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Abstract: Quantum Information Systems (QIS) have emerged as a transformative 
paradigm, integrating the principles of quantum mechanics with advanced 
computational and communication technologies to address complex problems 
beyond the capabilities of classical systems. This review provides a comprehensive 
synthesis of current developments, beginning with the foundational principles that 
define QIS, including its theoretical underpinnings, quantum state representations, 
and computational frameworks. It then examines advances in quantum computing 
for QIS, with a focus on hardware architectures, the design and optimization of core 
algorithms, and the computational advantages over classical approaches. The 
discussion extends to quantum machine learning for QIS, exploring hybrid 
quantum–classical learning models, quantum data encoding techniques, and 
optimization strategies. Finally, it surveys diverse application domains, such as 
finance, industrial information integration, energy systems, healthcare, and 
intelligent transportation. In addition, the paper highlights pressing technological, 
data-centric, algorithmic, and ecosystem-level challenges, and discusses future 
trajectories shaped by innovations such as quantum blockchain, quantum artificial 
intelligence, and decentralized QIS. Through a structured and integrative analysis, 
this work aims to provide a roadmap for researchers and practitioners navigating 
the rapidly evolving QIS landscape.  

 Keywords: quantum information systems; quantum computing; quantum machine 
learning; quantum algorithms 

1. Introduction 

In recent years, Quantum Information Systems (QIS), which integrate quantum computing, quantum 
communication, and quantum sensing into a unified framework, have emerged as a pivotal force in transforming 
the paradigm of information science. By exploiting quantum phenomena such as superposition, entanglement, and 
interference, QIS can outperform classical systems in specific tasks, offering unprecedented capabilities in high-
performance computing, secure communication, intelligent optimization, and large-scale data processing. The 
inherently interdisciplinary nature of QIS has generated profound impacts not only in physics and computer 
science but also in a wide range of industries, including finance, industrial information integration, energy systems, 
intelligent transportation, and healthcare.  

From a research perspective, the development of QIS is driven by advances in hardware, algorithms, and data 
processing. On the hardware side, the rapid iteration of quantum computer prototypes and quantum networks has 
enabled early-stage validation of quantum algorithms such as Shor’s, Grover’s, quantum support vector machines 
(QSVM), and quantum principal component analysis. In parallel, progress in quantum data encoding and hybrid 
quantum–classical learning frameworks has laid the foundation for quantum machine learning and quantum 
optimization. However, existing research still faces critical challenges, including limited hardware scalability, high 
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overheads in quantum error correction, inefficiencies in classical-to-quantum data encoding, and the absence of 
unified international standards and interdisciplinary talent development programs. 

Despite these barriers, the future trajectory of QIS is becoming increasingly clear. Emerging directions such 
as quantum blockchain, quantum artificial intelligence, and decentralized quantum networks are rapidly 
progressing from conceptual models to prototype implementations, promising to reshape the architecture of 
information systems and to lead the next generation of secure, intelligent, and globally interconnected computing 
ecosystems. Against this backdrop, a systematic review of QIS is essential—not only for enabling the academic 
community to understand its research landscape and frontier trends but also for providing strategic guidance to 
industry stakeholders. 

The contributions of this study are threefold: (1) it proposes a multi-layered analytical framework for QIS, 
systematically covering its theoretical foundations, core algorithms, data processing methods, and industrial 
applications; (2) it integrates the latest advancements from quantum computing, quantum finance, and quantum 
machine learning to reveal their cross-disciplinary synergies within QIS; and (3) it synthesizes current 
technological, data-related, algorithmic, and ecosystem challenges, offering insights into future development 
trends and research directions. 

As depicted in Figure 1, the rest of this paper is organized as follows: Section 2 provides relevant information 
about the literature, reviews the existing literature and outlines the progress of QIS research; Section 3 discusses 
the basic principles, core algorithms and learning paradigms of QIS; Section 4 studies its applications in finance, 
industrial information integration, energy, transportation and healthcare; Section 5 analyzes the main challenges 
and future trends; Section 6 concludes the paper with final comments and perspectives. 

 
Figure 1. Structure of the paper. 

2. Literature Review 

2.1. Literature Search and Selection Criteria 

To comprehensively understand the current state of QIS research, we conducted a systematic literature search 
in leading academic databases, including Web of Science (WoS), IEEE Xplore, and Google Scholar. Multiple 
keywords and Boolean operators were employed to maximize coverage, including: “quantum information system” 
OR “quantum computing” OR “quantum communication” OR “quantum machine learning” OR “industrial 
information integration” OR “industrial applications” OR “cross-domain integration”. The initial search retrieved 
244,354 records. 
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To ensure credibility and academic rigor, only peer-reviewed journal articles and review articles were 
retained, resulting in 193,631 records. After excluding open-access journals, the number of articles decreased to 
94,467. Restricting the publication period to 2015–2025 further reduced the dataset to 51,869 articles. Finally, we 
filtered for Hot Papers and Highly Cited Papers, producing a final dataset of 678 articles for in-depth analysis. 

