
 

 

Health and Metabolism  

 

Copyright: © 2026 by the authors. This is an open access article under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
Publisher’s Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 

Review 

Advances and Future Perspectives of HP-CIL Metabolomics 
Technology Applications across Diverse Fields 
Jia Li 1, Cheng Chen 1, Xingyu Wang 1, Xi Chen 1, Jingjing Zhan 1, Shuang Zhao 1,2,  
and Liang Li 2,3,* 
1 Xiamen Meliomics Technology Co., Ltd., Xiamen 361026, China 
2 The Metabolomics Innovation Centre, Edmonton, AB T6G 2E9, Canada 
3 Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada 
* Correspondence: liang.li@ualberta.ca 
Received: 20 August 2025; Revised: 29 September 2025; Accepted: 15 October 2025; Published: 4 January 2026 

Abstract: Metabolomics plays a vital role in analyzing small molecule dynamics, disease diagnosis, and biomarker 
identification within biological systems. However, challenges persist including low detection sensitivity for low-
abundance metabolites, imprecise identification, and inadequate data standardization. The High-Performance 
Chemical Isotope Labeling (HP-CIL) technique employs a dual 12C/13C labeling strategy with targeted 
derivatization reagents to chemically modify functional groups such as amino groups, phenolic groups, and 
carboxyl groups. This approach not only optimizes chromatographic separation efficiency but also enhances 
electrospray ionization signals, achieving 10 to 1000-fold improvements in the detection sensitivity of polar 
metabolites. The technology effectively addresses the issues of ion suppression and quantitative instability inherent 
in traditional methods. HP-CIL technology, leveraging isotope internal standard correction (with a quantitative 
error ≤ 5%) and three-tier database integration, enables precise qualitative and quantitative analysis of trace 
samples in complex matrices. In the medical field, through analysis of urine, blood, and saliva samples, this 
technology demonstrates multidimensional application potential in oncology, neurodegenerative diseases, 
cardiovascular disorders, immunology, and drug development. In sports science, it can decipher the dynamic 
changes in the tricarboxylic acid cycle during endurance exercise. For fermented food analysis, it aids in 
optimizing low-salt fermentation processes. In gut microbiota research, it detects short-chain fatty acids 
overlooked by traditional methods, revealing the correlation between dietary fiber intervention and host health. 
Moving forward, through deep integration with multi-omics technologies like genomics and transcriptomics, HP-
CIL will drive precision medicine toward dynamic health management and personalized treatment plans, becoming 
a core technological bridge connecting basic research and clinical practice. 
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1. Introduction 

1.1. Metabolomics Background, Traditional Technical Bottlenecks, and HP-CIL Core Principles 

Metabolomics, a core branch of systems biology [1], focuses on analyzing the dynamic profiles of small-
molecule metabolites (relative molecular mass < 1000 Da) in biological systems. By capturing changes in 
metabolite concentrations to reveal the body’s response to genetic, environmental, and pathological stimuli, the 
field’s advancement is highly dependent on breakthroughs in metabolite detection and analysis technologies, 
where high-throughput and comprehensive analytical methods are crucial for uncovering the connection between 
metabolic phenotypes and diseases [2,3]. Leveraging key metabolomic technologies such as LC-MS and GC-MS, 
researchers identify disease-related metabolites and signaling pathways that directly inform precision medicine 
through their correlation with clinical diagnosis and drug development [4]. For instance, metabolomics has 
systematically elucidated characteristics such as enhanced glycolysis (the Warburg effect) and lipid metabolism 
reprogramming in cancer cells, offering new directions for early tumor diagnosis and targeted therapy [5,6]. 

However, traditional metabolomics technologies face multiple bottlenecks in analyzing complex biological 
samples: First, detection of low-abundance metabolites is limited, as trace bioactive molecules (such as rare lipid 
mediators regulating cellular signaling and minor metabolites involved in gut microbiota-host interactions) often 
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escape capture due to insufficient sensitivity. Second, quantitative accuracy remains inadequate. External standard 
methods frequently encounter challenges with scarce isotopic internal standards, while these standards are costly, 
complex to prepare, and lack comparability across clinical multicenter studies. For instance, histidine metabolism 
analysis in cardiovascular disease patients often yields biased results due to matrix variations, failing to meet precision 
medicine’s demands for data stability. Third, challenges persist in metabolite identification and data integration: 
public databases lack sufficient coverage of microbial-host co-metabolites (e.g., glucosinolates (thioglucosides) and 
taurine derivatives), and the absence of efficient multi-omics data correlation tools restricts deep exploration of 
complex disease mechanisms. For example, studies investigating the association between gut microbiota metabolites 
and host metabolic syndrome frequently face integration bottlenecks that hinder progress [6–11]. 

