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1. Introduction

The paper is devoted to the study of the orthogonal group O(n) action on the solutions of the sublinear elliptic
equation
{Au+u—u|_20u:0 in B, 0

u =0 on OB,

and some derived forms. B is an open ball centered at 0 and with radius R in R™, n > 2, and 6 is a real number
parameter with 0 < 20 < 1.
Problem (1) is part of the general framework of studies focusing on nonlinear models of type

Au+ f(u) =0, @)

which in turn can be seen as stationary versions of the time-dependent problem

Ou _ Au+ f(u) or z%

5 = Au+ f(u). 3)

Many studies focused on these problems for the existence of solutions, positivity, unicity, and also numerical
solutions and simulations. In a major part, the existing studies focused on the radial solutions, where the elliptic
partial differential equation was converted into a second order ordinary differential equation. In [1], the authors
considered a superlinear C! model f(u) satisfying at least two main hypothesis,
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e 0< f'(u) <C(1+ |ul|®) for some suitable s > 0,
RS TS

Both assumptions are not satisfied for our model. Atkinson, Brezis and Peletier in [2] investigated the radial

: . . n+2. . :
solutions of a similar case with f(u) = u + |u|P<~'u where p, = 5 18 the critical Sobolev exponent. The main
n

tool used in the recalled related works as well as in our present work is the critical point theory and variational
methods, originally developed in [3-5].

The same nonlinearity as in our model (1) was studied in [6] for nodal solutions. Next, it was reconsidered
in [7] for a classification of radially symmetric solutions according to the initial value. In [8], problem (1) was
investigated for existence and uniqueness of the radial solutions without use of the variational methods. In [9], a first
numerical study was carried on for problem (1) using a generalized Lyapunov-Sylvester approach for approximating
the solution without serving of being radial or not. Cortazar and Elgueta studied in [10] a special model which
intersects the present one in the property of the non-lipschitzian nonlinearity. This fact yields as usual difficulties in
the existence and uniqueness tasks.

In [11,12], the authors considered a nonlinear model f(u) composed of two nonlinearities, one is superlinear
convex and the second is concave sublinear such as

Au+ [ulPru+ M|y =0, 0< g <1 <p, 4)

on suitable domains. Existence, uniqueness, nodal solutions, and singularities of solutions have been investigated,
especially for radial solutions. Notice that problem (1) may be obtained from (4) by chosingp = 1,q¢ =1 — 20
and A = —1. The parameter A\ has many roles according to the equation and the nonlinearity. For ¢ = 1 in (4), it
will induce a comparison with the Laplacian eigenvalues. Otherwise, in the case of Schrodinger equation (3), it
leads to the focusing and defocusing cases. These concepts are strongly related and strongly affect the behavior
of the solution. We may speak about blow-up phenomenon. Furthermore, we may understand problem (1) as a
problem limit of (4) when p — 1. This lead to the interest of investigating such an asymptotic problem as studied
in [13] where the authors investigated the asymptotic problem due to (4) according to the exponents p and ¢ when
approaching the linear frontier 1.

In [14], some numerical approaches have been developed to approximate the solution of the evolutionary
problems

%:Aquf(u)oan’]I‘ &)

on some suitable space-time domain €2 x T and suitable initial-boundary conditions and where the nonlinear term
f(u) is the same as in problem (4).

The two problems (1) and (4) intersect in the common characteristics of the existence of a sublinear non
lipchitzian term, and differ by the other part of f(u). Compared to the famous Brezis-Nirenberg problem on positive
solutions of Au + uP + Au = 0, in problem (1), p > 1, the convex nonlinear term uP is replaced by a nonlinear non
locally lipschitzian odd term |u|?~!u or —|u| =2y, which yields new difficulties, new techniques, and also different
behavior of the solution. These problems or their derved forms may be found widely in interesting real-world
cases such as nonlinear waves, plasma, optics, condensed matter, Bose-Einstein condensation and the stabilized
solitons, nonlinear Shrédinger equation, chemical reaction models, population genetics models, and so on. (See
for example [15]). In some cases of nonlinear Schrodinger equation, the solutions may be explicitely expressed by
means of solitons as in [16—18]. Related to our present study, the model (4) was studied for non radially symmetric
but group invariant solutions in [19]. In [20], a similar problem to (4) from the point of view of mixed concave and
convex nonlinearities was tackled for radially symmetric solutions.