2.2. Descriptive Analysis 

As summarized in Table 1, the 678 selected articles come from 557 different high-quality journals. The 
average total citation count per article is 305 (Table 1). This demonstrates that QIS is an interdisciplinary field, 
with collaboration being a key indicator of its research output. 

Table 1. Main information of featured articles. 

Description Result 
Timespan 2015–2025 

Source 557 
Documents 678 

Average citations per document  305 

A temporal analysis of publications between 2015 and 2025 reveals a significant growth trajectory in QIS 
research, particularly after 2022, coinciding with significant advances in quantum hardware and cloud-based 
quantum computing platforms (Figure 2). 

 

Figure 2. Publication trend (2015–2025). 

Table 2 shows that Nature leads with 90 publications, followed by Nature Physics (61) and Nature Photonics 
(47), indicating that QIS research is highly represented in top multidisciplinary and physics-focused journals. 
While other outlets such as Advanced Materials and Chemical Engineering Journal also contribute notable 
volumes, the overall distribution reflects the interdisciplinary nature of QIS, spanning physics, materials science, 
chemistry, and engineering. 

Table 2. The top 12 Source of Selected Articles. 

Source Title Number 
Nature 90 

Nature physics 61 
Nature photonics 47 

Advanced materials 36 
Chemical engineering journal 17 

Nature nanotechnology 16 
Chemical reviews 11 
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Table 2. Cont. 

Source Title Number 
Advanced functional materials 9 

Acs applied materials & interfaces 8 
Acs nano 8 

Laser & photonics reviews 8 
Nano energy 8 

Nature reviews materials 8 

2.3. Temporal and Geographic Trends 

Following the methodology applied in the three prior reviews, the selected literature was categorized into 
four major thematic clusters: Fundamentals of QIS; Quantum Computing for QIS; Quantum Machine Learning 
for QIS and Application Domains of QIS. 

Fundamentals of QIS examines the underlying principles of quantum mechanics, the methods of information 
representation, and the models of quantum computation. Quantum Computing for QIS focuses on hardware 
platforms, the foundations of quantum algorithms, and the advantages offered by quantum computation. Quantum 
Machine Learning for QIS investigates hybrid quantum–classical algorithms, the paradigms of quantum learning, 
and various optimization techniques. The application domains of QIS encompass finance, industrial information 
integration, energy systems, healthcare, and intelligent transportation. 

As shown in Table 3, each paper was mapped to one or more clusters, providing a multi-dimensional 
perspective on the field. The classification structure draws directly from the systematic approach of the Quantum 
Computing, Quantum Finance, and Quantum Machine Learning reviews, ensuring both coverage breadth and 
thematic consistency. 

Table 3. Thematic Clusters of QIS. 

Thematic Cluster Scope & Description Research Focus 

Fundamentals of 
QIS 

Covers the fundamental 
principles of quantum 

mechanics, quantum state 
representation methods, and 

computational models 
underlying QIS. 

Core concepts: qubits, superposition, and entanglement; 
Quantum logic gates and quantum circuit model [1]; 

Quantum measurement theory and its role in information retrieval [2]; 
Comparative applicability of computational frameworks: gate model, 

adiabatic quantum computing, and topological quantum computing [3]. 

Quantum 
Computing for QIS 

Encompasses hardware 
platforms, core quantum 

algorithms, and computational 
advantages over classical 

systems. 

Mainstream hardware architectures: superconducting qubits, trapped ions, 
photonic quantum computing [4]; 

Scalability and fault-tolerance challenges in quantum hardware; 
Classical quantum algorithms: Shor’s algorithm, Grover’s algorithm, 

Quantum Fourier Transform (QFT); 
Machine learning–related algorithms: Quantum Support Vector Machine 

(QSVM), Quantum Principal Component Analysis (QPCA) [5]; 
Potential applications in combinatorial optimization, numerical 

simulation, and secure communication [6]. 

Quantum Machine 
Learning for QIS 

Explores hybrid quantum–
classical algorithms, learning 
paradigms, and optimization 

techniques in QIS. 

Quantum supervised learning, quantum unsupervised learning, and 
quantum reinforcement learning; 

Quantum encoding strategies: amplitude encoding, angle encoding, basis 
encoding [7]; 

Variational Quantum Algorithms, Quantum Neural Networks, quantum 
clustering [8]; 

Applications of hybrid quantum–classical training frameworks in high-
dimensional and nonlinear tasks [9]; 

Performance and limitations of QML in pattern recognition, predictive 
analytics, and complex system modeling 

Application 
Domains of QIS 

Covers cross-industry 
applications of QIS in finance, 

industrial information 
integration, energy systems, 
healthcare, and intelligent 

transportation. 

Finance: portfolio optimization, high-frequency trading, risk management, 
quantum-secure payments [10]; 

Industrial Information Integration: IIoT data processing, supply chain 
optimization, intelligent manufacturing [11]; 

Energy Systems: power grid optimization, renewable energy forecasting 
[12]; 

Healthcare: drug molecule modeling, medical data privacy protection 
[13]; 

Intelligent Transportation: scheduling optimization, vehicle-to-everything 
(V2X) security [14]. 
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While previous reviews have examined quantum computing in industrial settings, quantum algorithms for 
financial applications, and quantum-enhanced machine learning, several key shortcomings remain. Most studies 
focus on a single technology pillar, without integrating the full quantum information system (QIS) architecture. 
Some studies simultaneously explore multiple application areas within a unified QIS framework. Few studies 
systematically explore the integration of quantum hardware, algorithms, and domain-specific solutions with 
operational systems. 

