
Journal of Machine Learning and Information Security
https://www.sciltp.com/journals/jmlis

Article

Data-Based Optimal Couple-Group Consensus Control
for Heterogeneous Multi-Agent Systems via Policy
Gradient Reinforcement Learning

Jun Li 1, Xiaoyu Pei 2 and Lianghao Ji 2,*

1 School of Economics and Management, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2 Chongqing Key Laboratory of Image Cognition, School of Computer Science and Technology, Chongqing University of Posts

and Telecommunications, Chongqing 400065, China
* Correspondence: jun li2023@163.com

How To Cite: Li, J.; Pei, X.; Ji, L. Data-Based Optimal Couple-Group Consensus Control for Heterogeneous Multi-Agent Systems via Policy Gra-
dient Reinforcement Learning. Journal of Machine Learning and Information Security 2026, 2(1), 1. https://doi.org/10.53941/jmlis.2026.100001

Received: 30 August 2025

Revised: 17 December 2025

Accepted: 5 January 2026

Published: 13 January 2026

Abstract: This paper investigates the optimal couple-group consensus control
(OCGCC) for heterogeneous multi-agent systems (HeMASs) with completely un-
known dynamics. The agents in HeMASs are divided into two groups according to
order differences. Meanwhile, heterogeneous systems are transformed into homoge-
neous ones by adding virtual velocities. Then, a novel data-driven distributed control
protocol for HeMASs is proposed based on policy gradient reinforcement learning (RL).
The proposed algorithm is implemented asynchronously, and is specifically designed to
address the issue of computational imbalance caused by individual differences among
participants. It achieves this by constructing an actor-critic (AC) framework. The
system’s learning efficacy is optimized using offline data sets. The convergence and stability
are ensured by applying functional analysis and the Lyapunov stability theory. Finally, the
effectiveness of the proposed algorithm is confirmed by various simulation examples.
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1. Introduction

In recent years, distributed control in multi-agent systems (MASs) has garnered significant attention due
to its wide-ranging applications across diverse fields, such as formation control [1], smart grids [2], intelligent
transportation systems [3–5], and event-triggered control [6]. Among the core challenges of MASs, the consensus
control problem stands out as pivotal, with its ultimate objective being to enable all agents to reach agreement on a
state of interest through local interactions. However, in practical scenarios, the resources required to achieve control
objectives are often limited. Consequently, the optimal consensus control (OCC) problem has emerged as a widely
studied topic [7], that is, agents not only achieve consensus but also a minimize performance index such as energy
consumption or control cost.

The OCC problem typically requires solving coupled Hamilton-Jacobi-Bellman (HJB) equations. Nevertheless,
the non-linearity of HJB equations and the interdependence among agents make analytical solutions generally
unavailable. Furthermore, most existing model-based control methods rely on the exact dynamics of the MASs,
which are often difficult to obtain for large-scale systems. The emergence of RL, as a data-driven method for
learning through agent-environment interaction, has provided a highly promising avenue to circumvent these
obstacles. By leveraging post-exploration data, RL can learn the optimal control law without the system dynamics
for OCC problems [8–11]. At present, many RL-based approaches have been developed, such as policy interaction
techniques [12], neural network-based methods [13], adaptive predictive control [14], adaptive cruise control [15],
and Q-learning-based methods [16,17]. Experience replay [18] and fuzzy logic systems [19] have further been
employed to enhance data efficiency and robustness. It is worth noting that, compared with value iteration [20], the
policy gradient (PG) method has more advantages in handling the continuous action space and ensuring stability [20].
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Recent studies have addressed practical issues such as asynchronous updates in homogeneous MASs [21]. These
comprehensive advancements strongly demonstrate that RL is a reasonable and powerful framework for solving
the OCC problems in MASs. While striving for optimality, the research scope of MASs has expanded from
homogeneous systems where all agents have the same dynamic characteristics to HeMASs with different dynamic
characteristics [22]. Although significant progress has been made in the optimization control of HeMASs [23–25],
most studies have focused on agents with the same state dimensions. The problem of mixed-order HeMASs, which
involve agents with fundamentally different dynamic orders, has received relatively less attention in the data-driven
RL community. Existing research on mixed-order systems typically relies on frequency-domain analysis [26,27]
and introduces virtual velocities to unify the system [12,13,16,28]. Although these methods simplify the analysis,
may not fully capture the inherent heterogeneity and can introduce additional learning costs.

In addition, the demand for multi-task processing capabilities has led to the emergence of group consensus
issues. In this case, the system is divided into multiple subgroups, and the control objective is to achieve consensus
within each subgroup while allowing for differences between them [29,30]. One particularly notable variant involves
cooperative-competitive interactions, where agents within the same subgroup cooperate with each other, while
agents from different subgroups compete with each other [31–34]. This framework is closely related to the MASs
with mixed-order state spaces, as different subgroups are typically composed of agents with different dynamic
characteristics. However, the integration of cooperative-competitive interactions with mixed-order group consensus
remains underexplored, especially from an optimal control perspective using RL. The core challenge lies in how the
RL framework can effectively manage the complex information exchange among agents from different subgroups.

Apart from the algorithmic challenges brought about by system heterogeneity, another crucial practical
consideration is the variation in computational capabilities among agents. In actual deployment, agents may have
varying processing capabilities, resulting in an uneven distribution of strategy update times. A synchronous learning
algorithm that requires all agents to update simultaneously would be forced to wait for the slowest agent, thereby
severely impeding the overall learning efficiency. Although asynchronous RL algorithms have been proposed for
homogeneous MASs [21], in mixed-order MASs, this problem becomes even more severe because the differences
in dynamics may further exacerbate this asynchrony.

Based on the aforementioned related studies, this work employs a PG algorithm to explore the OCGCC problem
for a class of HeMASs within the leader-follower framework. In summary, the main contributions are as follows:

(1) Taking into account the differences in computational performance among agents, a novel asynchronous RL
method is proposed, which resolves the issue of inconsistent strategy-update speeds among agents. The
proposed algorithm addresses the asynchronous issues caused by mixed-order dynamics by designing an
asynchronous update mechanism. It is capable of handling interaction complexity goes beyond merely
considering computational-capability differences, as discussed in [21,24]. By combining offline data with ex-
perience replay, and proving the asynchronous convergence of mixed-order systems in competition-cooperation
topologies within the Lyapunov framework, it expands the theoretical analysis in [21,24,27,35].

(2) A distributed optimal control law is derived to balance the information exploitation and the data exploration,
thereby optimizing decision-making processes in MASs. Additionally, the experience replay scheme is introduced
to break the temporal correlation of consecutive data samples [18,24]. This involves randomly sampling past
experiences to enhance learning stability and significantly improve the overall data utilization efficiency.