A natural problem may be now stated as: Given a subgroup G of O(n), the main question deals with the effect
of the G-action on the solutions. A natural and immediate case is when the group G acts transitively on the sphere
Sl = {z € R", ||z|s = 1}, where for x = (21, T2, ...,2,) € R", ||z]|2 = \/27 + 23 + - - - + 22. In this case,
it is immediate that any G-invariant solution can be seen as radial. So, one looks for suitable conditions on G for the
existence of non-radially symmetric but G-invariant solution(s). We mean by G-invariant solution any solution u of
problem (1) satisfying

u(gr) =u(x), Vg€ GandV z € B. (6)

Such question has been studied by many authors such as Kajikiya in [21,22], where the author focused on
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orthogonal group invariant solutions of the problem

Au+|ulP"tu=0 in B,
u(gx) = u(x) for (g,2) € G x B, @)
u=20 on OB,

with a closed subgroup G of O(n) and a sub-superlinear power p. In [21,22], it is already noticed that we may
consider G as a subset of O(n) and not necessarily a closed subgroup. In this case, we just consider the group
generated by the subset G and its closure < G >. Then G-invariance is equivalent to < G' > one. A comprehensive
study and more details about transitive groups may be found in [23].

In the present paper, we assume that G is a closed non-transitive subgroup of O(n), and propose to establish
some results about the existence of G-invariant solutions to the problem

Aut+u—|ul"2u=0 in B,
u(gz) = u(x) for (g,2) € G x B, (8)
u=20 on OB,

where B is simply the unit ball in R”, and 0 < 26 < 1.

2. Motivations

There are many motivations behind this work. The first, in our knowledge, is the lack of studies about the
question of non-radial solutions of this type of problems. In this context, there are few references having investigated
the non-radial solutions. These are resumed in the following items according to the nonlinear term f(u),

i. problem (4)with A > 0and0 < g <p<1[19].
ii. problem (4)with A =0and0 <p < 1[21].
iii. problem (4) with A = 0 and p > 1 [22].

Compared to our case, in the present work, we have f(u) = u — |u|~2%u which no longer satisfies conditions
i—iii above.

A second part of the existing works was based on the development of numerical approximations applying
known methods such as finite differences, finite volumes, finite elements, Fourier modes, and so on. These studies
also intersect in the absence of the case of non-radial solutions invariant by subgroups of O(n). Readers may refer
essentially to [9, 13, 14,16-18].

Another motivation and difference with existing studies evoking the problem of invariant solutions by the
subgroups of O(n), is again the absence of associated numerical simulations in view of the norms estimations. This
is in some way due to the possible difficulties behind it, even if the theory is well done. See [19,21,22].

Now, to highlight our results as well as previous studies in the same context of non radial solutions which
are group invariant, we recall some cases of subgroups of the orthogonal group O(n) which are not transitive, and
which induce in a natural way invariant solutions. Starting with the simple case due to the reflection x —— —z.
In such a case, we get notice that the function  —— wu(—z) is evidently a solution of problem (1). This case
may be generalized to any partial reflection x = (21, z2,...,%;,...,&n) — (T1,%2,..., —Z4, ..., Ty), fOr any
1 =1,2,...,n, or any composition of a finite number of these reflections.

To be more esier, restrict to R3, another example may be obtained by acting the symmetric group, or in other
words by permutating the coordinates of z in any way. Consider for simplicity the permutation (z1, 2, z3) —
(3,22, 21), and u(x) = u(xs, x2, x1). Here also we get a solution « of problem (1). This example may be extended
to other permutations and to the general space R".

