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Abstract: In the era of information overload, various types of information intercon-
nect to form complex networks. To better manage diffusion paths within networks,
we propose predicting information transmissibility—the probability of information
being transmitted under the influence of other information in the network. Accurate
transmissibility prediction has practical applications in recommendation systems and
misinformation control, enabling relevant information to reach appropriate audiences
while curbing the spread of less useful content. Given the characteristics of infor-
mation networks, text-attributed graphs provide a natural representation that captures
both network structure and content semantics. However, existing text-attributed graph
representation methods fail to capture diffusion dynamics and incur high computa-
tional costs. Therefore, we propose a novel efficient textual-graph model, Language
Temporal Variation Graph Network(LTVGN), to predict transmissibility by capturing
time-varying features, structural information and textual information. Our proposed
model is evaluated on the citation dataset HEP-TH. The results demonstrate that our
model outperforms state-of-the-art models, achieving a low estimation error.
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1. Introduction

Complex information networks, formed by interconnected entities such as social media posts, are the foundation
of modern information propagation. Understanding the underlying structure of these networks is essential for tasks
ranging from targeted recommendations to misinformation control. In the realm of social influence studies, the
classic problem of influence spread estimation focuses on quantifying the aggregate reach of a seed set [1]. Yet,
this macroscopic perspective fails to capture entity-specific transmission dynamics, limiting its utility in scenarios
that demand granular precision. For example, effectively managing a marketing campaign or curbing a rumor
requires knowing not just how many nodes are influenced, but the specific probability that a particular post will be
transmitted. Consequently, we propose predicting information transmissibility—a method to calculate the likelihood
of transmission for individual entities under the influence of seed nodes [2]. This shift to entity-level prediction
is pivotal for optimizing information flow, providing the necessary granularity to strategically amplify desirable
content and effectively dampen the reach of undesirable material.

Existing research on influence estimation from an entity perspective primarily focuses on predicting suscepti-
bility—the probability of a user being influenced within a social network [3,4]. Pioneering works such as DeepIS [3]
established susceptibility prediction in static networks, while subsequent frameworks like DySuse [4] extended
these capabilities to dynamic settings. However, these studies overlook a critical factor in diffusion dynamics:
information content. Empirical evidence demonstrates that textual characteristics (e.g., sentiment [5], topic [6],
and linguistic style [7]) are primary drivers of propagation in real-world scenarios, such as the virality of health
messages or the spread of product opinions. Hence, there is a pressing need to develop models that incorporate both
network structure and textual content to capture the complex mechanisms driving information diffusion. With the
integration of textual content, information networks can be structured as text-attributed graphs [8], where nodes
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represent information items with textual content and edges denote connections (e.g., retweets) between items, with
weights signifying influence strength. Existing approaches model these text-attributed graphs using a cascaded
LLM-GNN architecture [8], where language models first embed each node’s textual information as node repre-
sentations, after which graph neural networks learn structural patterns based on these representations. While this
integration leverages the strengths of both components, it combines numerous parameters, resulting in a significant
computational burden and creating an inevitable trade-off between computational efficiency and model performance.
Furthermore, current LLM-GNN models inadequately capture diffusion dynamics and temporal information that are
crucial for understanding information spread. Therefore, we propose Language Temporal Variation Graph Network
(LTVGN), a lightweight temporal-aware framework that effectively captures diffusion dynamics without sacrificing
model performance.

Specifically, LTVGN is designed to efficiently learn temporal and structural characteristics through a multi-
stage process. To handle textual content, the framework first leverages ChatGPT-4o to extract key information, which
is subsequently encoded by BERT. This strategy significantly reduces computational costs by avoiding redundant
encoding of raw text. For temporal dynamics, one-hot seed vectors are multiplied with time-weighted adjacency
matrices to calculate node activation probabilities, which capture both temporal patterns and graph structure. At
the core of our architecture lies the Temporal-Spatial Transformer module, which incorporates positional encoding
and attention mechanisms to process the spatiotemporal relationships between nodes. Crucially, to ensure the
model remains lightweight, we implement Low-Rank Adaptation (LoRA) [9]. By decomposing weight updates
into low-rank matrices, LoRA dramatically reduces the number of trainable parameters while maintaining model
expressivity, resulting in faster convergence and lower memory requirements. Our contribution is summarized as
follows. To the best of our knowledge, this is the first work to propose a comprehensive framework for estimating
information transmissibility under the diffusion model paradigm. Unlike previous approaches that focus on either
network structure or content analysis, our model integrates both dimensions to capture the complex interplay
between textual content and network topology in driving information spread. To accurately estimate information
transmissibility during the diffusion dynamic, we propose LTVGN, a computationally efficient framework that
processes both temporal and structural information in text-attributed graphs.