High-Performance Chemical Isotope Labeling (HP-CIL), leveraging its unique “metabolite functional group 
derivatization combined with stable isotope dual labeling” principle, plays a pivotal role in health and metabolic 
research, driving groundbreaking innovations across multiple fields. From the core methodological perspective: 
- Fundamental Principles and Reaction Mechanism: The HP-CIL method utilizes a comprehensive set of 

optimized derivatization reagents containing 12C/13C-stable isotopes (such as labeling reagents targeting 
amino groups with dyesulfonamyl chloride reactive groups and 12C/13C-labeled substituents) to undergo 
specific chemical reactions with particular functional groups in metabolites, such as amino and carboxyl 
groups. Figure 1 below takes the labeling of amino group metabolites (structural formula R1-NH-R2) as an 
example, the reaction equation is as follows: 

 

Figure 1. Schematic Diagram of High-Performance Chemical Isotope Dual Labeling (HP-CIL) Technology. 

Hydrophobic groups: hydrophilic compounds can be effectively retained and separated on the reversed phase 
chromatography column, and more metabolites can be detected at the same time. 

Structure of the tertiary amine: The conjugate structure is stable with positive charge, which enhances the 
efficiency of electrospray ionization and increases the detection sensitivity by 10–1000 times. 

12C/13C dual labeling: an internal isotope label was established for each metabolite to improve the accuracy 
and reproducibility of quantification. 

As illustrated in the reaction schematic: The labeled metabolites, through the introduction of hydrophobic 
groups, enable effective retention and separation of hydrophilic metabolites on the reversed-phase chromatography 
column, thereby enhancing metabolic coverage. The stable positive charge of the tertiary amine structure improves 
electrospray ionization efficiency, boosting detection sensitivity by 10 to 1000 times. Through 12C/13C isotope dual 
labeling, each metabolite is assigned a unique isotope internal standard, significantly improving quantitative 
accuracy and reproducibility [12–14]. 
- Reaction conditions: This kind of derivatization reaction is usually carried out under mild conditions, such 

as room temperature and weakly alkaline buffer systems. The reaction time is 30 min to 2 h, and the specific 
parameters should be adjusted according to the reaction activity of the labeling reagent and the target 
functional group. 
By precisely labeling specific functional groups of metabolites, HP-CIL not only enhances detection 

sensitivity in mass spectrometry but also enables absolute quantification through isotope ion pair ratios, effectively 
overcoming technical limitations in traditional metabolomics [15–17]. The innovation of HP-CIL technology is 
further illustrated through process visualization: This technique achieves high-coverage quantification via liquid 
chromatography-mass spectrometry (LC-MS), utilizing specific isotopic labeling of functional groups such as 
amine/phenolic and carboxyl groups. The complete workflow from sample labeling to data generation is 
demonstrated in Figure 2. 
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Figure 2. Schematic diagram of the typical workflow of HP-CIL metabolomics analysis. 

1.2. Methodological Differences between HP-CIL and Conventional Metabolomics Analysis Platforms 

Based on the core strategy of functional group-targeted chemical isotope labeling, the High-Performance 
Chemical Isotope Labeling (HP-CIL) LC-MS technology achieves breakthroughs through its innovative “labeling 
enhancement + internal standard correction” design. This advancement significantly overcomes technical 
limitations of conventional metabolomics platforms (non-labeled LC-MS and GC-MS) across three key 
dimensions: ultra-high coverage (sensitivity), precise quantification (isotope internal standards), and high stability 
(low coefficient of variation/low batch effects). The specific comparative differences are as follows: 

1.2.1. Ultra-High Coverage and High Sensitivity—Break through the Blind Spot of Polar/Low-Abundance 
Metabolites Detection 