2
Consider in R3, the subgroup of rotations R; with angle ?ﬂ J,J = 0,1,2 around the z-axis. We get here the
function z = (x1, w2, x3) — U(x) = u(xy cos(3Fj) — zasin(ZF)), z1sin(2Fj) + z2 cos(2F4) , x3) which is
also a solution of problem (1).

3. Preliminaries

To tackle our problem, we introduce firstly the functional framework. Denote V = H} (B). Recall that we
have already the inclusion L>(*=%)(B) C V. Consider on V' the norm

ullo = llullyp (), Yu € V.
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Obviously, (V, ||.||) is a Banach space. For a subgroup G of O(n), write
Ve(B) = {u € V, u satisfying (6)}, )
and V7 (B) its orthogonal supplement in V/,
V = Vg(B) &~ Vg (B). (10)
Let x € 8”71, and G(x) its orbit relatively to the G-action,
G(a:):{gx;geG}. (1)

Denote also
m =max{ dimG(z); x € 8"} (12)

the principal orbit dimension. Define next the functional I on Vg (B) by

1) = [ (3190 = Fau)da. (13)
Q 2
where 1 1
- R S T N1/
Fy(u) = 5 U 2(179)|u\ . (14)

It consists of a C! function of u.
We also introduce the concept of G-invariant critical points and values of the energy functional I.

Definition 1.

e u € Vg(B) is called a G-invariant critical point of I if I'(u) = 0.
*  « € Riscalled a G-invariant critical value of I if there exists a critical point u € Vg(B) such that I(u) = a.

Finally, we need also to recall the concept of the genus.

Definition 2. Let F be the closed subset of Vi (B) with Zs-symmetry group and 0 ¢ F. The genius ~(F) is
the smallest integer n for which there exists h € C(F,R™ \ {0}). v(F) = o< if there exists no finite such n and

v(0) =0.
4. Main Results

In the first step, we propose to come back to some radial versions related to the problem (1) such as

-1
u”+Lu’+u—|u\_29u=0 ;1€ (0,00),
r (15)

u(0) =a , u'(0) =0,

where a € R. It has been widely investigated by many authors such as [6—8] for existence, uniqueness, phase plane
and nodal solutions. Remark that the solution of (15) which satisfies u(1) = 0 is, in fact, natural O(n)-invariant
solutions.

The first result concerns the existence and uniqueness of solutions. Unfortunately, there is no complete proof
of these results in the references that investigated the same problem. For this reason, we will provide full proofs
here, and also different from the existing essays.

1
Theorem 1. Denote p = (179)1 For all a # 0, problem (15) has a unique solution u. Furthermore, for all
—0)30

a € (0, p), the solution u remains nonnegative on (0, 00).

Next, we recall the following result which provides a classification of the radial solutions according to their
initial values ([6-8]).
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Theorem 2. [6-8] Denote p = . The following assertions hold.

(1—0)2

1. For 0 < a < 1, the solution u of the problem (15) is oscillating around 1 with no zeros in (0, 00).

2. Forl < a < p, the solution u of the problem (15) is oscillating around 1 with no zeros in (0, 00).

3. For a > p, the solution u of the problem (15) is oscillating around +1 with a finite number of zeros in (0, 00)
or oscillating around 0 with a finite number of zeros in its support being compact.

Our second main result relates the solutions of the problem (8) to the G-invariant critical values of the energy
functional I, and is stated as follows.

Theorem 3. Let u € Vi (B). It holds that u is a weak solution of (8) if and only if I' (u) = 0.
The next result concerns the G-invariant critical values and their estimation.