(3) The cooperation-competition mechanism is considered to address the communication and coordination
challenges in the OCGCC problem [11,20,26]. In the absence of model-accurate information, optimal group
consensus can still be achieved in both location and velocity states.

The symbols and explanations of the variables in this paper are shown in Table 1. The succeeding sections of
this article are organized in the following manner. Section 2 contains the preliminary information. Section 3 provides
the convergence analysis of the asynchronous RL algorithm. Section 4 presents the actor-critic (AC) network
framework required to implement the algorithm. The efficiency of the algorithm is verified through the numerous
simulation examples in Section 5. Finally, Section 6 concludes this article.
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Table 1. Variable Symbol Interpretation.

Symbols Meanings

G Communication topology graph
V Set of nodes
E Set of edges
A Weighted adjacency matrix
L Laplacian matrix
N Number of agents
β1 Set of second-order agents
β2 Set of first-order agents
xi(t) Position state of the i-th agent
vi(t) Velocity state of the i-th agent
ui(t) Control input of the i-th agent
wi(t) Estimated velocity of first-order agents
A ,B,C System matrices
ϕi, ϕ̃i Input matrices
ςi(t) Augmented state vector
Ξ Augmented system matrix
ξi, ξ̄i Augmented input matrices
ϵi(t) Tracking error of the i-th agent
E(t) Global consensus error
aij Element of adjacency matrix
bi Pinning gain
sij Cooperation-competition strength factor
Ji Performance function of the i-th agent
Vi State-value function of the i-th agent
Qi Q-function of the i-th agent
Qii, Rii, Rij Performance index weight matrices of the i-th agent
Hi Hamilton function of the i-th agent
ρi Learning rate
Wci Weight matrix of critic network
Wai Weight matrix of actor network
δci, δai Activation functions
hci(t), hai(t) Input vectors of neural networks
βc, βa Learning rates of neural networks

2. Preliminaries

2.1. Algebraic Graph Theory

The directed communication of MASs is denoted by G = (V,E,A). This graph G consists of a node set V =

{v1, v2, . . . , vN} with N agents, an edge set E = {eij = (vi, vj) ∈ V×V | i, j ∈ I}, and a weighted adjacency
matrix A = [aij | i, j ∈ I] where I = {1, 2, . . . , N} represents the finite set of node indices, eij = (vi, vj) denotes
the directed edge from node i to node j. And the information from node i can be received by node j only if aij ̸= 0,
indicating that the pair (vi, vj) is an element of E. The connection between nodes in graph G is described by the
weighted adjacency matrix A with elements {−1, 0, 1}. When aij > 0, it indicates a cooperative link between
nodes i and j. On the other hand, aij < 0 signifies a competitive interaction. Nodes i and j do not interact if
aij = 0.

The in-degree matrix D is a diagonal matrix where the diagonal components di are calculated as di =
∑
j∈I aij .

The Laplacian matrix of G is defined as L = D− A. Besides, there exists at least one directed path from the root
node to every other node.
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2.2. Problem Formulation

Consider a discrete-time HeMAS consisting of N followers and one leader. The dynamics of the i-th follower
can be described as 

{
xi(t+ 1) = A xi(t) + Bvi(t)

vi(t+ 1) = C vi(t) + ϕiui(t)
, i ∈ β1

xi(t+ 1) = A xi(t) + ϕ̂iui(t), i ∈ β2
, (1)

where β1 = {1, . . . , q} denotes the set of second-order agents, and β2 = {q + 1, . . . , N} represents the first-order
agents. σ = β1 ∪ β2 and β1 ∩ β2 = ∅. The control input, velocity state, and position state are represented by
ui(t) ∈ Rni , vi(t), xi(t) ∈ Rp, respectively. The matricesA ,B,C ∈ Rp×p and the matrix ϕi, ϕ̂i ∈ Rp×ni are
unknown but constant matrices, and they serve as system and input matrices, respectively. In addition, the leader
dynamics, which are not influenced by the followers, are given by{

x0(t+ 1) = A x0(t) + Bv0(t)

v0(t+ 1) = C v0(t)
, (2)

in which x0(t), v0(t) ∈ Rp stand for position state and velocity state. Additionally, the OCGCC problem is
formulated by introducing several definitions and assumptions.

Assumption 1. The digraph G is divided into two subgroups, which consist of the first-order agents and second-
order agents, respectively. Moreover, the agents in mixed-order HeMASs (1) and (2) follow a cooperative–competitive
interaction rule, i.e., agents within the same subgroup cooperate with each other, whereas agents from different
subgroups compete with each other.

Assumption 1 implies that the objective of group consensus control is to ensure that distributed agents within
the same subgroup reach an identical state, while agents belonging to different subgroups converge to different
states. In addition, the works [34,35] describe the cooperative-competitive connection among the agents in HeMASs
as (yj − yi) and (yj + yi).

Definition 1. (Group Consensus of HeMASs): The group consensus problem of HeMASs (1) and (2) can be
asymptotically solved provided that the following conditions are met:

(i)


limt→∞∥xi(t)− xj(t)∥ = 0, if ηi = ηj

limt→∞∥xi(t)− xj(t)∥ ̸= 0, if ηi ̸= ηj

limt→∞∥vi(t)− vj(t)∥ = 0, if ηi = ηj

limt→∞∥vi(t)− vj(t)∥ ̸= 0, if ηi ̸= ηj

,

(ii)
{

limt→∞∥xi(t)− x0(t)∥ = 0

limt→∞∥vi(t)− v0(t)∥ = 0,
, if ηi = η0

where ηp = ηq indicates that agent p and agent q belong to the same subgroup, while the opposite case means that p
and q belong to different subgroups. In other words, agents within the same subgroup reach identical states, whereas
agents in different subgroups converge to different states.

For analytical convenience, an estimated velocity [28] is introduced to convert first-order agents to second-order
ones. Then the system dynamics in (1) can be rewritten as

xi(t+ 1) = A xi(t) + Bvi(t)

vi(t+ 1) = C vi(t) + ϕiui(t), i ∈ β1{
xi(t+ 1) = A xi(t) + Bwi(t) + ϕ̂iui1(t)

wi(t+ 1) = Bwi(t) + ϕ̂iui2(t)
, i ∈ β2

, (3)

where wi(t) ∈ Rp represents the first-order agent’ estimated velocity, ui1(t), ui2(t) ∈ Rni and ui(t) = ui1(t) +

ui2(t).

Remark 1. Many works [28,36] assume that agents’ states in various subgroups have the same dimension. In
contrast, the state-dimension is unequal in our study, and this issue is addressed by using estimated velocity.
According to the description and setting of virtual velocity in the article [12,13,16], the virtual velocity is introduced
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to the first-order agents to convert them into second-order agents, making the dynamic equations of all agents
consistent in form and thus converting the heterogeneous system into a homogeneous one for subsequent analysis.