2. Related Work

In this section, we discuss related work on influence spread estimation and text-attributed graph.

2.1. Influence Spread Estimation

Influence spread estimation is a classic problem that estimates the extent of influence from a specified seed set
within a network [1]. This fundamental research question has inspired investigations across various network scales.
At a fine-grained level, studies such as DeepIS [3] focus on entity-level influence dynamics to predict the probability
of individual users being influenced. While [4] extends this to dynamic networks by accounting for topological
and feature evolution, current approaches face two critical limitations. First, they predominantly ignore the role
of information content. Research in network analysis demonstrates that textual information, including emotional
tone [10, 11], thematic presentation [12], and verbal expression [7], serves as a primary driver of propagation,
determining which advisories or product evaluations gain widespread attention. Second, regarding structural
evolution, previous works often model general dynamic networks where nodes and edges appear or disappear.
However, many real-world social systems consist of stable participants with fluctuating relationship strengths. To
address these gaps, we propose a model that integrates textual content to estimate influence at an entity-specific
level. Furthermore, we specifically formulate the environment as a temporal network, characterized by a static node
set with time-varying edge weights, rather than a dynamic network [4]. This formulation more accurately captures
social environments where the community remains stable, but the intensity of interactions evolves over time.

2.2. Text-Attributed Graph

Our study models information networks as text-attributed graphs, where nodes represent information items
(e.g., social media posts) containing rich textual content, and weighted edges signify the influence strength between
them. To process such graphs, recent studies have introduced Large Language Models (LLMs) as encoders within
Graph Neural Networks (GNNs) [8]. These approaches typically adopt a cascaded architecture, where LLMs are
first employed to extract textual features, followed by GNNs to encode the graph structure. This architecture aims to
leverage the superior text understanding capabilities of LLMs to enhance node and edge representations within the
GNN framework. The standard pipeline operates as follows:
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xvi = LLM(dvi) (1)

hvi = GNN(X,G) (2)

where xvi denotes the textual feature vector of node vi, obtained by encoding the associated textual content dvi
via a Large Language Model (LLM). Subsequently, hvi represents the final node embedding generated by the
Graph Neural Network (GNN), which takes the feature matrix X = {xvi} and the graph structure G as input. This
architecture effectively integrates textual semantics with graph structure, producing representations suitable for
downstream tasks such as node classification and link prediction.

Large Language Models (LLMs) serve as powerful encoders that transform node-level textual information into
feature vectors, thereby equipping Graph Neural Networks (GNNs) with rich semantic representations. Current
integration approaches typically fall into two categories: one-step and two-step training [8]. One-step methods (e.g.,
TextGNN, AdsGNN) implement end-to-end joint training of LLMs and GNNs. While conceptually simple, this
approach faces significant hurdles: the substantial memory demands restrict neighbor sampling, thereby limiting
structural awareness, and joint optimization often risks convergence to suboptimal solutions. Conversely, two-step
training (e.g., SimTeG [13]) decouples the process by adapting LLMs to the graph structure before fixing their
parameters for GNN training. Although this staged optimization improves textual feature quality, it incurs higher
computational costs. Beyond these architectural trade-offs, a critical limitation persists across both paradigms:
existing models typically treat graphs as static snapshots, failing to capture the dynamic nature of information
propagation and the evolving influence relationships between nodes. To address this, we propose LTVGN, a novel
framework that not only optimizes the fusion of textual and structural information but also effectively models the
temporal interactions between entities.

3. System Model

In this section, we introduce diffusion models and formally define our prediction problem. While research
on information diffusion has yielded various mathematical frameworks, we focus on the Independent Cascade
(IC) model [14] due to its principled formalization of stochastic spreading processes. The IC model characterizes
diffusion as a probabilistic process wherein activated nodes independently influence their neighbors based on
transmission probabilities assigned to the connecting edges. We adopt this well-established model as our foundation,
as it effectively captures the stochastic nature of information transmission while remaining computationally tractable.
Building upon this, we then provide a formal definition of the prediction problem, outlining the mathematical
objectives for estimating transmission dynamics within text-attributed temporal networks.