Theorem 4. There exists a sequence (o), strictly increasing of G-invariant critical values satisfying

(i) Ifap= g1 =...=apy = q, theny(Ky) > 1+ 1 with
Ko ={u€Vg(B); I(u) =a, I'(u) =0}
(ii) The sequence of critical values («,)y, satisfies

2(1-0) , 202 9)

oy ~ kP9 where p(0) = 10
n—m -

To show that, effectively, the problem investigated here has G-invariant but non-radially symmetric solutions,
we propose in the next part to prove that the set of radially symmetric solutions in strictly contained in the set of
G-invariant solutions. To do it, we investigate and/or characterize the radially symmetric critical values.

Denote H'',( B) the subspace of HJ(B) composed of radial elements. A radially symmetric critical value is

a critical value of the energy functional [ restricted to ngd(B ). The following result holds.

Theorem 5. There exists an unbounded strictly increasing sequence (By,)y. of radially symmetric critical values

such that 1
Br ~ kPO with p(f) =2(1 — )

5. Proof of Main Results
5.1. Proof of Theorem 1

If u is a solution of (15), then (—u) is also a solution of (15). So, we only study the case where a > 0. Let

M, = {u € C((0,6)); a < u(r) < 2a, Vre (0,5)},

. 2 2 an
0 <5<m1n{1/7|f,(%)‘n, \/;, ‘/m}.

We notice that if u is solution of (15), it satisfies

where

1ol
u(r) =a— 7"2/ / xs" L f(u(ras))dsda.
o Jo
Denote next ® : M, — M, N C? defined by

1ol
D(u(r)) =a— Tz/o /0 xs" L f(u(res))dsda.

® is well defined, because of the fact that

wu(r)) ol <2 [ [ s atras)dsds] < A < 5
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Hence, ®(u) € M,. On the one hand,

B(u(r) = a — /0 /01 157 F(u(ts))ds)dt

is a primitive of
ot
o(t) :—tn—_l/o z" 1f(u(x))dx,

which is C2 on (0, §) because of the continuity of the function 1 defined by
v(z) = 2" f(u(@), =€ (0,9).

We will prove that ® satisfies the fixed point theorem. Indeed, let u,v € M,. We may write that
Lot né?
| 2(u) — @(v) [[o< K || t — v ||oo 7“2/ / xs" tdsdr < KT Ilw—2 o,
0 Jo

where K = max(|f’ (%) [, 1). Hence, ® is contractive. Thus, ® has a unique fixed point u € M,. Consequently,
for all a # 0, problem (15) has a unique solution u.

It remains to show that this solution is global on (0, 4+00). Assume by the contrast that there exists tg €
(0, +00) such that

Jim fu()| = oo.

Consider the energy function
1
E(r) = Su(r) + F(u(r)).

It is straightforward that E'(r) is non-increasing, then
F(u(r)) < E(r) < B(0) = F(a) <0, Yr >0,

which yields that
Fla)> Jim F(Ju(t)]) = oo,

which is a contradiction.
Finally, it remains to check that for any initial value a = «(0) in (0, p), the solution « remains nonnegative.
Indeed, for a € (0, p), we get

F(u(r)) < E(r) < E(0) = F(a) <0, ¥r>0.
Since F'is even and coercive, there exists a unique positive o # a which satisfies
F(a) = F(a) and a <u(r) <a or a <u(r) < a.
Hence, the result follows.

5.2. Proof of Theorem 3

Let u € Vi(B) be a critical value of the functional I, thatis I'(u) = 0, and let v € H(B). We shall show that
/ (VuVv —uv + | u | " uv)de = 0. (16)
B

Indeed, consider the decomposition of v as a unique sum v = v + vy due to (10), where v; € Viz(B), and
vy € Vg (B). It follows easily that

/ (VuVoy — f(u)vy)dz = 0.
B

Moreover, as since vo € VGL(B), we also have

/ VuVuedx = 0.
B
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To achieve the proof, we shall show finally that

/ (u — | u |2 u)vedz = 0.
B

/ uvadr = 0.
B

/ | |_29uv2dx =0.
B

It is easily seen that |u| 2% satisfies (6) whenever u satisfies it too. As a consequence, there exists a sequence
of functions (fx)x in C§°(B, G) convergent to |u|~2%u in L7+2 (B, G). By considering for each k (or each fy,), the

unique solution @), € Vz(B) of the problem

A®p + fp, =0 in B,
{@kzo on 0B, {17

Here-also, we know that

So, it remains to show that

we obtain
Lf}(l)gd.%‘ = —/B AdPpvodar =< Py, vo >’Hé(B): 0.