By combining Equations (2) and (3), we can obtain
{
ςi(t+ 1) = Ξςi(t) + ξiui(t), i ∈ β1
ςi(t+ 1) = Ξςi(t) + ξ̃iũi(t), i ∈ β2

ς0(t+ 1) = Ξς0(t)

, (4)

where ςi(t) = (xi(t); vi(t)) for i ∈ β1, ςi(t) = (xi(t);wi(t)) for i ∈ β2, ς0(t) = (x0(t); v0(t)),Ξ =(
A B

0 C

)
, ξi = (0;ϕi) ∈ R2p×ni , ξ̃i = diag

{
ϕ̂i, ϕ̂i

}
∈ R2p×2ni , ũi(t) = (ui1(t);ui2(t)). Above all, to

achieve group consensus of HeMASs, the tracking error of every agent is explicitly described as

ϵi(t) =
∑
j∈Si

aij(sijςj(t)− ςi(t)) +
∑
j∈Di

aij(sijςj(t)− ςi(t)) + bi(ς0(t)− ςi(t)). (5)

The set Si represents the neighboring nodes within the same subgroup, while Di represents the corresponding
nodes in a separate subgroup for agent i. Ni = Si ∪ Di,∅ = Si ∩ Di. Based on Assumption 1, there are
sij > 0(j ∈ Si) and sij < 0(j ∈ Di). The constant bi, referred to as pinning gains, are non-negative. If the
information can be directly received from the leader by agent i, then bi > 0; otherwise, bi = 0. Define the global
consensus error as

E(t) = (e1(t); . . . ; em(t); em+1(t); . . . ; eN (t)), (6)

where ei(t) denotes the local consensus error of the i-th agent. The agents indexed by {1, 2, . . . ,m} are second-order
agents, and the remaining ones are first-order agents. Based on the above Assumptions 1 and 2, as well as the detailed
theoretical derivation in [22], the global consensus error E(t) can converge asymptotically for the HeMASs in (5).

2.3. Optimal Consensus Control via Nash Equilibrium

The local performance function of agent i on an infinite horizon can be expressed below for the purpose of
addressing the issue of distributed OCC:

Ji(ϵi(t), ui(t), uj(t)) =

∞∑
λ=t

r(ϵi(λ), ui(λ), uj(λ)), (7)

where uj(t) are the control inputs of the neighbors j. r(ϵi(λ), ui(λ), uj(λ)) = ϵTi (λ)Qiiϵi(λ) + uTi (λ)Riiui(λ)+∑
uTj (λ)Rijuj(λ), in which Qii, Rii and Rij are positive symmetric matrices. Thus the local state-value function

of agent i can be generated as

Vi(ϵi(t)) =
∞∑
λ=t

r(ϵi(λ), ui(ϵi(λ)), uj(ϵj(λ))), (8)

and the following Bellman equation can be obtained by

Vi(ϵi(t)) = r(ϵi(t), ui(ϵi(t)), uj(ϵj(t))) + Vi(ϵi(t+ 1)). (9)

According to (8) and (9), the Hamilton function of the agent i is given by

Hi(ϵi(t), ui(ϵi(t)),V ) = r(ϵi(t), ui(ϵi(t)), uj(ϵj(t))) + Vi(ϵi(t+ 1))− Vi(ϵi(t)). (10)

For the MASs described by (1) and the performance function given by (7), a control strategy is considered
admissible if and only if it can stabilize the error system specified in (5) and ensure that the state-value function in
(8) remains finite for all i ∈ N.

Assumption 2. The sets
(
Ξ, ξi, ξ̃i

)
in (4) are controllable while

(
Ξ, Q

1/2
i

)
are observable.

In Assumption 2, the controllability of the system ensures the existence of a control input that can drive the
system state from any initial point to any target point. This is the fundamental prerequisite for the existence of
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an optimal control law. The observability of the system (equivalent to detectability here) ensures that the state
weight matrix Qii in the performance index can fully reflect the internal state of the system. This ensures that
the value function Vi is a positive definite function w.r.t. the system state, which can thus serve as a Lyapunov
candidate function for stability analysis. In practice, we do not need to verify in advance whether these matrices
satisfy Assumption 2. This assumption is a theoretical condition to ensure the control law obtained is optimal and
stable after the algorithm converges.

The policy-based iterative method outperforms the value iteration method in evaluating the impact of the action
space on the value. Introducing Q-function is crucial for quickly assessing the influence of action modifications on
value. Therefore, this strategy provides better stability assurance than using only value iteration. The PG-based
OCGCC method is facilitated by the Q-function considered as

Qi(ϵi(t), u) = Q(ϵi(t), u, uj(ϵj(t)))

= r(ϵi(t), u, uj(ϵj(t))) +

∞∑
λ=t+1

r(ϵi(λ), ui(ϵi(λ)), uj(ϵj(λ))).
(11)

By integrating the local state-value function (8), it is deduced that

Qi(ϵi(t), u) =r(ϵi(t), u, uj(ϵj(t))) + Qi(ϵi(t+ 1), ui(ϵi(t+ 1)))

=r(ϵi(t), u, uj(ϵj(t))) + Vi(ϵi(t+ 1)).
(12)

In accordance with the Bellman optimality principle, the following HJB equation is satisfied by a state-value
function that is optimal:

V ∗
i (ϵi(t)) = min

ui(t)
{r(ϵi(t), ui(t), uj(ϵj(t))) +V ∗

i (ϵi(t+ 1))}, (13)

which provides the most suitable local Q-function for agent i in the following that

Q∗
i (ϵi(t), u) = min

u
r
(
ϵi(t), u, u

∗
j (ϵj(t))

)
+ Q∗

i (ϵi(t+ 1), ui(ϵi(t+ 1))). (14)

In accordance with (13) and (14), the local OCC policy u∗i (·) is written as

u∗i (ϵi(t)) = arg min
ui(t)

V ∗
i (ϵi(t)) = argmin

u
Q∗
i (ϵi(t), u), (15)

where the corresponding control policy u is the best. We can conclude that u∗i (t) =
1
2 (di + bi)R

−1
ii F⊤

i
∂V ∗

i (ϵi(t+1))
∂ϵi(t+1) ,

where i ∈ β1, F = ξ, else F = ξ̃. Detailed theoretical derivation can be seen in [22].
Each agent i needs to acquire the following two types of information from its direct neighbors when performing

policy evaluation and policy improvement steps. The neighborhood state information includes the position state
xj(t), and velocity state vj(t) for second-order agents or estimated velocity wj(t) for first-order agents, which is
used to calculate the local tracking error ϵi(t). Meanwhile, the neighbor’s control policy uj,p(ϵj(t)) at the iteration
step p is used to construct the Q-function for policy evaluation.