HP-CIL technology takes “functional group targeted labeling” as the core, and achieves ultra-high coverage 
and high sensitivity detection of metabolic groups through two mechanisms: 

(1) Metabolic Compound Identification Breakthrough: the metabolome is classified into sub-metabolomes 
based on functional groups (amino groups, phenolic groups, carboxylic groups, hydroxyl groups, and carbonyl 
groups). Using 12C/13C labeling reagents (e.g., dansyl chloride and DmPA bromide), hydrophobic groups are 
introduced to polar metabolites, enabling efficient separation through single-phase reversed-phase liquid 
chromatography (RPLC) with symmetrical peak profiles (tailing factor < 1.2). The method successfully detected 
6109 unique peak pairs in human plasma samples and 4955 in yeast samples, achieving 86–96% coverage of major 
metabolite databases including MCID and HMDB [18,19], thereby completely resolving the long-standing 
challenge of polar metabolite separation. 

(2) Sensitivity Enhancement Through Labeling: The introduction of easily ionizable groups (such as tertiary 
amine structures) in labeling reagents amplifies metabolite detection signals by 10- to 1000-fold. For example, 
acetaldehyde becomes detectable after labeling, whereas unlabeled acetaldehyde shows weak signals undetectable 
by conventional methods. Furthermore, the signal response of 2-butanone increases by 940-fold [18,20], enabling 
successful capture of trace metabolites often missed by traditional techniques—including short-chain fatty acids 
in gut microbiota-host interactions and rare lipid mediators involved in cellular signaling regulation. 

Conventional technologies, on the other hand, have significant coverage and sensitivity shortcomings: 
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- Non-labeled LC-MS: This method relies on the inherent hydrophobicity/polarity of metabolites for separation, 
requiring frequent switching between RPLC + HILIC chromatography modes and positive/negative ion 
detection (a complex operation with poor HILIC reproducibility). A single analysis can only detect <500 types 
of unique metabolites, while highly polar and low-abundance metabolites (e.g., vanillylmandelic acid and 3-
hydroxycanine associated with neurodegenerative diseases) are prone to being missed [18,20]. 

- GC-MS: It is only suitable for volatile/semi-volatile metabolites, and requires high temperature derivatization 
(oxime + silanization) pretreatment, resulting in the degradation of thermally unstable metabolites (such as 
carbohydrates and steroids), the coverage of the whole metabolome is less than 30% [18,20], and it can not 
meet the needs of simultaneous analysis of multiple types of metabolites in complex biological samples. 

1.2.2. Precise Quantitative—Isotope Internal Standard Correction to Eliminate Matrix and Detection Bias 

HP-CIL technology builds a unique internal labeling system through “12C/13C isotope dual labeling”, which 
fundamentally solves the problem of quantitative accuracy of conventional techniques: 

(1) Internal Standard Calibration Mechanism: Using 13C-labeled pooled samples as the internal standard, 
synchronized with 12C-labeled test samples through simultaneous derivatization, separation, and detection. The 
internal standard shares identical chemical properties and chromatographic behavior with target metabolites, 
effectively counteracting matrix effects (e.g., ion suppression from proteins and organic acids in plasma) and 
instrument drift, ensuring a quantification error ≤ 5% [16]; 

(2) Quantitative Performance Validation: The relative standard deviation (RSD) of peak ratios in QC samples 
averaged only 7.6%, with 95.6% of peaks showing RSD < 20% [18,20]. This enables stable detection of 
metabolites as low as nanomolar levels (nM), such as propionic acid from gut microbiota metabolism and 
phenylproline associated with neurological disorders. For instance, in cardiovascular disease research, traditional 
external standard method analysis of histidine metabolism showed result deviations exceeding 15% due to matrix 
differences. However, HP-CIL achieves isotopic internal standard correction that keeps deviations below 5% [21], 
fully meeting precision medicine requirements for data accuracy. 