We further screened these papers, primarily focusing on abstracts. For example, the research had to focus on 
one of quantum computing, quantum communication, quantum storage, or quantum algorithms, and incorporate 
practical applications. The papers also had to address industrial integration, cross-industry applications, or the 
application of quantum technology to specific fields. Papers were required to provide substantial theoretical 
contributions, novel frameworks, or experimental validation. Ultimately, we obtained 64 papers for literature analysis. 

This review addresses these shortcomings by integrating the technological, algorithmic, and application-
oriented dimensions of QIS into a unified analytical framework, providing a comprehensive and structured 
understanding of the field. 

3. Fundamentals of Quantum Information Systems 
Quantum Information Systems (QIS) represent an emerging class of computational and communication 

architectures that utilize quantum mechanical principles to process and transmit information. Unlike classical 
systems, where information is encoded in binary digits (bits) assuming discrete states of 0 or 1, QIS encodes 
information in quantum bits (qubits) capable of existing in superposition and exhibiting entanglement. This unique 
capability allows QIS to execute certain computational tasks exponentially faster, transmit information with 
unconditional security, and integrate diverse functional modules—computation, storage, and communication—
into a unified system. 

From an industrial perspective, QIS serve as the foundational infrastructure for quantum-enhanced 
applications in finance, machine learning, optimization, and secure data integration. The study of QIS 
fundamentals thus demands an understanding of the physical principles, mathematical structures, and architectural 
models that underpin their operation. 

3.1. The foundations of Quantum Computing 

The fundamental operations of QIS are rooted in the fundamental principles of quantum mechanics, which 
together define a computational paradigm that differs from that of classical systems (Table 4). 

Table 4. The foundations of quantum computing. 

Concept Core Principle Applications & Challenges 

Superposition 
A qubit exists in a linear combination of 

basis states, allowing parallel information 
encoding. 

Powers quantum search and optimization; 
coherence is easily lost. 

Entanglement Correlated quantum states exhibit non-local 
dependencies beyond classical systems. 

Foundation of quantum teleportation and 
networking; highly noise-sensitive. 

Interference 
Constructive and destructive phase 

interactions amplify desired computational 
outcomes. 

Central to Grover’s search and quantum 
optimization; requires precise phase control. 

Measurement 
Quantum observation probabilistically 

collapses a state into a definite classical 
outcome. 

Provides computational results; introduces 
stochastic uncertainty. 

Tunneling 
Exploits quantum probability to overcome 

local energy barriers in optimization 
processes. 

Key to quantum annealing; hardware-
dependent performance. 

No-cloning Theorem 
The impossibility of perfectly copying an 
unknown quantum state ensures intrinsic 

data security. 

Protects quantum communication; restricts 
direct state replication. 

3.1.1. Superposition 

A quantum bit (qubit) can exist in a coherent linear combination of the computational basis states 0 and 1. 
This property allows a quantum register of n qubits to represent 2ⁿ states simultaneously, enabling exponential 



Wang and Lu  J. Emerg. Technol. Ind. Appl. 2026, 1(1), 3 

  6 of 16  

parallelism in information encoding and processing. Superposition underpins the enhanced state-space exploration 
capability of QIS, which is particularly advantageous in search, optimization, and simulation tasks [15–17]. 

3.1.2. Entanglement 

Quantum entanglement represents a non-classical correlation between qubits, such that the state of one qubit 
instantaneously determines the state of another, regardless of spatial separation. This phenomenon allows for 
coordinated quantum operations across distributed nodes, forming the theoretical basis of quantum networking, 
quantum teleportation, and certain multi-qubit algorithms. In QIS, entanglement is a critical enabler for error 
correction codes and secure multi-party computation [18–20]. 

3.1.3. Quantum Interference 

By manipulating probability amplitudes, quantum interference can be engineered to amplify the likelihood 
of correct computational paths while suppressing incorrect ones. This selective amplification forms the 
mathematical foundation of quantum algorithms such as Grover’s search and the Quantum Approximate 
Optimization Algorithm (QAOA). Effective interference control enables QIS to achieve computational speedups 
in both unstructured search and combinatorial optimization problems [21,22]. 

3.1.4. Measurement Postulate 

In quantum mechanics, measurement projects a qubit’s superposed state onto one of the computational basis 
states, with the outcome probability determined by the squared magnitude of its amplitude. This inherent 
probabilistic nature introduces stochasticity into QIS outputs, necessitating repeated measurements to achieve 
statistically reliable results. While measurement collapses quantum coherence, it also serves as the final extraction 
mechanism for computational outputs in QIS [23]. 