Remark 2. Compared to the value iteration method, the policy iteration method starts from an initial acceptable
policy to ensure the stability of the system [20]. This suggests that it is more effective in ensuring system admissibility
and stability when compared to the iterative technique. Furthermore, by optimizing the agent using the action state
value function, it gains experience with each action it takes, resulting in better real-time performance.

Remark 3. The adoption of virtual velocity reflects a strategic trade-off in the control of mixed-order HeMASs. This
method can derive a unified, data-based control rule and provide a relatively simple stability analysis for the entire
heterogeneous system. The proposed asynchronous RL architecture, combined with the experience replay technique,
aims to reduce the associated computational costs. Future research will investigate alternative formulations that
can achieve a similar homogenization effect while maintaining a lower dimensionality.

3. Main Results

The section presents an analysis of the stability and convergence of a data-based asynchronous PG-based
optimum algorithm.
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3.1. Data-Based Asynchronous PG-Based Algorithm

Variations in computational capacity across agents in reality lead to varying iteration times and asynchrony
during policy updating. Therefore, we extend the traditional PG algorithm to an asynchronous version. Compared
to the traditional algorithm that suffers from synchronization delays [21], the proposed method is a gradient-based
asynchronous policy algorithm, which is data-driven and consists of two main learning stages. In each iteration
step, the policy is evaluated using the Bellman optimality equation, and the policy is enhanced based on the action
gradient determined by the Q function. Algorithm 1 describes the detailed complexity.

Inspired by [21,35], each agent i is assigned a fixed period Ti, and the asynchronous policy update mechanism
selects Mp = {i ∈ N | p mod Ti = 0} based on this period. Agents with stronger computing capabilities have
smaller Ti values, and thus have a higher update frequency, while agents with limited resources have larger Ti values,
and thus have a lower update frequency, thereby avoiding synchronization issues in HeMASs. The capabilities of
each agent are determined by actual factors, such as its bandwidth and the efficiency of network transmission.

Remark 4. In Algorithm 1, the computational speed of each agent is taken into account, which makes the algorithm
more consistent with the real scenario than the outcomes reported in [27]. During each iteration, only a portion of
the nodes participate in the update. This means that agents with stronger computing capabilities may pause their
processing to accommodate slower agents, thus avoiding the problems caused by asynchronous strategy updates.

3.2. Stability Analysis

To ensure the stability of the HeMASs using the suggested data-driven asynchronous PG-based Algorithm 1, it
is necessary to incorporate an additional lemma.

Lemma 1. Suppose that Assumption 1 holds. Assume that there exists the initial admissible control laws
(u1,0(·), u2,0(·), . . . , un,0(·)), which are improved by Algorithm 1, and the corresponding Q-function is calcu-
lated according to Equations (20) and (23). If there exists ρ

i
< ρi < ρ̄i, then it holds that

Hi(ϵi(t), ui,p+1(ϵi(t)),Vi,p) = r(ϵi(t), ui,p+1(ϵi(t)), uj,p+1(ϵj,p(t))) + Vi,p(ϵi(t+ 1))− Vi,p(ϵi(t)) ≤ 0, (16)

where the specifics of ρ
i

and ρ̄i can be found in references [21,37].

Theorem 1. Let Assumptions 1 and 2 hold true. Then the tracking error ϵi(t) is asymptotically stable. The HeMASs
(1) will achieve group consensus by Algorithm 1, if the learning rate ρ

i
< ρi < ρ̄i.

Proof. Suppose the initial policies u1,0(·), u2,0(·), . . ., un,0(·) are admissible. Then the coupled local policies
u1,p(·), u2,p(·), . . ., un,p(·) are also admissible at i = p. Subsequently, it remains to verify the admissibility of the
updated local policy ui,p+1 and the policies of its neighboring agents uj,p+1.

The Lyapunov function can be chosen as the state-value function:

Vi,p(ϵi(t)) = r(ϵi(t), ui,p+1(ϵi(t)), uj,p+1(ϵj,p(t))) + Vi,p(ϵi(t+ 1)). (17)

Based on the error trajectory (5), the difference of Vi,p(ϵi(t)) can be calculated, and subsequently, we can obtain

Vi,p(ϵi(t)) =Vi,p(ϵi(t+ 1))− Vi,p(ϵi(t))

=Vi,p(ϵi(t+ 1))− Vi,p(ϵi(t)) + r(ϵi(t), ui,p+1(ϵi(t)), uj,p+1(ϵj,p(t)))

− r(ϵi(t), ui,p+1(ϵi(t)), uj,p+1(ϵj,p(t)))

=Hi(ϵi(t), ui,p+1(ϵi(t)),Vi,p)− r(ϵi(t), ui,p+1(ϵi(t)), uj,p+1(ϵj,p(t))).

(18)

Then in terms of Lemma 1, it is obviously obtained that

Vi,p(ϵi(t)) ≤ −r(ϵi(t), ui,p+1(ϵi(t)), uj,p+1(ϵj,p(t))) ≤ 0, (19)

where Vi,p(ϵi(t)) = 0 as ϵi(t) = 0. Therefore, the tracking error ϵi(t) will approach 0 when it reaches a sufficiently
large value at t. Thus, each node in the graph G will achieve group consensus.
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Algorithm 1 Data-Based Asynchronous PG-Based Algorithm

Initialize: The iteration index p = 0, the iteration period Ti, and the admissible policies
(u1,0(·), u2,0(·), . . . , un,0(·)).
Step 1: Choose nonempty set Mp = {i ∈ N | p mod Ti = 0}, and N\Mp represents the set of unactivated
agents.
Step 2: Agent i is updated by

For i ∈Mp do
Policy Evaluation: The Q-function can be derived by considering the action ui,p(·) taken by agent i and the

actions uj,p taken by its neighbors, thus it is shown as

Qi,p(ϵi(t), u) = r(ϵi(t), uj,p(ϵj,p(t)), u) + Qi,p(ϵi(t+ 1), ui,p(ϵi,p(t+ 1))). (20)

Policy Improvement: Improve the control policy based on the action gradient of the above Q-function with
following equation:

ui,p+1(ϵi(t)) = ui,p(ϵi(t))− ρi∇uQi,p(ϵi(t), ui,p(ϵi(t))), (21)

in which ρi is a constant and named as the learning factor. The symbol ∇u represents the first-order partial
derivative with regard to the direction of u.