The quantitative limitations of conventional techniques are significant: 
- Unlabeled LC-MS: It relies on external or universal internal markers (such as creatine) for correction, and cannot 

match the differences in matrix response of different metabolites—About 20% of metabolites in plasma have 
signal attenuation > 50% due to matrix interference, and the inter-batch coefficient of variation (CV) is often >20% 
[18,20], making it difficult to achieve accurate quantification of low-abundance metabolites; 

- GC-MS: The derivatization efficiency is unstable during the high temperature derivatization process (e.g., the 
derivatization rate of aldehyde metabolites is <50%), and there is no exclusive internal standard correction, and 
the quantitative CV > 15% [20]. For example, when analyzing 3-benzenelactic acid in fermented food, the 
quantitative deviation of traditional GC-MS can reach 25%, while the deviation of HP-CIL is only 4% [22]. 

1.2.3. High Stability—Low Coefficient of Variation + Low Batch Effect, Suitable for Multi-Center Studies 

HP-CIL technology achieves long-term detection stability and batch consistency through “process 
simplification + signal specificity” design, and solves the problem of repeatability of conventional technology: 

(1) Long-term stability: No need to switch between chromatographic and ionization modes, as a single RPLC 
run suffices for analysis. The long-term repeatability CV remained below 15% over three months [18,20]. Target 
metabolites exist as “12C/13C fixed mass peak pairs”, which can be efficiently filtered of redundant signals (e.g., 
metabolite adducts, fragment ions) using IsoMS software. In human plasma samples, 93.2% of peak pairs matched 
the database, with a false positive rate < 5% [20], significantly enhancing data reliability. 

(2) Batch effect control: Simplified sample pretreatment (e.g., direct extraction from urine and sweat, two-
step H2O → ACN extraction for feces, with a 20–30% increase in the number of peak pairs [23]) eliminates batch 
variations introduced by complex pretreatment methods (e.g., solid-phase extraction and multiple dilutions) in 
conventional techniques. For instance, in a multicenter oncology study, HP-CIL analysis of bladder cancer urine 
samples achieved over 90% consistency across different centers, while unlabelled LC-MS showed inter-center 
differences exceeding 25% [24]. 

The stability of conventional technology is obviously short: 
- Unlabeled LC-MS: It requires frequent switching to RPLC + HILIC mode, the retention time of HILIC 

column is poor (RSD > 10%), and low abundance metabolites are easily lost in complex pretreatment (loss 
rate > 30%), resulting in poor interbatch data comparability [18]; 

- GC-MS: The pretreatment requires liquid-liquid extraction and high-temperature derivatization (the process 
takes more than 4 h), which is prone to contamination (such as impurities in derivatization reagents) and high 
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chromatographic peak overlap (such as tyrosine and phenylalanine peaks in soy sauce). The batch-to-batch CV 
is often >20%, which completely fails to meet the requirements of data stability for clinical multicenter studies. 
In metabolic disease research, HP-CIL metabolomics technology leverages its high-sensitivity detection to 

reveal close links between diseases and metabolism. In tumor metabolism studies, it amplifies polar metabolite 
signals and screens marker combinations that distinguish early-stage tumors from healthy controls, significantly 
aiding early tumor detection and intervention [24]. For neurodegenerative diseases, this technology has identified 
a five-metabolite panel (including vanillic acid and 3-hydroxykynurenine) in Parkinson’s disease patient serum, 
accurately differentiating patients from healthy individuals (AUC = 0.955) and identifying early dementia subtypes 
(AUC = 0.862), providing key biomarkers for disease prevention [25]. In cardiovascular diseases, it uncovers 
metabolic mechanisms regulated by specific therapies, offering new insights for treatment and rehabilitation.In 
nutrition and health, HP-CIL metabolomics technology acts as a precise “metabolic microscope”. By analyzing 
food metabolic pathways, it identifies key pathways and potential functional metabolites, aiding low-salt 
fermentation optimization, healthy food development, body metabolic balance regulation, and metabolic disease 
risk reduction. In exercise health, the high-sensitivity detection of HP-CIL metabolomics technology enables real-
time monitoring of tricarboxylic acid cycle metabolite dynamics in athletes under varying exercise intensities. By 
capturing concentration fluctuations of substances like α-ketoglutaric acid and succinic acid, it provides a 
molecular basis for post-exercise fatigue assessment, supports personalized training program design, and promotes 
scientific precision in exercise health management [26]. In drug development, HP-CIL metabolomics technology 
facilitates new drug R&D from a metabolic perspective. Through high-sensitivity detection of trace drug 
components and metabolites in complex biological matrices, it ensures drug quality and safety. Meanwhile, it screens 
biomarkers, targets potential drug candidates, and accelerates new drug development. Additionally, it explores drug 
impacts on human metabolic pathways, optimizes drug design, and enhances clinical efficacy [27,28]. 