3.1.5. Quantum Tunneling 

Quantum tunneling describes the ability of a particle to pass through an energy barrier that would be 
insurmountable in classical physics. In quantum computing, tunneling enables quantum annealing systems (such 
as those used in optimization tasks) to escape local minima and converge toward global optima more efficiently. 
This mechanism underpins the computational power of adiabatic quantum computing and certain heuristic solvers 
[24]. 

3.1.6. No-Cloning Theorem 

This principle asserts that it is impossible to create an identical copy of an arbitrary unknown quantum state. 
It underpins the security of quantum communication—particularly in quantum key distribution—by making 
undetected eavesdropping physically impossible. In distributed quantum computing and quantum machine 
learning, the no-cloning constraint necessitates alternative methods such as quantum teleportation or entanglement 
swapping for transferring quantum information [25]. 

Collectively, these principles form the operational backbone of QIS. By integrating superposition, 
entanglement, interference, and probabilistic measurement, quantum computing architectures can explore vast 
computational spaces, solve classically intractable problems, and establish new paradigms for secure and efficient 
information processing. 

3.2. Core Quantum Algorithm 

Core quantum algorithms form the computational backbone of QIS, enabling exponential or quadratic 
speedups for specific classes of problems. These algorithms leverage the principles of superposition, entanglement, 
and interference to tackle computational tasks that are intractable for classical systems. 

3.2.1. Shor’s Algorithm 

Shor’s algorithm provides exponential acceleration for integer factorization, reducing the complexity from 
sub-exponential classical algorithms to polynomial time in the number of digits. The algorithm consists of two 
main components: a modular exponentiation stage and the Quantum Fourier Transform (QFT) to extract the 
periodicity of modular functions. Its ability to efficiently factor large integers undermines the security of RSA, 
Diffie–Hellman, and other number-theoretic cryptosystems, prompting the rapid advancement of post-quantum 
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cryptography. Experimental implementations have been demonstrated on photonic, superconducting, and trapped-
ion platforms, though scaling to cryptographically relevant sizes remains a major hardware challenge [26]. 

3.2.2. Grover’s Algorithm 

Grover’s algorithm achieves a quadratic speedup for searching unstructured datasets, reducing query 
complexity from O(N) to O(√N). It operates by iteratively applying an oracle function to mark solutions and a 
diffusion operator to amplify their amplitudes via constructive interference. While originally designed for database 
search, Grover’s framework extends to combinatorial optimization, constraint satisfaction problems, and 
cryptanalysis of symmetric-key cryptography. Its simplicity makes it a benchmark for near-term quantum devices, 
although its performance is sensitive to oracle construction and noise levels [27,28]. 

3.2.3. Quantum Fourier Transform (QFT) 

QFT is the quantum analogue of the classical discrete Fourier transform, with a complexity of O((log N)²). 
It transforms computational basis states into the frequency domain, enabling period-finding—a central step in 
Shor’s algorithm—and other applications such as phase estimation, hidden subgroup problems, and quantum 
signal processing. QFT circuits require only logarithmic depth but involve controlled rotation gates, making fault-
tolerant implementation dependent on efficient decomposition into native gate sets [29]. 

3.2.4. Quantum Support Vector Machine (QSVM) 

QSVM extends the classical support vector machine framework into the quantum domain by exploiting 
quantum feature maps and kernel evaluations. Classical input vectors are encoded into quantum states, and inner 
products in high-dimensional Hilbert spaces are computed via quantum circuits. This yields polynomial or 
exponential speedups in kernel computation for certain datasets, with applications in finance (credit risk 
assessment, fraud detection), bioinformatics (gene classification), and materials science. The primary challenges 
involve efficient data encoding and mitigating noise in quantum feature space evaluations [30,31]. 

3.2.5. Quantum Principal Component Analysis (QPCA) 

QPCA utilizes quantum phase estimation to extract eigenvalues and eigenvectors of a density matrix that 
represents the covariance structure of large datasets. By operating directly on quantum-encoded data, it can achieve 
an exponential speedup compared to classical PCA for certain structured inputs. QPCA has potential applications 
in dimensionality reduction for high-frequency trading, anomaly detection in cybersecurity, and medical imaging 
analysis. However, it requires quantum access to data, which is a non-trivial constraint in most real-world scenarios 
[32]. 

3.2.6. Quantum k-Means Clustering 

Quantum k-means combines amplitude encoding with quantum distance estimation to accelerate cluster 
assignment by leveraging amplitude encoding and quantum distance estimation; the algorithm achieves O(logN) 
complexity in distance computation compared to classical O(N) methods. By exploiting superposition, distances 
between a data point and all cluster centroids can be computed in parallel, potentially reducing computational 
complexity from O(Nk) to polylogarithmic in N and k. This makes it attractive for large-scale pattern recognition 
problems, such as predictive maintenance in industrial IoT, real-time social network analysis, and satellite image 
classification. Practical deployment remains limited by the cost of state preparation and the need for error 
mitigation [33]. 

3.2.7. Quantum Neural Network (QNN) 

QNNs integrate parameterized quantum circuits (PQC) with classical optimization loops, enabling hybrid 
quantum–classical deep learning architectures. Quantum layers can naturally represent complex, high-dimensional 
correlations that are difficult for classical networks to capture, making QNNs promising for quantum chemistry 
simulations, drug discovery, and generative modeling in materials design. Current research focuses on overcoming 
barren plateau issues in optimization, improving expressivity via entanglement-aware architectures, and adapting 
QNNs to noisy intermediate-scale quantum (NISQ) devices (Table 5) [34,35]. 
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Table 5. Core quantum algorithm. 

