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Abstract: In this study, the third-order nonlinear (2+1)-dimensional Novikov-Veselov
system of equations with constant coefficients has been investigated using an appro-
priate traveling wave transformation. The extended rational sin− cos technique and
the modified exponential function method are two reliable and powerful methods that
have been used for the specified nonlinear system. The main goal is to get valuable,
exact traveling waves, periodic waves, and soliton solutions. The resulting solutions are
expressed as a variety of trigonometric functions, including hyperbolic trigonometric
functions, exponential functions, and rational functions. In that they provide light
on the pertinent facets of the physical phenomenon, the suggested solutions are both
innovative and significant. The properties of the solutions have been illustrated in
a variety of figures, including two- and three-dimensional ones, to ensure the best
visual assessment. Furthermore, two-dimensional graphs demonstrated how temporal
development affects solution structures. The most powerful and efficient technologies
are the computer software tools we use to create solutions and graphs.
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1. Introduction

Scholars are drawn to investigations that uncover soliton solutions to nonlinear differential equations, as these
findings promote novel methodologies and progress within this subject matter. Many sophisticated techniques for
creating multiple solitons and traveling wave solutions have been developed in the scientific and engineering fields
to cope with these inquiries. The following are some methodologies that have been used to various mathematical
models. The Bernoulli sub-equation function method [1,2], use of the Laplace transformation for the system which
involves the Caputo fractional derivatives [3], the Bifurcation analysis, optical solitons, and modulation instability
analysis of the complex nonlinear (2+1)-dimensional δ-potential schrödinger equation [4], the modified extended
tanh function method to scientifically deduce semi-analytic traveling wave solutions for the (2+1)-dimensional
fourth-order non-linear generalized Hietarinta-type model [5], the extended rational sinh-cosh technique and
the modified extended tanh- function approach have been employed [6], the tanh-function method and it’s
modified or extended versions [7, 8], the newly modified versions of the rational sin-cos method and rational
sinh-cosh method applied to to the Fokas system[9], the stander Painlevé analysis approach for investigating
integrability of some models, and applying the different integration algorithms [10,11], the method of the inverse
scattering [12], the extended and modified versions of rational trigonometric functions are used for the (2+1)-
dimensional integro-differential Konopelchenko-Dubrovsky evolution equation [13], the method with the Darboux
transformations with it’s extended or modified versions [14,15], the improved Bernoulli sub-equation function method
and the modified extended tanh- function method applied to fourth-order nonlinear (3+1)-dimensional generalized
Kadomtsev–Petviashvili–Benjamin–Bona–Mahony (KP-BBM) equation [16], the Bäcklund transformation method [17],
the Lie symmetry analysis [18], the modified exponential function method is employed to the nonlinear (2+1)-dimensional
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generalized breaking soliton system [19] , and references therein.
The model that analyzed in this study is a nonlinear (2+1)-dimensional Novikov-Veselov system of equations

with constant coefficients which is generated by [20] and investigated by utilization of inverse scattering transform
technique, aforementioned PDE seems to have the following formulation:

ut + α0uxxx + α1uyyy+α2(uv)x + α3(uw)y = 0,

vy = ux,

wx = uy,

(1)

where α0, α1, α2, α3 are parameters that have a substantial influence on the behavior of the solutions. Ever
since numerous scholars applied alternative techniques for investigating this model in a distinct form including
as the linear superposition method [21,22], the Bäcklund transformations method and a nonlinear superposition
formula [23], the inverse scattering method [24], the solitary wave ansatz method [25], the Painlevé analysis and
Bell polynomials approach [26], the generalized Kudryashov method [27], the Fourier restriction norm method [28],
and references therein.

The different versions of the model Equation (1) have been studied by the scholars using different approach
for instance the tanh method, the extended tanh method, and the cosh-sinh method [29], the exponential function
method [30], the extended tanh- function method based on the mapping method [31], the Bäcklund transformation
and the variable separation approach [32], the binary Darboux transformation technique [33], and so on.

This article is organized as follows. Section 1 focuses on the literature review relevant to this study. Section 2
presents the algorithms of the applicable method. Section 3 details the implementation of the proposed approach
for deriving specific exact solutions of Equation (1). Finally, Section 4 includes the discussion and conclusion of
the research.

2. Structures of the Applied Methods

Within each of the mentioned approaches, there is a fundamental step that focuses on it significantly, this
common step is shortened as follows:

Step 1. Examine the subsequent non-linear PDE in which u = u(x, y, t).

ϕ(u, ux, uy, ut, uyy, uxx, · · · ) = 0, (2)

setting:

u(x, y, t) = U(Q), Q = I1x+ I2y − I3t, (3)

where I1,I2,I3 are non zero arbitrary parameters, I3 represents the wave number. By subbing Equation (3) into
Equation (2) the next non-linear ODE is resulted:

Φ
(
U,U ′, U ′′, U2, · · ·

)
= 0, (4)

where U = U(Q), U ′ = dU
dQ , U ′′ = d2U

dQ2 , · · · .