Before formulating the problem, we introduce the concept of influence probability. Within an information
network, this metric quantifies the likelihood that one information entity will influence another, serving as a proxy
for interaction strength. Crucially, this probability is dynamic rather than static. For instance, consider two social
media posts, A and B. Initially, they may exhibit a weak relationship based solely on semantic similarity. However,
if observations reveal that users engaging with post A subsequently share post B, the influence probability increases
significantly. By accounting for these temporal dynamics, our framework accurately captures the evolution of
network relationships.

The symbols used in this paper are detailed in Table 1.

Table 1. Symbols in the article.

Symbol Description

G Information network
V Node (information entity) set of G
E Edge set of G
C Text set of G
ptij Influence probability from i to j at time t

Pt Influence strength matrix at time t

S Seed node (information entity) set
vi, vj Nodes (information entities)
D An instance of diffusion process

ItS,D(vi|C) The state of vi given S,D at t, conditioned on C

δtS(vi|C) Information transmissibility of vi given S at t, conditioned on C
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3.1. Independent Cascade Model

In this study, we consider a graph G = (V,E,C), where V , E, and C represent the node set, edge set,
and text set, respectively. Each node vi ∈ V is associated with textual information cvi ∈ C, which captures the
semantic content of the information entity. To model temporal dynamics, each directed edge eij = (vi, vj) ∈ E is
assigned a time-varying weight ptij . This weight represents the influence probability—the likelihood that node vi
will successfully activate node vj at timestep t. The diffusion process follows the Independent Cascade (IC) model
logic. It begins with a predefined set of seed nodes S activated at timestep t = 0. At each subsequent timestep t > 0,
every node vi that was newly activated at timestep t − 1 has a single opportunity to activate each of its inactive
out-neighbors vj , with success determined by the probability ptij . Once activated, nodes remain active indefinitely.
The process terminates when no new nodes are activated.

3.2. The Transmissibility Prediction Problem

Diffusion processes are inherently stochastic and dependent on both the seed set S and the textual content C.
We model the propagation dynamics using a time-dependent influence strength matrix Pt, where each entry ptij
reflects the probability of node vi activating vj at time t, conditioned on the semantic relevance between cvi and cvj .
Let D denote an instance of the diffusion process initiated by S. For a given instance D, let ItS,D(vi | C) ∈ {0, 1}
represent the activation state of node vi at time t. Our primary objective is to estimate the transmissibility δtS(vi | C)

of node vi under seed set S at time t, defined as the expectation:

δtS(vi | C) = ED∼p(D|C)[I
t
S,D(vi | C)] (3)

where p(D | C) denotes the probability distribution over the space of possible diffusion instances, conditioned on
the textual content C.

4. LTVGN Model

Our model consists of four modules (Figure 1): (1) a feature construction module that derives upper-bound
activation probabilities for each entity across timesteps while encoding network structure; (2) a language module that
extracts entity-specific semantic features; (3) a Temporal-Spatial Transformer designed to jointly capture temporal
dynamics and structural dependencies; and (4) a diffusion propagation module that infers entity transmissibility by
aggregating neighborhood information. Collectively, these components enable comprehensive modeling (Algorithm 1)
of information propagation by integrating structural, semantic, temporal, and spatial aspects.
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Figure 1. LTVGN structure.
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Algorithm 1 LTVGN - Language Temporal Variation Graph Network

Require: Graph G = (V,E,C), Seed set S, Influence strength matrix Pt, Time step t, In-Neighbors N(vi) of
node vi

Ensure: Node transmissibility predictions δtS(vi|C)

Feature Construction Module
1: Initialize seed vector x where x[i] = 1 if vi ∈ S, else 0

2: Construct feature matrix: X = [x, PT
1 x, PT

1 PT
2 x, . . .]

Language Module
3: for each node vi ∈ V do
4: Extract keywords: kvi = LLM(cvi , system prompt)
5: Encode textual features: hi = Linear(BERT(Kvi))

6: end for

Temporal-Spatial Transformer Module
1. Temporal Encoding

7: Xemb ← LoRAproj(X) + PosEncoding
8: Htemporal ← TemporalTransformer(Xemb)