For i ∈ N\Mp do
Policy Maintain: The agent with rapid processing capabilities, remains in a state of waiting, without making

any alterations to the the Q-function and its policy, which can be describe as

ui,p+1(ϵi(t)) = ui,p(ϵi(t)), (22)

Qi,p+1(ϵi(t), u) = Qi,p(ϵi(t), u). (23)

Step 3: The iteration p← p+ 1, then return to step 1.

3.3. Convergence Analysis

The theorem presented in this part proves the convergence of Algorithm 1, which means that Qi,p(ϵi(t), u)

and policy ui,p(ϵi(t)) of agent i can converge to the optimal solution.

Theorem 2. Under Assumptions 1 and 2, if the initial control laws (u1,0(·), u2,0(·), . . . , un,0(·)) are admissible,
ui,p(·) and Qi,p(ϵi(t), u) are calculated by Algorithm 1. Then it holds that

(1) limp→∞ ui,p(ϵi(t)) = u∗i (ϵi(t)).
(2) limp→∞ Qi,p(ϵi(t), u) = Q∗

i (ϵi(t), u).

Proof. This theorem is connected to Theorem 1. By utilizing (9) and (10), it is possible to deduce that

Vi,p+1(ϵi(t)) =Vi,p+1(ϵi(t+ 1)) + r(ϵi(t), ui,p+1(ϵi(t)), uj,p+1(ϵj,p(t)))

=Hi(ϵi(t), ui,p+1(ϵi(t)),Vi,p)− Vi,p+1(ϵi(t+ 1)) + Vi,p(ϵi(t)) + Vi,p+1(ϵi(t+ 1))

=Hi(ϵi(t), ui,p+1(ϵi(t)),Vi,p) + Vi,p(ϵi(t)).

(24)

Then according to (20), it can yield that

Vi,p+1(ϵi(t)) ≤ Vi,p(ϵi(t)). (25)

According to (12), it may be inferred that

Qi,p+1(ϵi(t), u) =r(ϵi(t), uj,p+1(ϵj(t), u)) + Vi,p+1(ϵi(t+ 1))

≤r(ϵi(t), uj,p(ϵj(t)), u) + Vi,p(ϵi(t+ 1)).
(26)

From this, it can be obtained that Qi,p+1(ϵi, u) ≤ Qi,p(ϵi, u). Therefore, the associated Q-function is
decreasing for each agent i ∈ N , and as index p→∞, the Q-function will converge to a minimum value. So it can
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be deduced that
Qi,p(ϵi(t), u) =r(ϵi(t), u, uj,p(ϵj(t))) + Vi,p(ϵi(t+ 1))

≥r
(
ϵi(t), u, u

∗
j (ϵj(t))

)
+ V ∗

i (ϵi(t+ 1))

≥Q∗
i (ϵi(t), u).

(27)

Therefore, the expression limp→∞ Qi,p(ϵi(t), u) = Q∗
i (ϵi(t), u) defines the limit of theQ-function as p→∞,

indicating that the optimal value can be regarded as the convergent point. Furthermore, the partial derivative of
Qi,p(·) obeys the subsequent equation:

lim
p→∞

∇uQi,p(ϵi(t), ui,p(ϵi(t))) = 0, (28)

where u = u∞i (ϵi(t)) and u∞i (·) = limp→∞ upi (·). By computing the partial derivative of both sides of Equation (12)
with regard to p as p→∞, it can be deduced that

∇πQ∞
i (ϵi(t), π) = ∇π(r(ϵi(t), π, πj) + V ∞

i (ϵi(t+ 1)))

= ∇π
(
r
(
ϵi(t), π, u

∗
j

)
+ V ∗

i (ϵi(t+ 1))
)

= 0,

(29)

in which limp→∞ uj,p(ϵi(t)) = πj = u∗j , limp→∞ ui,p(ϵi(t)) = π. Consequently, it is capable of being in-
ferred that Qi,∞(ϵi, u) = Q∗

i (ϵi, u). This suggests that 2) in Theorem 2 holds. Meanwhile, as stated in condi-
tion 1) of Theorem 2, it can be demonstrated through the use of a proof by contradiction, which assumes that
limp→∞ ui,p(ϵi(t)) ̸= u∗i (ϵi(t)), then

ui,∞+1(ϵi(t)) = ui,∞(ϵi(t))− ρi∇uQi,∞(ϵi(t), ui,∞(ϵi(t)))

̸= ui,∞(ϵi(t)),
(30)

which is contradicted with (29). Accordingly, we have limp→∞ ui,p(ϵi(t)) = u∗i (ϵi(t)).

Consider the global Lyapunov candidate function composed of the state value functions of all agents
Lp(t) =

∑N
i=1 Vi,p(ϵi(t)). In each iteration p of Algorithm 1, agents are divided into the update set Mp and

the maintenance set N \Mp. For i ∈ Mp (updating agents), according to the proofs of Lemma 1, Theorems 1
and 2, the policy improvement ensures that their local Lyapunov difference satisfies ∆Vi,p(i(t)) ≤ −r(·) ≤ 0.
For i ∈ N \ Mp (policy-maintaining agents), their control policies and Q-functions remain unchanged, i.e.,
ui,p+1 = ui,p, Qi,p+1(ϵi(t), u) = Qi,p(ϵi(t), u). Their local state value functions remain unchanged in this
iteration: Vi,p+1(i(t)) = Vi,p(i(t)), so their Lyapunov difference is zero, i.e., ∆Vi,p(i(t)) = 0. Therefore, the
difference of the global Lyapunov function is

∆Lp(t) =
∑

i∈Mp

∆Vi,p(ϵi(t)) +
∑

i∈N\Mp

∆Vi,p(ϵi(t)) ≤
∑

i∈Mp

(−r(·)) + 0 ≤ 0

This indicates that regardless of the states of the agents in the “policy maintenance” stage, the global Lyapunov
function Lp(t) always shows a non-increasing trend. The asynchronous update ensures that within the infinite
iteration, each agent will be accessed infinitely many times due to its finite update period Ti. This means that no
agent can remain in the “policy maintenance” stage indefinitely. Therefore, on the global time scale, the system
energy represented by Lp(t) will continue to dissipate until convergence, thus ensuring that the tracking error ϵi(t)
can achieve asymptotic stability and group consensus based on the asynchronous learning process.