2.1. Properties of Modified Exponential Function Method (MEFM)

assuming that step one took place, then the Modified exponential function technique (MEFM) is described in
the following steps:

Step 2. Let us consider that Equation (4) has a solution expressed subsequently:

U(Q) =

N∑
i=0

Ei(e
−χ(Q))

i

M∑
j=0

βj(e−χ(Q))
j

=
E0 + E1e

−χ(Q) + · · ·+ ENe−Nχ(Q)

β0 + β1e−χ(Q) + · · ·+ βMe−Mχ(Q)
,

(5)

where βj , Ei (j = 0, · · · ,M, i = 0, · · · , N) are parameters that ought to be identified later, such that EN ̸= 0
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and βM ̸= 0.

Remark 1. 1. The positive integers N and M may be identified through the application of the homogeneous
balance technique, which involves analyzing the relationship between the highest-order derivatives and the
elevated degree of nonlinear terms present in Equation (4).

2. It is essential that χ(Q) fulfills the subsequent ordinary differential equation:

χ′(Q) = e−χ(Q) + H eχ(Q) + G . (6)

Solutions of the Equation (6) are disclosed as follows:

• If H ̸= 0, G 2 − 4H > 0, then

χ(Q) = ln

(
−
√

G 2 − 4H

2H
tanh

(√
G 2 − 4H

2
(Q + ℘)

)
− G

2H

)
. (7)

• If H ̸= 0, G 2 − 4H < 0, then

χ(Q) = ln

(√
−G 2 + 4H

2H
tan

(√
−G 2 + 4H

2
(Q + ℘)

)
− G

2H

)
. (8)

• If H = 0, G ̸= 0, G 2 − 4H > 0, then

χ(Q) = − ln

(
G

eG (Q+℘)
− 1

)
. (9)

• If H ̸= 0, G ̸= 0, G 2 − 4H = 0, then

χ(Q) = ln

(
2λ(Q + ℘) + 4

G 2(Q + ℘)

)
. (10)

• If H = 0, G = 0, G 2 − 4H = 0, then

χ(Q) = ln(Q + ℘). (11)

in every specific case, ℘ represents a non-zero constant.

Step 3. By substituting Equations (5) and (6) into Equation (4) and setting all coefficients of e−χ(Q) that correspond
to identical powers of e−χ(Q) to zero, we derive the subsequent system of algebraic equations for the coefficients.

Ψj = 0, j = 0, · · · , k (12)

here k is a greatest power of e−χ(Q).

Step 4. Identifying the parameters by applying different computer algorithms to solve the generated system
(12). When results are combined with one of the Equations (7)–(11), the exact solution for the mathematical model
under study is obtained.

2.2. Properties of Extended Rational sin-cos Method (ERSCM)

Now state the algorithm of the second method in this research, the extended rational sin-cos, which is described
in the following steps, where step one is identical to the first step in the above process.

Step 2. Assume that the solution to (4) has the following specifications:

U(Q) =
γ0 sin(H Q)

γ2 + γ1 cos(H Q)
, cos(H Q) ̸= −

γ2

γ1
, (13)

or in the form,

U(Q) =
γ0 cos(H Q)

γ2 + γ1 sin(H Q)
, sin(H Q) ̸= −

γ2

γ1
, (14)
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where γi for i = 0, 1, 2 indicates parameters that will be determined later, and H is a non-zero wave number.
Step 3. Unknown parameters can be observed by replacing Equation (13) or Equation (14) into Equation (4),

collecting all terms with the same powers of cosm(H Q) or sinm(H Q) and equating to zero all the coefficients
of cosm(H Q) or sinm(H Q) yields a set of algebraic equations. With certain computer software programs, the
solutions to the algebraic system of equations are generated.

Remark 2. Furthermore, it’s possible to collect all the terms with the same powers of cosm1(H Q) sinm2(H Q)

where m = 0, 1, 2, · · ·G and equating to zero the summation of all the coefficients which have the same powers, it
yields a system of algebraic equations. Solving the resulting system is guaranteed to provide parameters.

Step 4. By replacing the existing values of γ0, γ1, γ2 and H into Equation (13) or Equation (14), the solution
of Equation (4) may be obtained. Combining parameters and re-installing gotten solutions, one may obtain the
solution for the required mathematical model Equation (1).