9: Znode ← MeanPooling(Htemporal) ▷ Aggregate over time dimension
2. Spatial Dependency Modeling

10: Zspatial ← Znode + Espatial ▷ Add node identity
11: Hspatial ← SpatialTransformer(Zspatial)

3. Regressor
12: ŷ ← LoRAreg(Hspatial)

Feature Fusion
13: Combine features: Zcombined = Concat(hi, ŷi)

14: Generate coarse predictions: ŷ = LoRA(Zcombined)

Diffusion Propagation Module
15: for each non-seed node vi ∈ V \ S do
16: δ̃tvi = 1−

∏
j∈N(vi)

(1− P t
jiδ̃

t
vj )

17: end for

Training
18: Compute MAE loss and update parameters via backpropagation
19: return Transmissibility predictions δtS(vi|C)

4.1. Feature Construction

This module constructs the necessary features. Seed set is one of the most important factors, as information
transmission is dependent on seed nodes. Formally, we represent the seed nodes using a multi-hot vector x, where
x[i] = 1 if node i ∈ S, and x[i] = 0 otherwise. Another key factor is the influence strength matrix Pt, which
preserves the graph’s topology and the influence probability between any two nodes at timestep t. According to
DeepIS [3], these two factors are sufficient for accurate prediction. Therefore, we use them to form the feature matrix.

X = [x, PT
1 x, PT

1 PT
2 x, PT

1 PT
2 PT

3 x, . . . , PT
1 PT

2 PT
3 . . . PT

t x] (4)

PT
1 PT

2 PT
3 . . . PT

t x represents the upper bound of the activation probability for all nodes within t timesteps
under the Independent Cascade (IC) model [15]. These values serve as upper bounds because standard matrix
multiplication sums probabilities across all propagation paths independently. Consequently, this method does
not account for the mutual exclusivity of activation events (i.e., a node cannot be activated twice), leading to an
overestimation when multiple paths converge on the same node.
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4.2. Language Module

To capture the semantic information of each information entity, we leverage large language models (LLMs) to
extract keywords from textual content via prompt engineering, rather than directly embedding the entire text. These
extracted keywords are then encoded into dense vector representations using BERT. This keyword-focused approach
significantly reduces computational overhead and memory consumption while preserving semantic fidelity.

The inputs of the LLM LLM(·) are the system prompt sp and textual content cvi . System prompt sp is a
predefined instruction that guides the LLM to generate task-specific outputs [16]. In citation network, we define the
system prompt as: Please read the abstract and summarize it using 5 keywords. Then, the key information kvi of
node vi is extracted as:

kvi
= LLM(cvi , sp) (5)

Given the keywords Kvi = k1vi , k
2
vi , . . . , k

5
vi extracted for node vi, we employ a pre-trained BERT model

followed by a projection layer to obtain the final semantic embedding:

hi = Linear(BERT(Kvi)) (6)

where BERT(·) encodes the keywords into a 768-dimensional vector, and Linear(·) maps this output to the
desired embedding dimension.

4.3. Temporal-Spatial Transformer

Our Temporal-Spatial Transformer processes spatiotemporal data through a hierarchical encoding scheme
designed to capture both temporal evolution and spatial dependencies. Given input X ∈ RB×N×T , where B is the
batch size, N = 27,400 is the number of nodes, and T is the number of historical timesteps, the model operates
in three stages: (1) temporal encoding, which extracts temporal patterns for each node independently; (2) spatial
encoding, which captures spatial interaction patterns among nodes; and (3)a regression head, which makes coarse
node-level predictions.

4.3.1. LoRA Linear Layer

To enable parameter-efficient fine-tuning, we employ Low-Rank Adaptation (LoRA) [9]. Given a pre-trained,
frozen weight matrix W ∈ Rdout×din , LoRA introduces a trainable low-rank update ∆W = BA. Here, the matrices
are defined as B ∈ Rdout×r and A ∈ Rr×din , where the rank r satisfies r ≪ min(dout, din). For an input x, the
modified forward pass is defined as:

LoRA(x;W,B,A) = Wx+
α

r
BAx (7)

where α is a scaling hyperparameter. During training, W remains fixed, and only the low-rank matrices A and B

are optimized.
To ensure that the model behavior remains unchanged at the beginning of training (i.e., ∆W = 0), we initialize

A using Kaiming uniform initialization [17] and set B to zero. This approach significantly reduces the number of
trainable parameters from dout × din to r(dout + din). In our implementation, we apply LoRA with a rank of r = 4

and a scaling factor of α = 1 to all linear transformations within the model, including projection layers, attention
mechanisms, and feed-forward networks. This uniform application ensures architectural consistency and facilitates
efficient adaptation in future fine-tuning scenarios.