Concept Core Principle Applications & Challenges 

Shor’s Algorithm Leverages quantum parallelism and QFT for 
efficient integer factorization. 

Applied in cryptanalysis; limited by circuit 
depth and error rates. 

Grover’s Algorithm Employs amplitude amplification to 
accelerate unstructured searches. 

Enhances search and optimization; requires 
well-defined oracles. 

Quantum Fourier 
Transform (QFT) 

Maps computational states into the 
frequency domain for phase estimation and 

interference. 

Integral to Shor’s algorithm and signal 
analysis; constrained by gate complexity. 

Quantum SVM 
(QSVM) 

Implements quantum kernels to represent 
complex data relationships in high-

dimensional spaces. 

Benefits financial modeling and 
bioinformatics; sensitive to data encoding 

errors. 

Quantum PCA 
(QPCA) 

Extracts eigenvectors and eigenvalues via 
quantum phase estimation techniques. 

Facilitates anomaly detection and 
dimensionality reduction; requires quantum-

accessible datasets. 

Quantum k-means Executes clustering through superposition-
based distance evaluation. 

Useful in pattern recognition and IoT 
analytics; limited by state preparation costs. 

Quantum Neural 
Networks (QNNs) 

Integrate quantum circuits with adaptive 
parameters for hybrid learning. 

Applicable to AI, chemistry, and materials 
modeling; faces training instability. 

3.3. Learning Paradigms 

Quantum learning paradigms extend the foundational principles of classical machine learning by exploiting 
distinct quantum mechanical properties such as superposition, entanglement, and quantum interference, thereby 
enabling novel approaches to data representation, feature extraction, and model optimization within QIS. 

3.3.1. Supervised Learning 

In supervised learning, quantum models such as Quantum Support Vector Machines (QSVMs) and Quantum 
Neural Networks (QNNs) are trained on labeled datasets, leveraging quantum kernel methods and parameterized 
quantum circuits to map classical data into exponentially large Hilbert spaces and capture complex non-linear 
decision boundaries. This integration of quantum parallelism with classical optimization offers the potential for 
significant acceleration in training and improved classification accuracy, particularly in domains such as financial 
fraud detection, medical image diagnosis, and sentiment analysis of large-scale textual data [36]. 

3.3.2. Unsupervised Learning 

In contrast, quantum unsupervised learning addresses tasks where labeled data are unavailable, aiming to 
uncover hidden patterns, clusters, and latent structures. Approaches such as quantum k-means clustering and 
Quantum Principal Component Analysis (QPCA) employ amplitude encoding, quantum distance estimation, and 
quantum phase estimation to process massive datasets in parallel and reveal correlations that may remain 
inaccessible to classical methods. These techniques have been applied to anomaly detection in cybersecurity, 
market segmentation in finance, and sensor data analysis in industrial IoT environments. Nevertheless, the 
implementation of large-scale quantum unsupervised learning faces challenges related to circuit depth, 
interpretability of results, and the mitigation of hardware noise in Noisy Intermediate-Scale Quantum (NISQ) 
devices [37]. 

3.3.3. Quantum Reinforcement Learning (QRL) 

Quantum reinforcement learning (QRL) represents a further evolution of learning paradigms, embedding 
quantum computation directly into the agent–environment interaction loop. By utilizing amplitude amplification 
and quantum value iteration, QRL enables more efficient exploration of vast state–action spaces and accelerates 
policy evaluation, offering potential benefits in autonomous navigation, real-time supply chain optimization, and 
robotic path planning under uncertainty. However, realizing the full potential of QRL requires overcoming the 
technical barriers of integrating quantum processors with classical control systems, scaling algorithms to 
continuous state–action domains, and ensuring the stability of hybrid quantum–classical frameworks [38]. 
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3.3.4. Hybrid Paradigms 

Emerging hybrid paradigms are beginning to blur the boundaries between quantum and classical learning 
(Table 6). For example, variational quantum autoencoders compress data into a quantum latent space before 
performing classical post-processing, and hybrid deep learning architectures integrate quantum-enhanced feature 
extraction modules with conventional neural networks. Such hybrid approaches are particularly promising for 
near-term quantum devices, as they balance the computational advantages of quantum processing with the 
robustness and scalability of classical machine learning pipelines. Collectively, these paradigms illustrate the 
breadth of quantum-enhanced learning strategies and highlight their transformative potential in shaping the future 
capabilities of QIS [39]. 

Table 6. Quantum learning paradigms. 

Concept Core Principle Applications & Challenges 

Supervised Learning Quantum models learn mappings from 
labeled data through kernel-based inference. 

Applied in classification and diagnostics; 
limited by data transfer and model stability. 

Unsupervised 
Learning 

Quantum clustering and decomposition 
methods uncover latent data structures. 

Supports anomaly detection and finance 
analytics; interpretability remains limited. 