3. Applications of Specified Methods

In this section, the (2+1)-dimensional nonlinear constant coefficient, Novikov-Veselov system of equations,
has been analyzed applying the indicated approaches. Let’s start with applying the following wave changes to the
Equation (1).

u(x, y, t) = U(Q), v(x, y, t) = V (Q), w(x, y, t) = W (Q)

Q = I1x+ I2y − I3t,
(15)

here I1,I2,I3 ̸= 0 since vy = ux and wx = uy directly V = I1

I2
U, and W = I2

I1
U then one gets the following

non-linear ODE:

−I3U
′ +
(
α0I

3
1 + α1I

3
2

)
U ′′′ +

(
2α2I 3

1 + 2α3I 3
2

I1I2

)
UU ′ = 0, (16)

where U = U(Q), U ′ = dU
dη , U ′′ = d2U

dη2 , · · · . Take the integration of Equation (16) one time with zero constant of
integration outcome is in the following:

−I3U +
(
α0I

3
1 + α1I

3
2

)
U ′′ +

(
2α2I 3

1 + 2α3I 3
2

I1I2

)
U2 = 0. (17)

The equation that appears in Equation (17) is a potential model for verifying the dominant balancing principle on it.

3.1. Application of MEFM to the (2+1)-Dimensional Novikov-Veselov System

In this section, the MEFM is studied to discover some complex exponential and hyperbolic trigonometric
function solutions to the (2+1)-dimensional Novikov-Veselov System. After reducing the investigated model into a
non-linear ODE (17), immediately applying the homogeneous balance principle, the achieved result is a fundamental
relation between M and N as follows:

N = M + 2, where N,M ∈ Z+. (18)

Based on the values of the integers that are satisfied (18), if M = 1 then N = 3, thus the declared solution gets the
following format:

U(Q) =
A0 +A1e−χ +A2e−2χ +A3e−3χ

B0 +B1e−χ

=
W(χ)

H(χ)
,

(19)

where χ(Q) is satisfies the (6). Take the derivatives of (19); the outcomes are the following:

U ′(Q) =
HW ′ −WH′

H2
, (20)
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and

U ′′(Q) =
H3W ′′ −H2(W ′H′ +WH′′)−H2W ′H′ + 2WH(H′)2

H4
. (21)

Currently, replacing Equations (18)–(21) into (17) one fetches some different powers of e−χ(Q). Collecting
all the representations with the same power of e−χ(Q) and equating coefficients to zero given a system of algebraic
equations as follows