Remark 5. The work [27] mainly focuses on data-driven OCC for homogeneous MASs, adopting an RL approach
based on value functions. Although [21] employs the PG method and proposes an asynchronous version, its system
model still relies on the homogeneous MASs and does not involve the mixed-order dynamics and group consensus
control. We propose a designed asynchronous PG algorithm for HeMASs with mixed-order dynamics. Compared
with [21,27], the proposed asynchronous mechanism not only considers differences in computational capabilities
but also addresses the time mismatch in policy updates and virtual velocity estimation. Moreover, introducing
group competition-cooperation mechanism requires agents to handle more complex neighboring information during
asynchronous updates, which imposes higher demands on the algorithm convergence.
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4. Implementation of AC Structures

The algorithm that has been suggested is put into effect in this part by employing the AC structures. The
structure consists of the actor and the critic. The actor network is utilized to estimate the control policy, and the
critic network is responsible for learning the performance index function.

Three-layer neural networks are defined by using neural networks to create actors and critics, which can be
shown that

F(e,W ) =WTσ(e), (31)

where e stands for the input of neural networks, the weighting matrix is defined as W = {W1,W2, . . . ,WL}T , and
it represents the connections within the neural output layer and hidden layer, then σ(·) = {σ1(·), σ2(·), . . . , σL(·)}
denotes the activation function.

To better illustrate the principle of this algorithm, the structure of the designed algorithm and its specific
implementation process are shown in Figure 1.

Figure 1. The proposed algorithm’s overall process framework.

The algorithm’s structure is illustrated in Figure 1, which employs the actual system to calculate the local
tracking errors ϵi(t) by utilizing the local state ςi(t). Additionally, the data set that generated by the system will
serve as an experiential collection for the learning process. Furthermore, the control policy will be improved
by integrating the real-time data of the sensors as shown in Figure 1. Additionally, there is a critic network that
guides the actor’s actions by assessing the quality of the control policy, and becomes accustomed to evaluating the
Q-function. There exists another actor network that continuously improves the control policy by incorporating
feedback from the critic as well.

Remark 6. The technique of experience replay and an offline data set are employed in the proposed Algorithm 1,
which are not discussed in references [35,38]. The data set is created by the system’s real-time interaction process.

4.1. Design of the Critic Networks

The local Q-function is approximated by the critic networks, given by

Q̂(ϵi, u) =W⊤
ci δci(hci(t)), (32)

where W⊤
ci is the weight matrix, δci(·) is the activation function, and hci(t) denotes the input vector. That

is hci(t) =
{
ϵi(t), u, uN(i)

(
ϵN(i)(t)

)}
. Q′ indicates the target value in the following formulation. The critic

network’s approximate error performance index is denoted by

Eci(t) =
1

2
ϵ⊤i (t)ϵi(t), (33)

and we need to minimize Eci(t) in (33). Meanwhile, ϵi(t) can be described as

ϵi(t) = Q̂(ϵi, u)−Q(ϵi, u) = Q̂(ϵi, u)− r(ϵi, uj(t), ui(t))− Q̂′(ϵi(t+ 1), ûi(t+ 1)). (34)
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Therefore, the weight matrix of critic neural networks can be updated with

W⊤
ci (p+ 1) =W⊤

ci (p)− βc
∂Eci(t)

∂Wci(t)

=W⊤
ci (p)− βc

∂Eci(t)

∂ϵi(t)

∂ϵi(t)

∂Q̂i(t)

∂Q̂i(t)

dWci(t)

=W⊤
ci (p)− βcδci(hci(t))ϵ⊤i (t),

(35)

where βc > 0 denotes the learning rate.

4.2. Design of the Actor Networks

Then, the control policy is approximated by applying actor networks, which are defined as

ûi(t) =W⊤
aiδai(hai(t)). (36)

Just similar to the critic network weight update above, the weight matrices of actor neural networks can be
updated by

W⊤
ai(p+ 1) =W⊤

ai(p)− βa
∂Q̂i(t)

∂W⊤
ai(t)

=W⊤
ai(p)− βa

∂Q̂i(t)

∂hci(t)

∂hci(t)

∂ûi(t)

∂ûi(t)

∂Wai(t)

=W⊤
ai(p)− βaW⊤

ci δ
′
ci(hci(t))

∂hci(t)

∂ûi(t)
δai(hai(t)),

(37)

where βa > 0 is the learning rate.

4.3. Stability Analysis of AC Networks

Base on (32) and (36), the performance index function and the control policy can be reconstructed as

Q(ϵi, µ) =W ∗⊤

ci δci(hci(t)) + τc, (38)

ui(t) =W ∗⊤

ai δai(hai(t)) + τa, (39)

in which τc and τa stand for the reconstruction errors of critic-network and actor-network.

Theorem 3. Assuming that the optimal solution for neural network weights W ∗
ci and W ∗

ai exist, and the reconstruc-
tion error τc is norm-bounded. That is, ∥W ∗

ci∥ ≤WcM , ∥W ∗
ai∥ ≤WaM , τc ≤ τcM , and ∥δpc∥ ≤ δcM , ∥δpa∥ ≤ δaM ,

where WcM , WaM , τcM , δcM and δaM are the corresponding upper bounds. Then, the weight estimation errors
W̃c(p) =Wc(p)−W ∗

c and W̃a(p) =Wa(p)−W ∗
a existing in the AC networks are uniformly ultimately bounded

(UUB), which implies that the weight estimation process eventually stabilize.

Proof. According to (35) and (37), it can be obtained that

W̃c(p+ 1) = W̃c(p)− βcδpc ϵpTc (t), (40)

W̃a(p+ 1) = W̃a(p)− βaW⊤
c (p)δ̇pc δ

p
aγ, (41)

where γ =
∂hci(t)

∂ûi(t)
and γ ≤ γM . δ̇pc is the derivative of δpc , and

∥∥∥δ̇pc∥∥∥ ≤ δ̇cM ,∥∥∥δ̇pa∥∥∥ ≤ δaM , then we can select the
Lyapunov function as

L =
L1

βc
+
L2

βa
=

1

βc
tr
{
W̃⊤
c (p)W̃c(p)

}
+

1

βa
tr
{
W̃⊤
a (p)W̃a(p)

}
, (42)

and the difference of L1 can be conducted that

∆L1 = tr
{
W̃⊤
c (p+ 1)W̃c(p+ 1)

}
− tr

{
W̃⊤
c (p)W̃c(p)

}
. (43)

Based on (32) and (38),
ϵpc =W⊤

c (p)δpc −W ∗⊤

c δpc − τc. (44)
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Let ψpc =W⊤
c (p)δpc −W ∗⊤

c δpc = W̃⊤
c (p)δpc , then we can get with (40) and (44) that

W̃c(p+ 1) = W̃c(p)− βcδpc
(
ψp

⊤

c − τ⊤c
)
. (45)

Therefore, according to the Cauchy-Schwarz inequality, ∆L1 can be deduced that

∆L1 =tr
{
W̃⊤
c (p)W̃c(p) + β2

c (δ
p
c (ψ

p
c − τc))