This yields by letting k£ — oo,
/ | u |~ uvedz = 0.
B

5.3. Proof of Theorem 4

Denote firstly for k € N, ) to be the k*" eigenvalue, associated to the unitary eigenvector ®;, of the problem

Au+Iu=0 in B,
u=20 on OB, (18)
u(gr) =u(x) in BxG.

Denote Vi (G) = spann(®;; 1 < ¢ < k). It is a finite-dimensional vector space. Therefore, there exists

constants C, > 0 for which
Ci Hull < llullag—e) < Crllull,

and
Cy; Hlull < Jlullz < Cllull-
As a result, we get
C20-1)
b [ulln® = for - [ul| = OF,
2(1-19)
I(u) = 1
SO=CAul? for Jul - oo,
Consequently, there exists a sequence Ry > 0 non-decreasing, such that
c20-1) -
hRi(l D for lull < B, u € Vi(G),
I(u) = )
(1= C.2)R;  for |u| > Ry, u € Vi(G).
Denote next
By = {u € Vi(G); [[ul| < Ry},
and define

Ar = {h € C(By,Vg(B)); hisodd and h(u) = uon 9By},
V={ACVg(B); Aisclosed, 0 ¢ Aand —u € A, Vu € A},
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and

Tr={h(Bi\A); he Ay i>k AcVandy(A) <i— k).

We set finally

o = Bléllﬁk gleagl(u)' (19)

(i) Suppose in the contrast that y(/C,) < ! + 1. There exists € > 0 such that y(C, o) < I, where K, . is the
e-neighborhood of K. So, 7(K4.c N S™ 1) < I. Hence, there exists € (0,1) and h € C([0,1] x S*~1,8"71)
with A(t, «) odd in u and such that

h<1, (Kagn NS" )\ (Kae N 3"1)> CKo—pynS" (20)

where KC,, = {u; I(u) < a}. Let A € 'y such that max I(u) < a+n. One has immediately A \ (K, NS?71) €
ue

Iy and i (1, A\ (Ko e N S"—1)> € T'y. Therefore, by equation (20), we obtain

a<maxI(u) <a-—mn,

u

where the maximum is taken over the set 2 { 1, A\ (Ko NS ”1)) . The last relation is contradictory.

(ii) Observe firstly that for u € V4 (G), we have

lull3 < CR/C=Dul5_g), Yu € Vi(G), @1
and
Va3 < R/ =m0/ Q=02 ), Vu € Vi(G). (22)
It follows from (21) and (22) that for u € Vi (G),
1 B C—lk—29—2(1—9)/(n—m) B
) & 51 = OR OOl 4 g0~ 3)
Now, a simple computation yields that
c30
~ " 1pO)
T oa 9"
where 2(1—-6) 20(2-0)
p(0) = + :

n—m 1-—0
5.4. Proof of Theorem 5

Consider for k£ € N, the nodal solution uy, of the problem (15) with exactly k— zero in (0, 1). Denote next

~ . -1 . .
U(r) = zpug(zxr) with o = - We immediately observe that

_ L{ —(1+20)/0 ~ 2 0 1~ j20-0)
(i) — = 1 7

which in turn yields that
I(Uy,) ~ Ck=20-9)/8,

We thus take 8y = I(ug).