Eq1 : 6α0A3B
2
1I2I 4

1 + α2A
2
3B1I 3

1 + 6α1A3B
2
1I 4

2 I1 + α3A
2
3B1I 3

2 = 0,

Eq2 : 10α0A3B
2
1I2I 4

1 G + 10α1A3B
2
1I 4

2 I1G + 2α0A2B
2
1I2I 4

1 + 16α0A3B0B1I2I 4
1 + α3A

2
3B0I 3

2

+ α2A
2
3B0I 3

1 + 2α2A2A3B1I 3
1 + 2α1A2B

2
1I 4

2 I1 + 16α1A3B0B1I 4
2 I1 + 2α3A2A3B1I 3

2 = 0,

Eq3 : α0A2B
2
1I2I 4

1 G 2 + 11α0A3B0B1I2I 4
1 G 2 + α1A2B

2
1I 4

2 I1G 2 + 11α1A3B0B1I 4
2 I1G 2

+ 6α0A3B
2
1I2I 4

1 G H + 6α1A3B
2
1I 4

2 I1G H + 21α0A3B
2
0I2I 4

1 G + 9α0A2B0B1I2I 4
1 G

+ 21α1A3B
2
0I 4

2 I1G + 9α1A2B0B1I 4
2 I1G + 2α0A2B

2
1I2I 4

1 H + 22α0A3B0B1I2I 4
1 H

+ 2α1A2B
2
1I 4

2 I1H + 22α1A3B0B1I 4
2 I1H + 6α0A2B

2
0I2I 4

1 + α2A
2
2B0I 3

1

+ 2α2A1A3B0I 3
1 + 2α2A1A2B1I 3

1 + 2α2A0A3B1I 3
1 + 6α1A2B

2
0I 4

2 I1 − 2A3B0B1I2I3I1

+ α3A
2
2B0I 3

2 + 2α3A1A3B0I 3
2 + 2α3A1A2B1I 3

2 + 2α3A0A3B1I 3
2 −A2B

2
1I2I3I1 = 0,

Eq4 : 4α0A3B
2
1I2I 4

1 G 2 + 4α1A3B
2
1I 4

2 I1G 2 + 3α0A2B
2
1I2I 4

1 G + 27α0A3B0B1I2I 4
1 G

+ 3α1A2B
2
1I 4

2 I1G + 27α1A3B0B1I 4
2 I1G + 8α0A3B

2
1I2I 4

1 H + 8α1A3B
2
1I 4

2 I1H + α3A
2
2B1I 3

2

+ 12α0A3B
2
0I2I 4

1 + 6α0A2B0B1I2I 4
1 + 2α2A2A3B0I 3

1 + α2A
2
2B1I 3

1 + 2α3A1A3B1I 3
2

+ 2α2A1A3B1I 3
1 + 12α1A3B

2
0I 4

2 I1 + 6α1A2B0B1I 4
2 I1 + 2α3A2A3B0I 3

2 −A3B
2
1I2I3I1 = 0,

Eq5 : 9α0A3B
2
0I2I 4

1 G 2 + 3α0A2B0B1I2I 4
1 G 2 + 9α1A3B

2
0I 4

2 I1G 2 + 3α1A2B0B1I 4
2 I1G 2

+ α0A2B
2
1I2I 4

1 G H + 17α0A3B0B1I2I 4
1 G H + α1A2B

2
1I 4

2 I1G H + 17α1A3B0B1I 4
2 I1G H

+ 10α0A2B
2
0I2I 4

1 G + α0A0B
2
1I2I 4

1 G − α0A1B0B1I2I 4
1 G + 10α1A2B

2
0I 4

2 I1G

+ α1A0B
2
1I 4

2 I1G − α1A1B0B1I 4
2 I1G + 2α0A3B

2
1I2I 4

1 H 2 + 2α1A3B
2
1I 4

2 I1H 2

+ 18α0A3B
2
0I2I 4

1 H + 6α0A2B0B1I2I 4
1 H + 18α1A3B

2
0I 4

2 I1H + 6α1A2B0B1I 4
2 I1H

+ 2α0A1B
2
0I2I 4

1 − 2α0A0B0B1I2I 4
1 + 2α2A1A2B0I 3

1 + 2α2A0A3B0I 3
1 −A3B

2
0I2I3I1

+ α2A
2
1B1I 3

1 + 2α2A0A2B1I 3
1 + 2α1A1B

2
0I 4

2 I1 − 2α1A0B0B1I 4
2 I1 −A1B

2
1I2I3I1

+ 2α3A1A2B0I 3
2 + 2α3A0A3B0I 3

2 + α3A
2
1B1I 3

2 + 2α3A0A2B1I 3
2 − 2A2B0B1I2I3I1 = 0,

Eq6 : 4α0A2B
2
0I2I 4

1 G 2 + α0A0B
2
1I2I 4

1 G 2 − α0A1B0B1I2I 4
1 G 2 + 4α1A2B

2
0I 4

2 I1G 2

+ α1A0B
2
1I 4

2 I1G 2 − α1A1B0B1I 4
2 I1G 2 + 15α0A3B

2
0I2I 4

1 G H + 3α0A2B0B1I2I 4
1 G H

+ 15α1A3B
2
0I 4

2 I1G H + 3α1A2B0B1I 4
2 I1G H + 3α0A1B

2
0I2I 4

1 G − 3α0A0B0B1I2I 4
1 G

+ 3α1A1B
2
0I 4

2 I1G − 3α1A0B0B1I 4
2 I1G + 6α0A3B0B1I2I 4

1 H 2 + 6α1A3B0B1I 4
2 I1H 2

+ 8α0A2B
2
0I2I 4

1 H + 2α0A0B
2
1I2I 4

1 H − 2α0A1B0B1I2I 4
1 H + 8α1A2B

2
0I 4

2 I1H −A2B
2
0I2I3I1

+ 2α1A0B
2
1I 4

2 I1H − 2α1A1B0B1I 4
2 I1H + α2A

2
1B0I 3

1 + 2α2A0A2B0I 3
1 −A0B

2
1I2I3I1

+ 2α2A0A1B1I 3
1 + α3A

2
1B0I 3

2 + 2α3A0A2B0I 3
2 + 2α3A0A1B1I 3

2 − 2A1B0B1I2I3I1 = 0,

Eq7 : α0A1B
2
0I2I 4

1 G 2 − α0A0B0B1I2I 4
1 G 2 + α1A1B

2
0I 4

2 I1G 2 − α1A0B0B1I 4
2 I1G 2 + α2A

2
0B1I 3

1

+ 6α0A2B
2
0I2I 4

1 G H + 3α0A0B
2
1I2I 4

1 G H − 3α0A1B0B1I2I 4
1 G H + 6α1A2B

2
0I 4

2 I1G H

+ 3α1A0B
2
1I 4

2 I1G H − 3α1A1B0B1I 4
2 I1G H + 6α0A3B

2
0I2I 4

1 H 2 + 6α1A3B
2
0I 4

2 I1H 2

+ 2α0A1B
2
0I2I 4

1 H − 2α0A0B0B1I2I 4
1 H + 2α1A1B

2
0I 4

2 I1H − 2α1A0B0B1I 4
2 I1H

+ 2α2A0A1B0I 3
1 + 2α3A0A1B0I 3

2 + α3A
2
0B1I 3

2 −A1B
2
0I2I3I1 − 2A0B0B1I2I3I1 = 0,

Eq8 : α0A1B
2
0I2I 4

1 G H − α0A0B0B1I2I 4
1 G H + α1A1B

2
0I 4

2 I1G H + 2α1A2B
2
0I 4

2 I1H 2 + α2A
2
0B0I 3

1

+ 2α0A2B
2
0I2I 4

1 H 2 + 2α0A0B
2
1I2I 4

1 H 2 − 2α0A1B0B1I2I 4
1 H 2 −A0B

2
0I2I3I1

+ 2α1A0B
2
1I 4

2 I1H 2 − 2α1A1B0B1I 4
2 I1H 2 + α3A

2
0B0I 3

2 − α1A0B0B1I 4
2 I1G H = 0,



(22)