4.3.2. Temporal Encoding

The temporal encoding module processes T time steps for each node in the information network to extract
temporal dynamics. We employ a Transformer-based encoder that captures both short-term fluctuations (step-to-step
variations) and longer-term trends (multi-step patterns) through self-attention across all time steps.

Value Projection and Scaling

Each scalar time step value is first projected into a higher-dimensional space to enable rich feature learning.
We employ a LoRA-adapted linear projection:

Xproj =
√
dmodel · LoRA(X;W,A,B) (8)
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The scaling factor
√
dmodel is used to control the magnitude of the projected features, so that their scale is com-

parable to that of the subsequent positional encodings. This helps maintain a balanced contribution of input features
and positional information in the input representation, consistent with standard Transformer architectures [18].

Sinusoidal Positional Encoding

Since a vanilla Transformer encoder does not encode sequence order by itself, we inject temporal ordering
information via sinusoidal positional encodings [18]:

PE(t, 2i) = sin

(
t

100002i/dmodel

)
, PE(t, 2i+ 1) = cos

(
t

100002i/dmodel

)
(9)

where t ∈ {0, 1, . . . , T − 1} is the time-step index and i ∈ {0, 1, . . . , dmodel/2− 1} is the dimension index. The
temporal encoded input is then obtained as

H
(0)
temporal = Dropout(Xproj + PE) (10)

Temporal Transformer Layers

Two Transformer encoder layers process the temporal sequence to capture dependencies across time steps:

H
(ℓ)
temporal = TransformerLayerℓ(H

(ℓ−1)
temporal), ℓ ∈ {1, 2} (11)

For each Transformer encoder layer, a multi-head self-attention mechanism is used to capture dependencies
across different positions in the input sequence, followed by a feed-forward network to enhance feature representation.
Residual connections and layer normalization are applied after each sub-layer to ensure training stability and facilitate
gradient flow.

Temporal Pooling

Following the Transformer layers, we aggregate the temporal information using mean pooling:

znode =
1

T

T∑
t=1

H
(2)
temporal[:, t, :] ∈ RB×N×dmodel (12)

This operation distills the sequence into a single vector per node, summarizing its behavior over the T -step
history. We select mean pooling over max pooling or last-step selection to ensure that information from all time
steps contributes equally to the final representation. This is particularly crucial for capturing temporal patterns that
are distributed across the entire temporal window rather than localized to specific moments.

4.3.3. Spatial Encoding

Following temporal encoding that generates the initial node representations, we model spatial interactions
among the N = 27,400 nodes using spatial Transformer layers. This stage is critical for capturing dependencies
across spatially distributed locations.

Spatial Positional Embedding

Since our spatial nodes lack explicit geometric coordinates (e.g., latitude/longitude), we use learnable positional
embeddings to provide spatial context:

Hspatial = znode + Espatial (13)

where Espatial ∈ R1×N×dmodel is a trainable parameter. These embeddings are learned during training to encode the
implicit spatial structure in the data, allowing the model to discover which nodes are functionally related even
without explicit distance metrics.

Spatial Transformer Layers

We model spatial interactions using two Transformer encoder layers, configured with 2 attention heads and a
feed-forward dimension of 32:

H
(ℓ)
spatial = TransformerLayerℓ(H

(ℓ−1)
spatial ), ℓ ∈ {1, 2} (14)
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In each layer, the multi-head attention mechanism enables the model to capture diverse spatial interaction
patterns simultaneously. By leveraging self-attention, this component identifies content-based similarities between
nodes based on learned feature patterns rather than predefined connections, thereby uncovering implicit relationships.
Concurrently, it extracts distributed global patterns across the node feature space while learning to assign differential
importance to nodes based on their predictive value. Most notably, this mechanism synthesizes new insights from
node combinations, revealing higher-order relationships that remain invisible when examining nodes in isolation.