Reinforcement 
Learning 

Quantum-enhanced policies accelerate 
exploration and convergence. 

Applied in robotics and autonomous systems; 
integration with classical control remains 

complex. 

Hybrid Paradigms Combines quantum feature extraction with 
classical optimization pipelines. 

Enables near-term quantum AI; 
synchronization and scaling remain open 

challenges. 

4. Quantum Finance and Other Applications in QIS 

Beyond foundational research, QIS technologies are increasingly being deployed in diverse application 
domains, ranging from finance to energy, transportation, and healthcare. The following subsections outline these 
domain-specific applications (Figure 3). 

 

Figure 3. Quantum Finance and Other Applications in QIS. 

4.1. High-Frequency Trading (HFT) 

High-Frequency Trading operates at the microsecond timescale, where marginal latency reductions can yield 
significant profit differentials. Quantum computing offers the potential to transform HFT by enabling massive 
parallel processing of rapidly evolving market data streams. Techniques such as Quantum Amplitude Estimation 
(QAE) and quantum Monte Carlo simulation allow simultaneous evaluation of thousands of market-making 
strategies, each encoded into quantum states and analyzed in parallel [40]. A quantum-enhanced matching engine 
could assess multiple order book states concurrently, reducing decision latency from milliseconds to nanoseconds. 
Variational Quantum Algorithms (VQAs) further enable adaptive execution strategies that can dynamically 
reconfigure parameters in response to stochastic price movements [41]. Nonetheless, deploying quantum 
processors within low-latency trading systems remains challenging due to classical–quantum input/output 
bottlenecks and the requirement for quantum-compatible data feeds [42]. 
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4.2. Portfolio Optimization 

Portfolio optimization problems, often formulated as constrained quadratic optimization, require balancing 
expected return, portfolio risk, and compliance constraints. Quantum approaches such as quantum annealing and 
the Quantum Approximate Optimization Algorithm (QAOA) excel at exploring exponentially large solution 
spaces. For instance, the Markowitz mean–variance optimization framework can be transformed into a Quadratic 
Unconstrained Binary Optimization (QUBO) problem, enabling near-instantaneous identification of Pareto-
optimal portfolios on quantum annealers. Hybrid quantum–classical workflows have emerged as a promising 
strategy: classical algorithms preprocess large covariance matrices, perform factor reduction, and filter feasible 
assets, while quantum solvers handle the final combinatorial search. This reduces qubit requirements and mitigates 
hardware noise effects, positioning hybrid methods as an interim solution until large-scale fault-tolerant quantum 
computers become available [43]. 

4.3. Risk Management 

Risk management relies on accurate modeling of tail events, extreme volatility, and contagion effects across 
asset classes. Quantum Monte Carlo methods offer quadratic convergence advantages in estimating Value at Risk 
(VaR) and Conditional Value at Risk (CVaR), significantly reducing the number of simulation paths required. 
Quantum Machine Learning (QML) techniques further enhance factor models by capturing nonlinear 
dependencies between macroeconomic variables and asset returns. For example, quantum kernel methods can 
detect hidden correlation structures in large, heterogeneous portfolios, enabling more robust stress testing. Hybrid 
QML–classical architectures allow real-time recalibration of risk models, which is essential in fast-changing 
markets characterized by regime shifts and structural breaks [44]. 

4.4. Quantum-Secure Payment 

Shor’s algorithm poses a severe threat to RSA, ECC, and other public-key cryptosystems, prompting the 
financial sector to explore quantum-resistant payment infrastructures. Quantum Key Distribution (QKD) provides 
information-theoretic security by leveraging quantum principles to detect any eavesdropping attempt. Pilot QKD-
secured payment channels have been demonstrated between major financial hubs, integrating seamlessly with 
interbank messaging systems such as SWIFT. Near-term strategies include combining QKD with post-quantum 
cryptography (PQC) to ensure both immediate deployability and long-term resilience against quantum attacks [45]. 

4.5. Business Management 

Quantum information systems (QIS) can be applied in business environments, helping managers drive 
innovation and competitive advantage, and propelling enterprises towards intelligent and sustainable development. 
The core of QIS lies in leveraging the parallelism of quantum computing and the high security of quantum 
communication. Therefore, enterprises can process massive amounts of nonlinear data, optimize complex 
decision-making models, and improve the accuracy and real-time performance of predictions in extremely short 
times. For business managers, quantum information can redefine management thinking. It helps enterprises 
achieve multi-dimensional simulation and performance optimization in product development, achieve dynamic 
optimal solutions for resource allocation in supply chain management, and realize highly personalized 
recommendations and demand responses in customer service. 

4.6. Industrial Information Integration 

Industrial Information Integration leverages QIS to address complex industrial optimization problems, from 
real-time data fusion in IIoT environments to large-scale production scheduling. Quantum algorithms can process 
heterogeneous sensor data streams in parallel, improving predictive maintenance by correlating subtle patterns 
across multi-source datasets. In supply chain management, QAOA and quantum annealing enable optimization of 
multi-echelon inventory systems under stochastic demand. Furthermore, secure industrial communication can be 
enhanced through quantum cryptography, preventing industrial espionage in cross-border data exchanges [46,47]. 