6. Further Discussions

To further emphasize the theoretical results developed and proved in the previous sections, we provide in the
present section some computer simulations provided with graphical illustrations. The following figures (Figures 1-4)
illustrate graphically the result of Theorems 1 and 2. We recall that radial solutions are already invariant via the
action of the orthogonal group O(n). Figure 1 illustrates the case § = 0.45, for whch the zero of F'(u) is p = 1.941.
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It shows easily that the radial solutions are infinitely oscillating around 1 being nonnegative on the whole interval.
Figure 2 Shows the solutions oscillating around +1 whenever the initial value u(0) = a > p = 1.85, and
6 = 0.35. Figure 3 shows a similar behavior of the radial solutions as in Figure 2 but for a large initial value
u(0) =a >p=194and 6 = 0.45.

1.8 [
160
14F

1.2f S

087 o
06—
0.4

0D2r

r

Figure 1. Some solutions of (15) with a € (0,p), 0 = 0.45, p = 1.94.

0 2 L 6 8 10 12 14 16 18 20
r

Figure 2. Oscillations around +1, with u(0) = a > p, 0 = 0.35, p = 1.85.

Next, as it is done for the theoretical results raised in Theorems 1 and 2, we provide her after some computer
simulations relative to the results in Theorems 4 and 5. We firstly plotted in Figure 5 below the behavior of
ay = f(k) as alog-log curve for some values of the parameters 6, n and m.

Notice easily that the ponits (log v, log k) follow the same direction and are quite strategically located on the
line y = p(0)x for k > 10.

As previously, we plotted in Figure 6 below the behavior of 5, = f(k) as a log-log curve for some values of
the parameters 6, n and m. We notice here also that the points (log Sk, log k) follow the same direction and are
quite strategically located on the line y = p(6)z for k > 10.
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Figure 3. Some solutions of (15) with w(0) = a > p, 0 = 0.45, p = 1.94.

1.8+

1.6

14

1.2

#=0.125
#=0.25
#=0.375

0.8

0.6

0.4

0.2

42 43 44 45 46 47
log(k)

Figure 5. log ar, = p(0) log k, for = 0.25 et the top and § = 0.125 at the bottom (n = 3, m = 1).
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-20 . .

30 - .|

l0g(Bi)

50 - 4

-60 —

’ 3.9 4 4:1 4.2 4.3 4.4 45 4.6 4.7
log(k)

Figure 6. log 8, = p(0) log k, for = 0.25 at the top and 8 = 0.125 at the bottom (n = 2).

7. Conclusions

In this paper, we investigated the action of the orthogonal group on the set of solutions of a sub-linear elliptic
problem. Specifically, We focused on subgroups of the orthogonal group O(n) and showed the existence of non-
radially symmetric solutions that exhibit invariance under these subgroups. Notably, we provided a necessary and
sufficient condition regarding the subgroup G for the existence of such non-radially symmetric solutions. The paper
is also reinforced with computer simulations which illustrate graphically the theoretical results.

More precisely, we focused on the problem of existence of non-radial solutions which are invariant by specific
subgroups of O(n) such as non-transitive subgroups. In addition, we have shown using the theory of the critical
point on suitable spaces and the properties of the nonlinear part f(u) the existence of sequences of non-radial
solutions, and we have estimated their Sobolev norm. Such an estimate clearly shows that these solutions are
indeed non-radial (comparing it to the estimate of the norm of radial solutions). Computer simulations associated to
the theoretical results are also given via graphical illustrations which confirm the developed theory. Figures 1-4)
illustrate the result of Theorems 1 and 2 dealing with the behavior or the classes of the solutions in the radial case.
Figures 5 and 6 illustrate the results of Theorems 4 and 5 on the estimation of the Sobolev norm of the sequence of
solutions due to the critical point theory application. We notice easily the adeuqcy between the theoretical results
and the computer simulations. Compared to the existing studies, the last simulations were no longer provided in our
knowledge, especially for similar problems as ours.
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