4.3.4. Regression Head

After spatial encoding, we apply a two-layer MLP independently to each node to generate predictions:

hi = Dropout
(

ReLU
(
LoRA(H

(2)
spatial,i;Whidden, Bhidden, Ahidden)

))
(15)

ŷi = LoRA(hi;Wout, Bout, Aout) (16)

where Whidden ∈ Rdmodel×(dmodel/2) compresses the spatial feature representation, and Wout ∈ R(dmodel/2)×1 maps the
hidden state to a scalar prediction. Both layers incorporate LoRA adapters to enable parameter-efficient learning.
The subscript i ∈ {1, . . . , N} indexes the nodes. This design allows node-specific predictions while sharing learned
spatial patterns across all nodes. The output ŷ ∈ RN×1 contains predictions for all 27,400 nodes simultaneously.

4.4. Fusion Module

The fused representation is then processed by a two-layer network, where both layers are equipped with LoRA
adapters to enable parameter-efficient transformation:

Zcombined = Concat(hi, ŷi) (17)

The fusion mechanism processes this combined representation through a two-layer network with LoRA
adaptation for making predictions:

Zmiddle = ReLU(LoRA(Zcombined;W1, B1, A1)) (18)

ŷ = LoRA(Zmiddle;W2, B2, A2) (19)

where the LoRA function is defined in Equation (7).

4.5. Diffusion propogation

This module aggregates neighbor information to make fine-grained predictions. Following [3], we employ the
approximate stationary distribution δ̃ under the IC model. For each node vi, we consider the sub-network formed by
its in-neighbors N(vi), the set of nodes capable of activating vi. Aggregating influence from these sub-networks
allows for a precise estimation of activation timing. The transmissibility is calculated as:

δ̃tvi = 1−
∏

j∈N(vi)

(1− P t
jiδ̃

t
vj ) (20)

where δ̃tvi represents the transmissibility of node vi at timestep t, and P t
ji denotes the influence probability from

neighbor vj to vi.
In practice, the exact computation of Equation (20) requires enumerating all possible propagation paths

from seed nodes, which has exponential complexity. We therefore adopt an efficient approximation using the
static influence matrix initialized at t = 0, leveraging the empirical observation that influence probabilities remain
relatively stable within short propagation windows. This preserves accuracy while ensuring scalability. By definition,
seed nodes are assigned δ̃t = 1 and bypass this aggregation process.

4.6. Training

We adopt the mean absolute error (MAE) as the loss function for the node-level regression task.

LMAE =
1

M

M∑
m=1

1

| V |

|V |∑
i=1

| ŷm(i)− ym(i) | (21)
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5. Evaluation

5.1. Datasets

We use HEP–TH (high energy physics theory) citation network [19]. We follow previous studies [3,4] to use
the largest component network consisting of 27,400 articles and 352,542 citation links.

5.2. Data Preparation

In this section, we detail the data preparation process for computing ground truth labels and the splitting
strategy for model training and evaluation.

Due to the unavailability of explicit time-varying influence probabilities in real-world scenarios, we follow
established practices from prior literature. We initialize the influence probability at timestep t = 0 based on
the cosine similarity between article embeddings. To capture the temporal dynamics of influence, we model the
probability at subsequent timesteps using an exponential decay function:

P (t) = P0e
−αt (22)

where P (t) represents the influence probability at timestep t, and P0 = P (0) is the initial influence probability
derived from semantic similarity. α is the decay constant. We set α to ensure the influence probability decays
gradually over a reasonable time horizon, reflecting the diminishing impact of information over time in citation networks.

Ground truth. To simulate the information diffusion process, we employ the Independent Cascade (IC) model
with varying initial conditions. We define seed sets with sizes ranging from 100 to 1000 nodes. For each simulation
instance, nodes are randomly selected to form the initial seed set that triggers the diffusion.

The propagation follows a stochastic mechanism wherein each newly activated node attempts to activate
its inactive neighbors. This activation is determined by comparing the time-varying influence probability of the
neighbor at the current timestep against a randomly generated threshold drawn from a uniform distribution [0, 1]. A
neighbor is successfully activated (labeled as 1) if the influence probability exceeds this threshold; otherwise, it
remains inactive (labeled as 0).

Given the inherent randomness of the IC model, we utilize Monte Carlo simulations to ensure statistical
robustness. We repeat the diffusion process 1000 times for each configuration and average the results to compute
the final transmissibility score for every node. Consequently, the ground-truth dataset consists of a seed vector, a
multi-hot vector indicating the seed nodes (1 for seed nodes, 0 otherwise), and the corresponding transmissibility
value for each node.