4.7. Energy Systems 

Energy systems optimization benefits from QIS through improved grid stability, renewable energy 
forecasting, and efficient resource dispatch. Quantum algorithms, such as QUBO formulations solved by quantum 
annealers, can optimize load balancing in smart grids considering fluctuating renewable generation. Quantum-
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enhanced weather modeling improves the accuracy of wind and solar output forecasts, while QKD ensures secure 
communication in energy trading markets. Integration with decentralized energy markets may also be facilitated 
by quantum blockchain architectures, ensuring both transaction transparency and tamper-resistance [48]. 

4.8. Intelligent Transportation 

Intelligent transportation systems stand to benefit significantly from the computational capabilities of QIS, 
particularly in the optimization of traffic flows, routing, and autonomous vehicle coordination [49]. Quantum 
algorithms such as QAOA and quantum annealing can address large-scale vehicle routing problems (VRP) with 
time-dependent constraints, achieving near-optimal solutions more rapidly than classical solvers. For urban traffic 
management, quantum-enhanced simulation frameworks can model millions of vehicle interactions in parallel, 
enabling real-time congestion mitigation strategies. In autonomous driving, hybrid quantum–classical 
reinforcement learning models have been proposed to accelerate decision-making in highly dynamic 
environments, leveraging quantum parallelism to explore vast state–action spaces efficiently. Furthermore, 
quantum-secured vehicular communication protocols, based on QKD, offer robust protection against cyberattacks 
targeting connected transportation infrastructure [50]. 

4.9. Healthcare 

The healthcare sector presents vast opportunities for QIS, spanning from drug discovery to patient-specific 
treatment optimization. Quantum algorithms are particularly promising in computational chemistry, where 
variational quantum Eigensolver (VQE) and quantum phase estimation (QPE) can model molecular interactions 
at quantum precision, accelerating the identification of candidate compounds for diseases such as cancer and 
Alzheimer’s. In medical imaging, quantum principal component analysis (QPCA) enables rapid dimensionality 
reduction and feature extraction from high-resolution scans, improving diagnostic accuracy. Quantum machine 
learning models have been applied to genomic data analysis, identifying complex genetic markers linked to disease 
susceptibility with greater efficiency than classical methods [51]. Furthermore, secure handling of sensitive health 
records can be achieved through QKD-based hospital network infrastructure, ensuring compliance with data 
protection regulations such as HIPAA and GDPR. Early pilot projects have demonstrated hybrid quantum–
classical pipelines for real-time sepsis prediction in intensive care units, highlighting the near-term potential of 
QIS in critical care. 

5. Challenges and Future Trends 

With the development of quantum information systems, related research has raised many technical and 
theoretical challenges. At the same time, future development trends are gradually emerging, providing important 
pathways for further research (Figure 4). 

 

Figure 4. Challenges and Future Trends of QIS. 
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5.1. Technical Challenges 

5.1.1. Hardware Scalability 

Hardware scalability remains one of the most critical bottlenecks in the practical deployment of QIS. Current 
mainstream platforms—including superconducting qubits, trapped ions, topological qubits, and photonic quantum 
computing—face limitations in qubit count, fidelity of gate operations, and connectivity topology. Scaling from 
today’s devices with hundreds of physical qubits to fault-tolerant systems with millions of logical qubits will 
require improvements in qubit fabrication consistency, cross-chip interconnection, and integration of cryogenic 
control electronics. For instance, superconducting qubits encounter exponential growth in wiring complexity and 
thermal management challenges as system size increases, while trapped-ion systems are constrained by gate speed 
and optical stability. Emerging solutions include modular quantum computing architectures, photonic 
interconnects, and advanced 3D packaging with silicon photonics integration [52]. 

5.1.2. Quantum Error Correction (QEC) 

Due to extreme susceptibility to decoherence, fault-tolerant quantum computation fundamentally relies on 
robust QEC schemes. The surface code, a leading candidate, offers a relatively high fault-tolerance threshold but 
requires thousands of physical qubits to encode a single logical qubit, imposing significant hardware demands 
[53]. Research is moving toward low-overhead QEC codes, noise-adapted compilation strategies, and topological 
quantum computing approaches that leverage the inherent error resilience of anyonic systems. Integrating QEC 
with hardware-aware compilers and co-designed architectures will be critical for scalable, long-term quantum 
system operation [54]. 

5.2. Data Challenges 

5.2.1. Quantumization of Classical Data 

In most real-world applications, raw data is generated in classical form and must be encoded into quantum 
states via amplitude encoding, phase encoding, or hybrid methods. For high-dimensional and streaming data 
scenarios—such as industrial IoT or financial time series—encoding efficiency becomes a bottleneck. Moreover, 
trade-offs between fidelity, scalability, and hardware compatibility mean that no single encoding method fits all 
scenarios. Efficient, hardware-native encoding strategies are therefore an urgent research priority [55]. 

