groups proximate obstacles based on spatial proximity, transforming numerous individual obstacles into
fewer consolidated convex hulls. This transformation significantly reduces graph complexity in subsequent planning
stages. Figure 8 provides a direct comparison between two versions of our framework: one without obstacle
clustering and one with the full clustering pipeline. The non clustering version (Figure 8a) must account for every
individual obstacle during the D2T construction, resulting in a dense graph with numerous nodes and edges. In
contrast, the clustering version (Figure 8b) generates a substantially sparser graph by treating clustered obstacles as
single entities.

The quantitative impact is substantial: the clustering version uses approximately 20 fewer nodes and 35 fewer
edges in this scenario, representing a 60% reduction in graph complexity. This reduction directly translates to
computational benefits throughout the pipeline: faster D2T construction, reduced memory requirements, and
accelerated eACO optimization due to a smaller search space. These efficiency gains are particularly valuable for
real-time applications where computational resources are constrained. In summary, obstacle clustering serves as a
critical preprocessing step that enhances the scalability of our framework. By reducing perceptual and computational
complexity, it enables efficient navigation in dense urban environments while maintaining the safety and optimality
of the generated paths.
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Figure 7. Illustration of the proposed obstacle clustering process in an urban environment. (a) Original environment
with individual obstacles. (b) Intermediate clustering stage. (c) Final environment after clustering, where purple
polygons represent merged convex obstacles.The map dimensions are 30 m × 30 m, and all spatial measurements are
in meters (m).
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Figure 8. Comparison results of graph complexity with and without obstacle clustering. (a) Non clustering version
produces a dense graph with high edge count. (b) Clustering version generates a sparse graph with significantly
fewer edges while maintaining navigability. The map dimensions are 30 m × 30 m, and all spatial measurements are
in meters (m).

7.3. Path Planning in Dynamic Real-World Environments

To validate the complete framework in a realistic dynamic setting, we tested our system in a simulated beach
environment where an autonomous robot must navigate through a crowd to perform a trash collection task (Figure 9).
This scenario presents key challenges: numerous static obstacles (beach equipment, umbrellas) and dynamic
obstacles (moving pedestrians) in an unstructured environment.

The environmental processing pipeline begins with obstacle clustering, as shown in Figure 10. The clustering
algorithm reduced the number of distinct obstacles from 28 to 9, significantly simplifying the environment represen-
tation. The D2T graph was then constructed over this simplified representation, generating an initial global path
(blue line in Figure 10b).

The critical test occurs within the black bordered region in Figure 10b, where two dynamic obstacles (pedes-
trians) intersect the robot’s planned path. Figure 11 demonstrates the local reactive navigator’s response to this
situation. As the first pedestrian approaches, the robot proactively reduces its velocity and initiates a smooth
deviation, maintaining approximately 1.2 m clearance while preserving forward progress. For the second pedestrian,
the robot executes a smaller deviation maneuver, leveraging its reduced speed from the first avoidance to make a
more efficient adjustment. After clearing both obstacles, the robot smoothly transitions back to the global path
without oscillatory behavior or significant delay.
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(a) (b)

Figure 9. Illustration of the beach navigation scenario. (a) Original environment with static and dynamic obstacles.
(b) Extracted obstacle boundaries for processing. The map dimensions are 50 m × 100 m, and all spatial measurements
are in meters (m).
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Figure 10. Illustration of the environmental processing and global planning. (a) Obstacle clustering results with merged
obstacles outlined in blue. (b) D2T graph construction and global path planning (blue line) in the simplified environment.
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Figure 11. Illustration of the velocity-based local reactive navigation response. The environment is from Figure 10b.
The robot successfully avoids two dynamic obstacles while maintaining smooth trajectory and safe clearance distances.

The local reactive navigator’s velocity based approach enables several advantages in this scenario: it maintains
safety through proactive speed adjustments, ensures passenger comfort through smooth trajectory changes, and preserves
efficiency by minimizing deviations from the global plan. The integration of global planning (handling complex static
environments) with local reaction (handling dynamic obstacles) demonstrates the framework’s robustness for real-world
deployment. These results confirm that our hierarchical approach combining environmental simplification through
clustering, optimal global planning via eACO on D2T graphs, and reactive local navigation using velocity obstacles
provides a comprehensive solution for autonomous navigation in complex, dynamic environments.

8. Conclusions

This paper has presented a comprehensive framework for autonomous navigation that addresses critical
challenges in environment mapping, global path planning, and dynamic obstacle avoidance. Our approach integrates
several key innovations: a D2T for sparse environmental representation, an obstacle clustering method for reducing
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complexity, an eACO algorithm for continuous path optimization, and a velocity-based local reactive navigator
for real-time reaction to dynamic obstacles. Simulation studies across multiple scenarios demonstrate that our
framework achieves superior performance compared to conventional graph-based planners. The results show
significant improvements in both path quality producing shorter, smoother trajectories and computational efficiency,
particularly in complex environments with irregular obstacles. The hierarchical structure of our approach successfully
balances global optimality with local reactivity, enabling robust performance in both static and dynamic settings.

Despite these advantages, our study has a key limitation: the comparative analysis has focused on classical
graph-based planners. A comparison with modern sampling-based techniques (e.g., RRT*) and learning based
methods is essential to fully establish the relative performance and applicability of our approach. Therefore, our
immediate future work will include a comprehensive benchmarking study against these state of the art planners
across a wider range of dynamic and complex environments. Looking forward, we will also pursue several other
research directions. First, we plan to extend the framework to fully three dimensional environments for applications in
aerial or underwater robotics. Second, we aim to implement and validate the system on physical robotic platforms to
assess its performance under real-world constraints like sensor noise and computational limits. Third, we will explore
the integration of learning based methods to adaptively tune the parameters of the eACO algorithm and the local
reactive navigator based on environmental characteristics. Finally, we intend to validate the framework in more complex,
interactive scenarios such as simulated urban intersections and densely crowded environments, where dynamic obstacles
exhibit non linear motion patterns, to provide a more rigorous assessment of the system’s capabilities.
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