Data splitting. For all diffusion instances, we randomly sample 80% as training data, 10% as validation data,
and 10% as test data.

5.3. Baselines

In this section, we introduce the baseline models employed to establish performance benchmarks for our study.
As our model performs node-level regression, we compare it against several established graph neural networks and
a specialized influence estimation model.

GCN [20]: The Graph Convolutional Network aggregates information from a node and its neighbors using a
normalized averaging mechanism, allowing for the smoothing of features across the graph structure. GraphSAGE [21]:
This inductive framework generates embeddings by sampling and aggregating features from a node’s local neighbor-
hood. Unlike GCN, GraphSAGE concatenates the node’s own features with the aggregated neighbor information,
explicitly distinguishing self-information from neighbor context. GAT [22]: Graph Attention Networks introduce
an attention mechanism that allows nodes to assign different importance weights to different neighbors. By learning
these attention coefficients, the model dynamically determines the contribution of each neighbor during aggregation,
resulting in more adaptive and context-aware representations. SGC [23]: Simplifying Graph Convolutional Net-
works reduces the complexity of traditional GCNs. It collapses the non-linearities between GCN layers, effectively
transforming the multi-layer non-linear model into a single linear transformation while retaining comparable
performance. DeepIS [3]: DeepIS is designed for influence estimation. It constructs a feature matrix combining
seed node vectors with fixed influence probabilities. This matrix is processed by a fully connected network for a
coarse estimation, followed by an aggregation of in-neighbor features for refinement. In our experimental setting,
we utilize the influence probabilities at timestep 0 to construct the input feature matrix, as the original DeepIS
architecture is designed for static influence probabilities.

To ensure a fair comparison, we equipped all baseline models with the same feature construction and language
modules used in our proposed LTVGN. This standardization ensures that all methods have access to identical
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information and that any observed performance differences are attributable solely to variations in model architecture
rather than discrepancies in feature extraction.

5.4. Implementation Details

To ensure fairness, all models operate on the feature matrix defined in Equation (1). Each baseline model uses
a 2-layer structure with 64 hidden units. Besides, the GAT model employs 4 attention heads.

Our TemporalSpatialTransformer module uses an embedding dimension of 16, substantially reduced from the
standard 256 dimensions typical in transformer architectures. This reduction balances computational efficiency with
model expressiveness for our large graph (27,400 nodes). The attention mechanism employs 2 heads across 2 encoder
layers, ensuring sufficient capacity to capture spatiotemporal dependencies while maintaining computational tractability.

For parameter efficiency, we integrate Low-Rank Adaptation (LoRA) with rank r = 4 and scaling factor
α = 1.0. LoRA is applied to all query, key, value, and output projection matrices within the transformer, achieving
significant parameter reduction without sacrificing expressiveness.

In language module, textual features are processed using the pre-trained bert-base-uncased model, which yields
768-dimensional representations. To mitigate the high cost of encoding raw text for 27,400 nodes, we implement a
two-stage approach: (1) we utilize GPT-4 to extract exactly five keywords per node via prompt engineering; (2)
these keywords are encoded by BERT and subsequently projected to 16 dimensions via a linear layer to match the
transformer’s embedding size.

5.5. Evaluation Metrics

Mean Absolute Error (MAE): The average of the absolute differences between the predicted ŷi and actual yi
transmissibility of each node, averaged over multiple instances M .

MAE =
1

M

M∑
m=1

1

| V |

|V |∑
i=1

| ŷm(i)− ym(i) | (23)

5.6. Result

Figure 2 shows the mean absolute error across all models. LTVGN consistently outperforms all baselines
across different seed sizes.

Figure 2. Mean Absolute Error of different models.

Traditional GNN-based methods (GCN, GraphSAGE, GAT, SGC) exhibit suboptimal performance because
they treat the sequential upper-bound probabilities at each timestep as independent features, thereby failing to
model essential temporal dependencies. Furthermore, their generic aggregation mechanisms (e.g., mean pooling,
concatenation, attention) are ill-suited for representing specific diffusion dynamics. While DeepIS outperforms these
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traditional GNNs by explicitly modeling diffusion characteristics—utilizing a two-layer fully connected network
and a propagation scheme that approximates stationary probabilities under the Independent Cascade model—it
remains limited by its inability to capture temporal dynamics or leverage textual semantics. Notably, performance
across all baseline methods degrades as the seed size increases, as larger seed sets generate complex diffusion
patterns that these models struggle to represent.