5.2.2. Data Standardization and Interoperability 

Cross-domain QIS applications demand unified data representation and interface standards. Currently, 
quantum hardware and software platforms differ widely in instruction sets, data formats, and metadata 
conventions, limiting the portability of algorithms and models. Industry-wide efforts, such as the Quantum Data 
Exchange Protocol (QDEP), aim to define common APIs, data schemas, and security standards to enable seamless 
interoperability. This will be vital for integrating QIS into heterogeneous computing environments that blend 
classical and quantum resources [56]. 

5.3. Algorithmic Challenges 

5.3.1. Interpretability 

Although algorithms such as quantum machine learning and quantum approximate optimization algorithm 
have shown strong performance in optimization and pattern recognition tasks, their decision-making processes 
remain opaque. In sensitive domains like finance and healthcare, algorithm transparency is critical for compliance, 
auditability, and trust. Advances in quantum state visualization, feature importance analysis, and hybrid 
interpretable models will be necessary to meet regulatory and ethical requirements [57]. 

5.3.2. Stability 

Quantum algorithms often suffer from instability due to hardware noise, input perturbations, and parameter 
initialization sensitivity. Parameterized quantum circuits (PQC), for instance, are prone to barren plateau 
phenomena, where gradients vanish and learning stalls. Improving stability requires optimized circuit topologies, 
advanced variational optimization techniques, and noise-aware training methods. Hybrid quantum–classical 
workflows that dynamically adapt circuit depth to hardware conditions are emerging as a promising solution [58]. 
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5.4. Ecosystem Challenges 

5.4.1. Talent Development 

QIS is an inherently interdisciplinary field combining quantum physics, computer science, mathematics, 
engineering, and domain-specific expertise. There is a global shortage of professionals with this breadth of skills. 
Building a sustainable talent pipeline requires structured quantum education programs, cross-disciplinary graduate 
training, and accessible cloud-based experimentation platforms that allow hands-on practice with real quantum 
devices [59]. 

5.4.2. International Standards 

The international competition in quantum technologies is increasingly shifting toward the battle for standards. 
Areas such as quantum communication protocols, post-quantum cryptography testing, and quantum random 
number generator certification require globally agreed frameworks. Without such standards, interoperability will 
be compromised, leading to market fragmentation. Strengthening international collaboration through organizations 
like ISO and ITU will be crucial for harmonizing QIS development worldwide. 

5.5. Future Trends 

5.5.1. Quantum Blockchain 

Integrating quantum communication with distributed ledger technology could create quantum-secure 
blockchain networks [60]. Such systems would leverage Quantum Key Distribution (QKD) for unbreakable 
transaction signatures and employ quantum acceleration in consensus algorithms to enhance throughput. 
Applications include secure cross-border payments, tamper-proof supply chain tracking, and decentralized identity 
management [61]. 

5.5.2. Quantum AI 

The convergence of quantum computing and artificial intelligence is expected to push Quantum Machine 
Learning (QML) from experimental validation toward industrial deployment [62]. Quantum AI could accelerate 
drug discovery, financial modeling, and autonomous systems by offering faster model training, higher-dimensional 
feature extraction, and enhanced optimization capabilities compared to classical methods [63]. 

5.5.3. Decentralized QIS 

With the emergence of a quantum internet, decentralized QIS will integrate distributed quantum computing, 
storage, and communication across global networks. This will enable secure, cross-border collaborative 
computation, allowing users to access quantum resources on demand. Potential use cases span scientific research, 
multinational finance, and industrial automation, supported by quantum-encrypted communication channels [64]. 

6. Conclusions 

Quantum Information Systems (QIS) represent a transformative paradigm that merges quantum computing, 
quantum communication, and quantum sensing into a unified framework capable of addressing computational and 
security challenges beyond the reach of classical systems. This review has synthesized insights from quantum 
computing foundations, algorithmic advancements, and domain-specific applications—spanning finance, 
industrial information integration, energy, transportation, and healthcare—while also exploring the multi-layered 
challenges and emerging trends that will shape QIS in the coming decades. By integrating perspectives from 
quantum hardware scalability, error correction, data encoding, and algorithm design, the discussion has highlighted 
both the technological potential and the practical constraints inherent to QIS development. 

The analysis underscores that QIS is inherently interdisciplinary, requiring collaboration across quantum 
physics, computer science, engineering, and domain expertise. Industry applications such as quantum-secure 
financial transactions, optimization in supply chains and energy grids, and accelerated drug discovery demonstrate 
the transformative potential of QIS to revolutionize high-value sectors. However, realizing these benefits will 
depend on overcoming significant challenges, including hardware scalability, robust quantum error correction, 
standardization of quantum data protocols, and the cultivation of a skilled workforce capable of bridging the 
quantum–classical divide. 
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Looking forward, the convergence of QIS with emerging paradigms such as quantum blockchain, quantum 
artificial intelligence, and decentralized quantum networks will likely redefine both computational infrastructure 
and global information ecosystems. Achieving this vision will require not only sustained investment in research 
and development but also the establishment of international standards, open innovation platforms, and cross-border 
collaborations. As the field evolves, QIS has the potential to become a cornerstone of the next era of secure, 
intelligent, and globally interconnected information systems—driving scientific discovery, economic growth, and 
societal resilience. 
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