The following cases are produced by solving the previously acquired system:
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CASE 1. The following is a list of the obtained coefficients:

A0 =
H (A1 −A3H )

G
;I3 =

(
α0I

3
1 + α1I

3
2

)(
G 2 − 4H

)
;

B0 =
B1(A1 −A3H )

A3G
;A2 =

A3

(
G 2 − H

)
+A1

G
;

α3 = −
I1

(
α2A3I 2

1 + 6B1I2

(
α0I 3

1 + α1I 3
2

))
A3I 3

2

.

(23)

Using parameters Equation (23), based on the provided solutions Equations (7)–(11) for the described Equation
(6) one obtains the following sub-cases for the solution of the offered model (1)

Case 1.1. The following solution to Equation (1) is obtained using Equations (23) and (7) together.

u1,1 =
A3H

(
4H − G 2

)
B1

(
A sinh

(
1
2 (℘+ Q)A

)
+ G cosh

(
1
2 (℘+ Q)A

))2 , (24)

where A =
√

G 2 − 4H , Q = I1x + I2y − I3t. Graphs of the bright soliton solutions to (24) are shown in
Figures 1 and 2, where: ℘ = 2

3 ;G = 3
2 ;H = 1

4 ;A3 = − 2
3 ;B1 = 1

3 ;I1 = − 2
3 ;I2 = 1

2 ;α1 = 5
6 ;α0 = 2

3 ; y = 5
3 .

(a) Real part of {u1,1} in 3-dimensions

-20 -10 0 10 20
0

10

20

30

40

x

t

Re[u1,1 ]

1

2

3

4

5

(b) Real part of {u1,1} with contour surface

Figure 1. Three-dimension and contour surface plot of (24), where −20 ≤ x ≤ 20, 0 ≤ t ≤ 40.

(a) Three dimensional revolving plot of
{u1,1}

-20 -10 10 20
x

2

4

6

8

Re[u1,1 ]

t=1

t= 7
2

t= 11
2

t= 25
2

(b) Two dimensional time-evolution graphs
of {u1,1}

Figure 2. Three dimensional revolving plot and 2D time evolution graph of (24) where −20 ≤ x ≤ 20, time values
are given in the legend.
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Case 1.2. The following solution to Equation (1) is obtained using Equations (23) and (8) together.

u1,2 =
A3H

(
4H − G 2

)
B1

(
G cos

(
1
2 (℘+ Q)A

)
−A sin

(
1
2 (℘+ Q)A

))2 , (25)

herein A =
√
4H − G 2, Q = I1x+ I2y − I3t. Solution (25), has been figured out as follows for the specific

parameters ℘ = 1
2 ;G = 1

2 ;H = 5
4 ;A3 = − 1

2 ;B1 = − 2
3 ;I1 = − 2

5 ;I2 = 1
2 ;α1 = 1

3 ;α0 = − 2
3 ; y = 1

2 . The
time-space evolution of the real part, where highly localized oscillations are represented by Figures 3 and 4.

(a) Real part of {u1,1} in 3-dimensions
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20

30

40

x

t

Re[u1,2 ]

100

200

300

400

(b) Real part of {u1,1} with contour surface

Figure 3. Three dimension and contour surface plot of (25), where −20 ≤ x ≤ 20, 0 ≤ t ≤ 40.

(a) Three-dimensional revolving plot of
{u1,2}

-20 -10 10 20
x

20

40

60

80

100

Re[u1,2 ]

t=1

t= 7
2

t= 15
2

t= 25
2

(b) Two-dimensional time-evolution graphs
of {u1,2}

Figure 4. Three-dimensional revolving plot and 2D time evolution graph of (25) where −20 ≤ x ≤ 20, time values
are given in the legend.

Case 1.3. The following solution to Equation (1) is obtained using Equations (23) and (9) together.

u1,3 =
A3G 2 csch2

(
1
2G
(
℘+ I1x+ I2y − G 2

(
α0I 3

1 + α1I 3
2

)
t
))

4B1
. (26)

Case 1.4. The following solution to Equation (1) is obtained using Equations (23) and (10) together.

u1,4 =
A3G 2

B1(G (℘+ I1x+ I2y) + 2)
2 . (27)

CASE 2. The following is a list of the obtained coefficients:
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A0 = A2H −
√
2H

√
A3

3B
2
1(α2I 3

1 + α3I 3
2 )(2A3H (α2I 3

1 + α3I 3
2 )− 3B1I1I2I3)

A3B1(α2I 3
1 + α3I 3

2 )
;

A1 =

√
2A2

√
A3

3B
2
1(α2I 3

1 + α3I 3
2 )(2A3H (α2I 3

1 + α3I 3
2 )− 3B1I1I2I3)