In contrast, LTVGN achieves a substantial performance gain, reducing the mean absolute error by an order
of magnitude compared to the baselines. This improvement is driven by three synergistic components: (1) the
TemporalSpatialTransformer, which effectively learns temporal dependencies from sequential upper-bound calcula-
tions while capturing spatial node relationships; (2) the language module, which incorporates node semantics that
correlate with diffusion propensity; and (3) a specialized diffusion propagation mechanism that refines predictions
by aggregating influence from neighbors. By unifying these elements, LTVGN successfully models the inherently
spatiotemporal and semantic nature of information diffusion, enabling it to capture complex propagation patterns
that static, structure-only methods cannot represent.

5.7. Ablation Study

To evaluate the contribution of key components in LTVGN, we conduct an ablation study comparing the full
model against two variants: one without diffusion propagation and one without the TemporalSpatialTransformer.
As shown in Figure 3a, the full LTVGN model demonstrates superior performance, maintaining the lowest Mean
Absolute Error across all seed sizes.

Figure 3. Mean Absolute Error of Ablation Study.

This visual gap is quantified in Figure 3b, which highlights the relative importance of each module. The
inclusion of Diffusion Propagation is shown to be foundational, yielding an average performance improvement of
98.9%. Meanwhile, the TST proves to be a significant enhancement, contributing an average improvement of 75.8%.

Figure 3c illustrates the scaling behavior analysis, utilizing linear regression to delineate the trends in prediction
error (log scale) relative to seed size across different model variants. The Full Model demonstrates superior
robustness, maintaining the lowest error baseline while exhibiting a high goodness-of-fit (R2 = 0.925) and the
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most gradual error growth rate (8.60× 10−4). In contrast, the variant without diffusion propagation (w/o Diffusion)
displays the steepest ascending slope (2.29×10−3), indicating that the diffusion component is critical for mitigating
error accumulation as data scale increases. Meanwhile, the removal of the Tempora-Spatial Transformer (w/o
TST) results in a consistently higher error plateau compared to the full model, despite a relatively stable slope
(1.03× 10−4).

5.8. Parameter Analysis

The parameter d defines the dimension of the feature vector constructed in the model’s first module. Specifically,
it corresponds to the timestep t considered in Equation (4) when tracking node activation by seed nodes. We
evaluated the model’s performance with d ∈ {3, 4, 5}. Figure 4 illustrates the impact of the feature dimension on
prediction error across varying seed set sizes.

Contrary to the intuition that longer sequences capture richer temporal information, our results indicate that
d = 3 consistently yields the lowest mean absolute error across all seed sizes. The error for d = 3 ranges from
8.38× 10−5 (at 100 seeds) to 1.78× 10−4 (at 1000 seeds). Interestingly, the performance does not degrade linearly
with dimension size; d = 5 ranks second (error ranging from 9.99× 10−5 to 2.26× 10−4), while d = 4 exhibits
significantly higher error rates (approximately 9.5× 10−4 to 1.02× 10−3).

These findings suggest that in our scenario, the most relevant information are concentrated within the first three
timesteps. Extending the feature dimension beyond this point appears to introduce noise rather than useful temporal
dependencies, potentially confusing the model. Furthermore, a smaller d offers advantages in computational
efficiency. Consequently, we selected d = 3 as the default value, as it provides the optimal balance between
predictive accuracy and computational cost.

Figure 4. Mean Absolute Error of Parameter Analysis

6. Conclusions

In this paper, we address the problem of estimating information transmissibility in networks with time-varying
influence probabilities and textual content. We propose LTVGN, a graph neural network that integrates four key
components: (1) a feature construction module that computes upper bound activation probabilities at each timestep
while encoding network structure; (2) a language module that encodes node semantics via large language models;
(3) a Temporal-Spatial Transformer that jointly models temporal dependencies and spatial relationships; (4) a
diffusion propagation module that refines transmissibility estimates using neighborhood aggregation. Experimental
results demonstrate that LTVGN consistently outperforms state-of-the-art baselines, reducing mean absolute error
by an order of magnitude. This framework enables accurate transmissibility prediction for applications such as
recommendation systems and targeted information dissemination.
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