This article focuses on HP-CIL metabolomics technology, elaborating on its core principles and highlighting 
its cutting-edge applications in health and metabolism-related fields, including medicine, nutrition, exercise 
science, and drug development. These applications span disease diagnosis/treatment, diet-metabolism interaction 
analysis, exercise metabolism mechanism dissection, and drug R&D acceleration. Meanwhile, the article analyzes 
challenges in clinical translation, such as data standardization and database construction, and envisions its 
integration with emerging technologies. It foresees HP-CIL metabolomics technology establishing a “detection–
analysis–intervention” closed loop, advancing precision medicine, and providing technological support for human 
health and related industries [29,30]. 

2. Analysis of Metabolic Mechanisms and Applications in Disease Diagnosis and Treatment Using HP-CIL 
Mtabolomics Technology in Healthcare 

2.1. Analysis of Tumor Metabolic Characteristics and Exploration of Early Diagnostic Markers 

In oncology research, metabolomics has increasingly become an indispensable tool for deciphering cancer 
pathogenesis, identifying biomarkers, and customizing personalized treatment regimens. It is well established that 
cancer cells reprogram metabolic pathways, particularly those involving glucose, lipids, and amino acids—to fuel 
their rapid proliferation. This metabolic reprogramming, a hallmark of cancer cells, enables adaptation to diverse 
environmental stresses and sustains growth and proliferation. Such reprogramming creates an ideal niche for 
metabolomics research-addressing high dimensionality, noise, and small-sample issues in prostate cancer (a 
heterogeneous cancer) metabolomics data, advanced computational models (e.g., TransConvNet, a Transformer-
CNN hybrid) further enable accurate identification of stage-specific metabolic alterations and key biomarkers linked 
to tumor progression, invasion, and metastasis, with validated efficacy in prostate cancer data classification [31,32]. 

HP-CIL metabolomics technology has demonstrated its capability to enhance metabolite signal intensity and 
detection sensitivity through isotope labeling and chemical modification. For example, Chen et al. used dansyl 
chloride as a derivatization reagent to successfully label amino and phenolic metabolites in urine samples from 
bladder cancer patients. Their findings showed that HP-CIL metabolomics technology significantly amplified 
polar metabolite detection signals, aiding in the identification of potential bladder cancer biomarkers and 
highlighting its potential for non-invasive early diagnosis [24]. Similarly, Hsu et al. applied HP-CIL metabolomics 
technology to examine key metabolites in the polyamine pathway of oral squamous cell carcinoma patient samples, 
revealing significant metabolic pathway disruptions during cancer progression and providing new insights into 
oral cancer pathogenesis [33]. Luo et al. utilized HP-CIL metabolomics technology to analyze amino and phenolic 
metabolites in rare breast cancer cells, discovering metabolites closely associated with tumor progression [28]. 
This approach not only improved detection efficiency but also reduced sample requirements, deepening our 
understanding of tumor metabolic characteristics. 
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While demonstrating significant advantages in low-abundance metabolite identification, the inherent 
complexity and diversity of tumor metabolism remain major challenges. Future research should focus on 
integrating HP-CIL with genomic, transcriptomic, and other omics data to construct more refined metabolic 
regulation maps, thereby supporting tumor classification and the development of more effective therapeutic 
strategies. To accelerate the clinical application of HP-CIL in oncology, establishing a comprehensive metabolic 
database encompassing various tumor types is imperative to facilitate the widespread use of discriminant biomarkers. 

2.2. Mechanisms of Metabolic Dysregulation in Cardiovascular Diseases and Health Risk Assessment 

Cardiovascular diseases (CVDs) are the primary cause of death in China, with an estimated 330 million 
patients affected by various forms of these conditions. Data from the National Center for Cardiovascular Diseases 
of China showed that in 2019, there were 550,000 annual cases of sudden cardiac death. The prevalence of CVDs 
in China is staggering: stroke ranks as the leading cause of death, followed by ischemic heart disease and lung cancer. 
The report further highlights that the prevalence of CVDs is expected to continue rising in the coming decade. 