A2
3B1(α2I 3

1 + α3I 3
2 )

− 3A3H +
6B1I1I2I3

α2I 3
1 + α3I 3

2

;α1 = −
6α0I2I 4

1 +
A3(α2I 3

1 +α3I 3
2 )

B1

6I1I 4
2

;

G =

√
2
√
A3

3B
2
1(α2I 3

1 + α3I 3
2 )(2A3H (α2I 3

1 + α3I 3
2 )− 3B1I1I2I3)

A2
3B1(α2I 3

1 + α3I 3
2 )

;

B0 =
A2B1

A3
−

√
2
√
A3

3B
2
1(α2I 3

1 + α3I 3
2 )(2A3H (α2I 3

1 + α3I 3
2 )− 3B1I1I2I3)

A2
3(α2I 3

1 + α3I 3
2 )

.

(28)

The collected parameters Equation (28), based on the provided solutions Equations (7)–(11) for the specified
Equation (6) are producing the following sub-cases for the solution of the given model Equation (1):

Case 2.1. The following solution to Equation (1) is obtained using Equations (28) and (7) together.

u2,1 = −
3A3

3B
3
1I

2
1 I 2

2 I 2
3 H sech2

(√
3(℘+ Q)

√
− B1I1I2I3

2α2A3I 3
1 +2α3A3I 3

2

)
(
A−

√
3A3B2

1I1I2I3 tanh
(√

3(℘+ Q)
√
− B1I1I2I3

2α2A3I 3
1 +2α3A3I 3

2

))2 , (29)

here A =
√
− B1I1I2I3

A3(α2I 3
1 +α3I 3

2 )

√
A3

3B
2
1(α2I 3

1 + α3I 3
2 )(2A3H (α2I 3

1 + α3I 3
2 )− 3B1I1I2I3), and

Q = I1x+ I2y − I3t.

Case 2.2. The following solution to Equation (1) is obtained using Equations (28) and (8) together.

u2,2 =
H
(
A2

3B1 sec
2
(
1
2A(Q + ℘)

)(
G 2 cos(A(Q + ℘))−AG sin(A(Q + ℘)) + 4H

))
A3B2

1

(
G −A tan

(
1
2A(Q + ℘)

))2
−

BH
(
G −A tan

(
1
2A(Q + ℘)

))
A3B2

1

(
G −A tan

(
1
2A(Q + ℘)

))2 ,
(30)

here

B =
2
√
2
√
A3

3B
2
1(α2I 3

1 + α3I 3
2 )(2A3H (α2I 3

1 + α3I 3
2 )− 3B1I1I2I3)

α2I 3
1 + α3I 3

2

, A =
√
4H − G 2

and Q = I1x + I2y − I3t. Given solution in (30) are plotted in the follows where ℘ = 2
3 ;H = − 1

2 ;A3 =

− 1
2 ;B1 = − 2

3 ;I1 = − 1
5 ;I2 = 1

6 ;I3 = 1
4 ;α2 = 1

4 ;α3 = − 2
5 ; y = 1

2 . Here, we obtained the periodic traveling
wave solutions represented by Figures 5 and 6.
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(a) Imaginary part of {u2,2} in 3-
dimensions

(b) Real part of {u2,2} in 3-dimensions

Figure 5. Three-dimensional figures of (30), where −20 ≤ x ≤ 20, 0 ≤ t ≤ 20.
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(a) Imaginary part of {u2,2} in 2-
dimensions
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(b) Real part of {u2,2} in 2-dimensions

Figure 6. Two-dimensional time evolution graphs of (30) where −20 ≤ x ≤ 20, and time values are given in the
legend.

Case 2.3. The following solution to Equation (1) is obtained using Equations (28) and (9) together.

u2,3 =

3I1I2I3 csc
2

(√
3
2

√
B1

√
I1

√
I2

√
I3(℘−I3t+I1x+I2y)

√
A3

√
α2I 3

1 +α3I 3
2

)
2(α2I 3

1 + α3I 3
2 )

. (31)

CASE 3. The following is a list of the obtained coefficients:

A1 =
A3

(
B1G 2 + 6B0G + 2B1H

)
6B1

;A2 =
A3(B1G +B0)

B1
;

A0 =
A3B0

(
G 2 + 2H

)
6B1

;I3 =
A3

(
α2I 3

1 + α3I 3
2

)(
G 2 − 4H

)
6B1I1I2

;

α0 =
−α3A3I 3

2 − α2A3I 3
1 − 6α1B1I1I 4

2

6B1I 4
1 I2

.

(32)

Specified coefficients Equation (32) furthermore to utilizing provided solutions Equations (7)–(11) for the known
Equation (6) produce the following sub-cases, which includes the solution of the given model Equation (1).