⊤ × δpc
(
ψp⊤c − τ⊤c

)
− 2βcW̃

⊤
c (p)δpc

(
ψp⊤c − τ⊤c

)}
− tr

{
W̃⊤
c (p)W̃c(p)

}
≤ tr

{
βc

(
βc
(
δpc
(
ψp⊤c − τ⊤c

))⊤
δpc
(
ψp⊤c − τ⊤c

)
− 2ψpc

(
ψp⊤c − τ⊤c

))}
− tr

{
w̃⊤
c (p)w̃c(p)

}
≤βc

(
−2∥ψpc∥

2
+ 2ψpc τ

⊤
c + 2βc

(∥∥δpcψp⊤c ∥∥2)+
∥∥δpc τ⊤c ∥∥2)

≤βc
(
−2∥ψpc∥

2
+ 2ψpc τ

⊤
c + 2βc

(
∥δpc∥

2∥∥ψp⊤c ∥∥2))+ βc∥δpc∥
2∥τc∥2

=βc

(
−
(
1− 2βc∥δpc∥

2
)
∥ψpc∥

2
+
(
1 + 2βc∥δpc∥

2
)
∥τpc ∥

2
)
,

(46)

by the same analysis, it can be concluded that

∆L2 ≤βa
(
−
(
∥γ∥2 − βa∥γ∥2∥δpa∥

2
)∥∥∥W⊤

c (p)δ̇pc

∥∥∥2 +1

2
∥ψpa∥

4
+∥γ∥4+

∥∥∥w⊤
c (p)δ̇

p
c

∥∥∥2+1

2
∥w⊤

c (p)δ̇
p
c∥4

)
. (47)

Let

ωM ≜
1

2

(
W⊤
cM δ̇cM

)4

, (48)

and ∥ψpc∥ ≤
√

ωM

1−2βcψ2
cM

with βc ∈
[
0, 1

2δ2cM

]
, βa ∈

[
0, 1

δ2aM

]
, and then, ∆L yields

∆L =
1

βc
∆L1 +

1

βa
∆L2

≤−
(
1− 2βc∥δpc∥

2
)
∥ψpc∥

2
+
(
1 + 2βc∥δpc∥

2
)
∥τpc ∥

2 −
(
∥γ∥2 − βa∥γ∥2∥δpa∥

2
)∥∥∥W⊤

c (p)δ̇pc

∥∥∥2
+

1

2
∥ψpa∥

4
+ ∥γ∥4 +

∥∥∥w⊤
c (p)δ̇

p
c

∥∥∥2 + 1

2
∥w⊤

c (p)δ̇
p
c∥4 −

(
1− 2βc∥δpc∥

2
)
∥ψpc∥

2

−
(
∥γ∥2 − βa∥γ∥2∥δpa∥2

)∥∥∥w⊤
c (p)δ̇

p
c

∥∥∥2 + (
1 + 2βc∥δpc∥

2
)
∥τpc ∥

2
+

1

2
∥ψpa∥

4
+ ∥γ∥4 +

∥∥∥W⊤
c (p)δ̇pc

∥∥∥2
+

1

2

∥∥∥W⊤
c (p)δ̇pc

∥∥∥4 + 1

2
∥ψpa∥

4
+ ∥γ∥4 +

∥∥∥w⊤
c (p)δ̇

p
c

∥∥∥2 + 1

2
∥w⊤

c (p)δ̇
p
c∥4 −

(
1− 2βc∥δpc∥

2
)
∥ψpc∥

2

−
(
∥γ∥2 − βa∥γ∥2∥δpa∥2

)∥∥∥w⊤
c (p)δ̇

p
c

∥∥∥2 + (
1 + 2βc∥δpc∥

2
)
∥τpc ∥

2
+

1

2
∥ψpa∥

4
+ ∥γ∥4 +

∥∥∥W⊤
c (p)δ̇pc

∥∥∥2
+

1

2

∥∥∥W⊤
c (p)δ̇pc

∥∥∥4
≤
(
2βc∥δpc∥

2−1
)
(1−2βcψ2

cM )−1ωM +
(
1+2βc∥δpc∥

2
)
∥τpc ∥

2 −
(
∥γ∥2−βa∥γ∥2∥δpa∥

2
)∥∥∥W⊤

c (p)δ̇pc

∥∥∥2
+

1

2
∥ψpa∥

4
+ ∥γ∥4 +

∥∥∥w⊤
c (p)δ̇

p
c

∥∥∥2 + 1

2
∥w⊤

c (p)δ̇
p
c∥4 −

(
1− 2βc∥δpc∥

2
)
(1− 2βcψ

2
cM )−1ωM

−
(
∥γ∥2 − βa∥γ∥2∥δpa∥2

)∥∥∥w⊤
c (p)δ̇

p
c

∥∥∥2 + (
1 + 2βc∥δpc∥

2
)
∥τpc ∥

2
+

1

2
∥ψpa∥

4
+ ∥γ∥4 +

∥∥∥W⊤
c (p)δ̇pc

∥∥∥2
+
1

2
∥ψpa∥

4
+∥γ∥4+

∥∥∥w⊤
c (p)δ̇

p
c

∥∥∥2 + 1

2
∥w⊤

c (p)δ̇
p
c∥4−

(
1− 2βc∥δpc∥

2
)
(1−2βcψ2

cM )−1ωM

−
(
∥γ∥2 − βa∥γ∥2∥δpa∥2

)∥∥∥w⊤
c (p)δ̇

p
c

∥∥∥2 + (
1 + 2βcδ

2
cM

)
τ2cM +

1

2
ψ4
aM + γ4M +

(
W⊤
cM δ̇cM

)2

+
1

2

∥∥∥W⊤
c (p)δ̇pc

∥∥∥4+ 1

2

(
W⊤
cM δ̇cM

)4

.

Combining like terms, we obtain ∆L < 0. Hence, the weight estimation errors W̃c(p) and W̃a(p) are UUB.

The stability bounds of the control system are essentially related to the approximation accuracy of the actor-
critic neural networks. As elaborated in the Lyapunov analysis (e.g., in the derivation of the ultimate bound ωM
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in (48)), the reconstruction errors τc and τa of the critic and actor networks, respectively, manifest as persistent,
bounded disturbances in the weight update dynamics. According to the theory of perturbed systems and the
Lyapunov method, such bounded disturbances prevent the system from achieving asymptotic stability but ensure
UUB, where the size of the ultimate bound is a continuous function of the disturbance amplitude.

This relationship is a well-established principle in the adaptive dynamic programming (ADP). Reference [26]
emphasizes that the convergence of ADP algorithms is within a neighborhood of the optimal solution, the size
of which is determined by the approximation error of the critic network. Similarly, reference [37] analytically
demonstrates that the residual error from the neural network approximation directly influences the closed-loop
stability margin. Therefore, in order to obtain stricter stability bounds and better steady-state performance, it is
necessary to use neural networks with sufficient representational capacity to minimize the inherent reconstruction
errors τc and τa as much as possible.