Cardiovascular metabolomics plays a pivotal role in elucidating the metabolic mechanisms of CVDs, 
including coronary artery disease, hypertension, and heart failure. Metabolomics holds significant promise for 
identifying specific biomarkers and enabling personalized therapies, particularly in CVDs research. The 
progression of CVDs is typically accompanied by dysregulation of lipid metabolism, amino acid metabolism, and 
oxidative stress pathways. Molecular studies have revealed early metabolic abnormalities in young adults and 
highlighted the critical role of lipid metabolism in atherosclerosis development. Specifically, HP-CIL 
metabolomics technology serves as a powerful tool for early identification of cardiovascular biomarkers through 
precise metabolite profiling [34]. 

Lee CC et al. utilized HP-CIL metabolomics technology to analyze prospective urine samples from cardiac 
surgery patients treated with histidine-tryptophan-ketoglutarate (HTK). Their results showed that HTK therapy 
upregulated histidine metabolism, followed by increased glutamine/glutamate metabolism, altered purine and 
pyrimidine metabolism, and elevated vitamin B2 levels [21]. Wang Z et al. comprehensively investigated the 
bioavailability, metabolic processes, and regulatory activity of IRW’s ACE2 (angiotensin-converting enzyme 2) 
in spontaneously hypertensive rats (SHRs) using HP-CIL metabolomics technology. Their findings validated the 
critical role of tryptophan and its metabolite kynurenine in IRW’s antihypertensive effect, revealing that IRW’s 
biological activity depends on both its intact circulating form and metabolites [10]. 

In another study, Wang Z et al. combined HP-CIL metabolomics technology with transcriptomics and other 
multi-omics techniques to analyze undifferentiated cytotrophoblasts and differentiated syncytiotrophoblast BeWo 
cells cultured for 72 h under high-glucose conditions [10]. The results showed that high-glucose exposure induced 
significant alterations in glucose, glutathione, fatty acid, and glucocorticoid metabolism in BeWo cells, 
highlighting their roles as key regulators of placental metabolic processes, nutrient storage, and mitochondrial 
function [35]. 

Aleidi SM et al. applied HP-CIL metabolomics technology to analyze sera from healthy lean individuals, 
obese controls, and lean/obese type 2 diabetes mellitus (T2DM) patients treated with metformin for six months. 
The analysis revealed distinct group clustering due to metformin administration a first-line T2DM treatment known 
to affect multiple metabolic pathways and reduce cardiovascular risk [36]. Notably, a Nature Metabolism study 
identified 71 dysregulated metabolites in obese diabetic patients, with 30 of these showing partial normalization 
after metformin treatment, approaching levels in obese controls. Fei X et al. used HP-CIL metabolomics 
technology to investigate the impact of cardiopulmonary fitness (CRF) on metabolic syndrome (MetS) risk factors, 
identifying eight key metabolites—including methionine and γ-aminobutyric acid—as potential markers linking 
CRF to MetS susceptibility [34]. 

Given the complexity of cardiovascular diseases, single biomarkers often fail to meet multifaceted diagnostic 
needs. HP-CIL metabolomics technology offers a distinct advantage by enabling multi-omics integration, allowing 
the combination of metabolite profiles with clinical phenotypes and genotypes. This integration enhances 
diagnostic accuracy for cardiovascular diseases and facilitates the development of personalized treatment 
strategies. Future research should focus on characterizing metabolic heterogeneity across cardiovascular disease 
subtypes and constructing subtype-specific biomarker panels to improve precise classification and risk prediction. 