Case 3.1. When performing Equation (32) furthermore with Equation (7) the result is the following solution
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for Equation (1).

u3,1 =
A2A3 sech

2
(
1
2A(℘+ Q)

)((
G 2 − 2H

)
cosh(A(℘+ Q))− 4H

)
6B1

(
A tanh

(
1
2A(℘+ Q)

)
+ G

)2
+

A3A3G sinh(A(℘+ Q)) sech2
(
1
2A(℘+ Q)

)
6B1

(
A tanh

(
1
2A(℘+ Q)

)
+ G

)2 .

(33)

here A =
√

G 2 − 4H , and Q = I1x+ I2y − I3t.

Case 3.2. When performing Equation (32) furthermore with Equation (8) the result is the following solution
for Equation (1).

u3,2 =
A3

(
G 2 − 4H

)
sec2

(
1
2A(Q + ℘)

)((
G 2 − 2H

)
cos(A(Q + ℘))− 4H

)
6B1

(
G −A tan

(
1
2A(Q + ℘)

))2
−

AA3G
(
G 2 − 4H

)
sin(A(Q + ℘)) sec2

(
1
2A(Q + ℘)

)
6B1

(
G −A tan

(
1
2A(Q + ℘)

))2 ,

(34)

where A =
√
4H − G 2, Q = I1x+ I2y − I3t.

Case 3.3. When performing Equation (32) furthermore with Equation (9) the result is the following solution
for Equation (1).

u3,3 =

A3G 2

(
3csch2

(
1
2G

(
−A3G 2t(α2I 3

1 +α3I 3
2 )

6B1I1I2
+ ℘+ I1x+ I2y

))
+ 2

)
12B1

. (35)

Case 3.4. When performing Equation (32) furthermore with Equation (10) the result is the following solution
for Equation (1).

u3,4 =
A3G 2

B1(G (℘+ I1x+ I2y) + 2)
2 . (36)

Case 3.5. When performing Equation (32) furthermore with Equation (11) the result is the following solution
for Equation (1).

u3,5 =
A3

B1(℘+ I1x+ I2y)
2 . (37)

Remark 3. We omitted the graphs of the offered solutions in Equations (33)–(37) as they have the same appearance
as the graphs in the preceding sub-cases.

3.2. Application of ERSCM to the (2+1)-Dimensional Novikov-Veselov System

In this subsection, the extended rational sin− cos method is applied to the nonlinear (2+1)-dimensional
Novikov-Veselov system. The various forms of this model have been explored using numerous analytic approaches;
we have listed several in the literature. To start solving Equation (17) , make the assumption that solutions to the
researched model have the following form:

U(Q) =
γ0 sin(H Q)

γ1 cos(H Q) + γ2
, cos(H Q) ̸= −γ2

γ1
, (38)

where γ0, γ1, γ2 are parameters to be determined and H is a non-zero wave number. Here should be γ0 ̸=
0, and γ2

1 + γ2
2 ̸= 0. Take the derivatives of the assumed solution Equation (38), one immediately gets

U ′(Q) =
γ0H (γ2 cos(H Q) + γ1)

(γ1 cos(H Q) + γ2)
2 , (39)
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and

U ′′(Q) =
γ0H 2 sin(H Q)

(
γ2γ1 cos(H Q) + 2γ2

1 − γ2
2

)
(γ1 cos(H Q) + γ2)

3 . (40)

Installing Equations (38)–(40) into Equation (17), one gets the following:

2α0γ
2
1I2I

4
1 H 2 + α2γ0γ2I

3
1 sin(H Q) + α2γ0γ1I

3
1 sin(H Q) cos(H Q)− γ2

2I1I3I2

+ α0γ1γ2I2I
4
1 H 2 cos(H Q)− H 2α0γ

2
2I2I

4
1 + α3γ0γ1I

3
2 sin(H Q) cos(H Q)

+ α1γ1γ2I1I
4
2 H 2 cos(H Q) + 2α1γ

2
1I1I

4
2 H 2 + α3γ0γ2I

3
2 sin(H Q)

− H 2α1γ
2
2I1I

4
2 − γ2

1I1I3I2 cos
2(H Q)− 2γ1γ2I1I3I2 cos(H Q) = 0.

(41)

In Equation (41) collecting all terms with the same powers of cosτ1(H Q) sinτ2(H Q) where τ1, τ2 = 0, 1, 2 and
equating coefficients of the same powers to zero gives a system of algebraic equations as follows:

sin0(H Q) cos2(H Q) : − γ2
1I1I2I3 = 0,

sin0(H Q) cos1(H Q) : α0γ1γ2I2I
4
1 H 2 + α1γ1γ2I

4
2 I1H

2

− 2γ1γ2I2I3I1 = 0,

sin1(H Q) cos0(H Q) : α2γ0γ1I
3
1 + α3γ0γ1I

3
2 = 0,

sin0(H Q) cos0(H Q) : − H 2α0γ
2
2I2I

4
1 − α1γ

2
2I 4

2 I1H
2

− γ2
2I2I3I1 = 0,

sin1(H Q) cos1(H Q) : α2γ0γ2I
3
1 + α3γ0γ2I

3
2 = 0.