Remark 7. In the concurrent update process of the actor and critic networks, the critic network provides an
evolving estimate of the Q-function, which guides the actor’s policy improvement. Although the critic’s weights are
updated asynchronously and may temporarily be inaccurate, the Lyapunov-based analysis in Theorem 3 ensures
that the weight estimation errors of both networks are UUB. This implies that the critic’s evaluation error remains
within a bounded region, thereby preventing the actor from being misled by large estimation errors. Moreover, the
use of experience replay and offline datasets helps to stabilize the learning by reducing the correlation in the data
and providing more consistent gradient estimates. Therefore, even under asynchronous and concurrent updates, the
actor’s policy learning remains stable and converges to a near-optimal solution.

5. Simulation Results

The dynamic of HeMASs with the communication topology graph (Figure 2) is represented by the following:
{
xi(t+ 1) = Axi(t) +Bvi(t)

vi(t+ 1) = Cvi(t) + ϕiui(t)
, i ∈ β1

xi(t+ 1) = Axi(t) + ϕ̂iui(t), i ∈ β2
, (49)

and the leader dynamics is denoted as{
x0(t+ 1) = H x0(t) +Bv0(t)

v0(t+ 1) = Cv0(t)
. (50)

Then the transformed homogeneous augmented systems can be derived as
{
ςi(t+ 1) = Ξςi(t) + ξiui(t), i ∈ β1
ςi(t+ 1) = Ξςi(t) + ξ̃iũi(t), i ∈ β2

ς0(t+ 1) = Ξς0(t),

. (51)

Figure 2. Communication topology of the MASs: The agents are divided into two groups, in which the one in G1
represents the second-order agent, and one in G2 represents the first-order agent.

Assume that the system matrices Ξ =

(
1.967 0.798

0 0.9896

)
, and ξ1 = (0, 1.11)⊤, ξ2 = (0, 0.82)⊤, ξ3 =

(0, 0.91)⊤, ξ4 = (0, 0.75)⊤, the symbol diag{} in the following represents a diagonal matrix, and all elements
outside the main diagonal are zeros, so the second-order input matrices is that ξ̃5 = diag{0.779, 0.779}, ξ̃6 =
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diag{0.51, 0.51}, ξ̃7 = diag{0.86, 0.86}. If agent i has the ability to directly receive information from the leader
0 directly, we set bi = 1, else bi = 0. So we set b1 = b2 = b4 = 1, and the neighboring elements among the
agents are selected as a31 = a32 = a54 = a65 = a75 = a76 = 1. In addition, the cooperative-competitive strength

S =

(
Sss Ssf

Sfs Sff

)
is chosen as

Sss =


0 0 0 0

0 0 0 0

1 1 0 0

0 0 0 0

, Ssf = 04×3, Sfs =

 0 0 0 −1
0 0 0 0

0 0 0 0

, Sff =

 0 0 0

1 0 0

1 1 0

.
This yields the principle of cooperation within one group and competition between different groups. In addition,

we set the learning rates as βc = βa = 0.003. Choose the asynchronous update period T1 = T2 = T3 = T4 = 1,
T5 = T6 = T7 = 3. The initial velocity of the leader is set at v0 = 0.63, as shown in Figure 3. All followers in
G1 reach the same velocity state as the leader. According to the information provided in Figure 4, it is evident
that the positions of the agents in G1 are consistent with those of the leader, but the agents in G2 converge to a
different state from that of G1 on their own. Under the asynchronous RL algorithm, the convergence rates of the
local tracking errors of all followers are shown in Figure 5. The convergence rates of the first-order agents (nodes 5,
6, 7) are significantly faster than that of the second-order agents (nodes 1, 2, 3, 4), which indicates that Algorithm 1
successfully achieves optimal group consensus in the two state dimensions.

Figures 6 and 7 illustrate the convergence of the weights of the critic network and the actor network. From
Figures 8 and 9, it can be seen that the convergence of control policies among the mixed-order agents is ensured.
After approximately 200 iterations, the weights and control inputs are stabilized, indicating that the policy networks
have converged.

The weights of the first-order agent and the fluctuation amplitude of the control input were stabilized after 60
iterations, which was slightly smaller than that of the second-order agent. It was also stabilized after 80 iterations,
indicating that the second-order system brought additional complexity. The fluctuation amplitude of the weights and
control inputs for the first-order agents is stabilized after 60 iterations, which is slightly smaller than that of the second-order
agents stabilized after 80 iterations. This means that the second-order system introduces additional complexity.

Figure 3. Group consensus of velocity states for second-order agents.
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Figure 4. Group consensus of position states for all agents.

Figure 5. The local tracking errors in the systems (4) by the asynchronous Algorithm 1.

Figure 6. Convergence of the critic weights for all agents.
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Figure 7. Convergence of the actor weights for all agents.

Figure 8. The control policies of the first-order agents.

Figure 9. The control policies of the second-order agents.
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Let the global tracking error ϵ = col(ϵi). To quantitatively evaluate the efficiency of the proposed asynchronous
algorithm, we compare its convergence performance with the synchronous algorithm in [39]. The convergence
threshold is set to |ϵ| ≤ 10−3. As shown in Figure 10, the proposed method achieves the expected accuracy in only
20 iterations, which is much faster than the 160 iterations required by the benchmark synchronous method [39].

Figure 10. Global tracking error’s Euler norms ∥ϵ∥.

This means that the number of iterations required to reach convergence has decreased by 87.5%. This result
strongly indicates that the asynchronous strategy can significantly improve the learning efficiency and convergence
rate of HeMASs by effectively adapting to the differences in the computing capabilities of each agent.

Remark 8. The proposed algorithm is different from the periodic policy update method in [39]. Due to the
differences in the computing capabilities of agents, asynchronous updates inevitably arise in practice, which can
affect the performance of the entire system. The asynchronous PG algorithm can effectively solve this problem.

6. Conclusions

The aim of this study is to solve the OCGCC problem for discrete-time HeMASs with unknown dynamics using
a PG method. The proposed data-based asynchronous PG algorithm is executed via the AC scheme, and its stability
is analyzed by the Lyapunov approach. It uses a mixed-order heterogeneous framework and introduces cooperation-
competition strength factors for intra-group cooperation and inter-group competition. The asynchronous update
method addresses the issue of agents’ computational capability discrepancies, and the experience replay strategy
enhances data utilization. Future research should incorporate more comprehensive cooperative and competitive
dynamics into the system.
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