(42)

Solving the system in Equation (42 ) by using some computer software packages, the following cases are obtained:
Case 1. The acquired coefficients in solving the related system Equation (42) are presented in the following:

α0 = 0;α2 = −α3I 3
2

I 3
1

;H = − i
√

I3
√
α1I

3/2
2

; γ1 = 0. (43)

By substituting (43) into Equation (38), the solution for Equation (1) is obtained as follows:

u1 = − iγ0
γ2

sinh

(√
I3(−I3t+ I1x+ I2y)

√
α1I

3/2
2

)
. (44)

Case 2. The acquired coefficients in solving the related system Equation (42) are presented in the following:

I2 =
3
√
−1 3

√
α2I1

3
√
α3

;I3 = − (α0α3 − α1α2)I 3
1 H 2

α3
; γ1 = 0. (45)

Subbing Equation (45) into Equation (38), the solution of Equation (1) is constructed as follows

u2 =
γ0
γ2

sin

(
H

(
(α0α3 − α1α2)I 3

1 H 2t

α3
+ I1x+

3
√
−1 3

√
α2I1y

3
√
α3

))
. (46)

The solution (44) has been plotted in the following where I1 = − 2
5 ;α0 = 2

5 ;α1 = 5
3 ;α2 = − 3

5 ;α3 = − 3
8 ; γ0 =

− 3
4 ; γ2 = 2

3 ;H = − 5
3 ; y = 5

8 .

Here, we present the periodic traveling wave solutions, which have been represented by Figures 7–9.
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(a) Im part of {u2} in 3-dimensions (b) Re part of {u2} in 3-dimensions

Figure 7. Three dimension plots of (46), where −10 ≤ x ≤ 10, 0 ≤ t ≤ 20.
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(b) Re part of {u2}

Figure 8. Contour surface graphs of (46) where −10 ≤ x ≤ 10, 0 ≤ t ≤ 20.
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Figure 9. Two-dimensional temporal-evolution graphs of (46) where −10 ≤ x ≤ 10 , and given t values in the
legend.

Figure 10 illustrates the complex structure of the wave field in one dimension, highlighting its circular
symmetry and revealing the amplitude and phase distributions at a specific time.
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(a) Im part of (46) (b) Re part of (46)

Figure 10. Three dimensional revolution plots of (46) for t = 1, −10 ≤ x ≤ 10.

Case 3. The acquired coefficients in solving the related system Equation (42) are presented in the following:

γ1 = 0;α3 = −α2I 3
1

I 3
2

;H =

√
I3√

−α0I 3
1 − α1I 3

2

. (47)

Plugging Equation (47) into Equation (38), the solution of Equation (1) is obtained as follows:

u3 =
γ0
γ2

sin

(√
I3(−I3t+ I1x+ I2y)√

−α0I 3
1 − α1I 3

2

)
. (48)

Remark 4. Through similar previous arguments and by supposing the following formulation of the solution:

U(Q) =
γ0 cos(H Q)

γ2 + γ1 sin(H Q)
, sin(H Q) ̸= −γ2

γ1
,

where γi for i = 0, 1, 2 are parameters and H is a non-zero wave number, someone else obtains other solutions
for Equation (1).

4. Conclusions

In this work, the third-order nonlinear (2+1)-dimensional Novikov-Veselov system of equations with constant
coefficients has been explored utilizing the extended rational sin− cos approach and the modified exponential
function method as two reliable and trustworthy techniques for solving nonlinear systems analytically. The major
purpose is to acquire particular, absolutely exact traveling waves, periodic waves, and soliton solutions. In that they
shed light on the important features of the physical phenomena, the provided solutions are both new and substantial.
The resultant solutions are written as a variety of trigonometric functions, including hyperbolic trigonometric
functions, exponential functions, and rational functions. The qualities of the solutions have been shown in a diversity
of forms, including two- and three-dimensional ones. All of the generated solutions have been confirmed by
substituting them back into relevant equations using efficient technologies in software programming packages. The
specified values for the free parameters have a major impact on molding the mechanical and physical properties of
the produced solutions.

Bright soliton solutions are achieved in Figures 1 and 2. The time-space evolution of the real part, where highly
localized oscillations are represented by Figures 3 and 4. Using two distinct methodologies, we found periodic
traveling wave solutions by comparing Figures 5 and 6 with Figures 7–9. Figure 10 illustrates the complex structure
of a wave field along one spatial dimension, with circular symmetry in the cross-section, offering insight into its
amplitude and phase distribution at a fixed time.

The outcomes indicate that the employed methodologies are straightforward and appropriate for application
to other mathematical, physical, and engineering models. Moreover, for the best optical observations of the
physical characteristics of the generated solutions, the efficacy of the temporal evolution has been illustrated by
two-dimensional graphs.
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