2.3. Analysis of Metabolic Pathway Perturbations in Neurodegenerative Diseases and Early Subtype Diagnosis 

Neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD), severely 
impair quality of life due to associated cognitive and motor dysfunctions. Metabolic pathway dysregulation plays 
a critical role in the pathological progression of these diseases. Metabolomics has emerged as a powerful tool for 
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early diagnosis and pathophysiological elucidation in neurodegenerative diseases, as evidenced by its application 
in PD research. This aligns with the broader utility of metabolomics: it delivers a dynamic, comprehensive 
phenotypic view, enables biomarker discovery and molecular mechanism decipherment across diverse conditions 
(including neurodegenerative diseases, metabolic disorders, and cancer), and underpins precision medicine 
applications—ultimately supporting the optimization of clinical strategies for complex diseases[37]. Specifically, 
HP-CIL metabolomics technology offers a revolutionary approach to exploring potential disease markers through 
comprehensive metabolic profiling of biological samples [38]. 

Wang X et al. applied HP-CIL metabolomics technology to analyze the amine/phenolic metabolome in liver 
and brain tissues of AD mouse models. Their results revealed significant metabolomic differences between AD 
transgenic and wild-type mice in both tissues [39]. Notably, metabolites such as 1,4-diaminobutane, histidine, and 
4-ethylphenol emerged as potential biomarker candidates with excellent discriminatory ability, as evidenced by 
receiver operating characteristic (ROC) curve analysis area under the curve (AUC) approaching 100% for both 
sensitivity and specificity. Huan T et al. used HP-CIL metabolomics technology to perform metabolomic profiling 
on saliva samples from individuals with different cognitive states: cognitive normal (CN), mild cognitive 
impairment (MCI), and AD. The study identified a panel of metabolites—including phenylpropionylproline, 
kynurenine, and phenylaminophenylalanine—that effectively distinguished AD from CN and MCI, with a 
diagnostic AUC of 1.000. Additionally, a subgroup of allylphenylalanine and phenylpropionylproline accurately 
discriminated MCI from CN (diagnostic AUC = 0.779; validation AUC = 0.889) [9]. Han W et al. employed HP-
CIL metabolomics technology to analyze serum samples from healthy controls and PD patients at multiple follow-
up time points. Results showed that a five-metabolite panel (vanillic acid, 3-hydroxykynurenine, isoleucylalanine, 
etc.) distinguished PD from healthy controls with an AUC of 0.955 (sensitivity = 87.5%, specificity = 93.0%). 
Furthermore, an eight-metabolite panel (3,4-dihydroxyphenylacetone, deaminotyrosine, hydroxyisoleucine, etc.) 
effectively separated PD without dementia from PD with early dementia (AUC = 0.862) [40]. 

Metabolomics research notes that the complex metabolic profiles of neurodegenerative diseases pose major 
challenges. The high sensitivity of HP-CIL metabolomics-proven in identifying AD and other neurodegenerative 
biomarkers-enables detection of low-abundance metabolites and stage-specific marker discovery. Future work 
should integrate HP-CIL with neurobiological indicators to build stage-specific metabolic maps for early screening 
and personalized intervention. This is exemplified by a PD study (using HP-CIL-compatible high-sensitivity mass 
spectrometry) that analyzed 3 cohorts: it identified a 4-biomarker panel for PD and uncovered fatty acid, bile acid, 
and steroid metabolic disturbances in drug-naive patients, supporting early metabolic subtyping [41]. 

2.4. Construction of Metabolic Fingerprinting for Immune Inflammatory Responses and Pathological 
Mechanism Elucidation 

In immunology and inflammation-related disease research, metabolomics offers a novel perspective for 
biomarker discovery and disease mechanism elucidation by capturing metabolic alterations during inflammation. 
HP-CIL metabolomics technology, with its high sensitivity and specificity, has been demonstrated to facilitate the 
identification and validation of metabolites involved in specific inflammatory responses. 

Blackmore D et al. applied HP-CIL metabolomics technology to analyze serum samples from seropositive 
rheumatoid arthritis (RA) patients and healthy controls. Results showed a four-metabolite panel—including 
ketodeoxycholic acid—effectively distinguished groups, with area under the curve (AUC) values of 0.92–0.94 and 
sensitivity/specificity exceeding 90% [42]. This diagnostic panel performed comparably to established biomarkers 
like rheumatoid factor and anti-cyclic citrullinated peptide antibody, which are widely used in RA diagnosis. 

Chen D et al. used HP-CIL metabolomics technology for untargeted analysis of amine/phenolic and 
carboxylic acid metabolomes in chronic hepatitis B (CHB) treated patients. Four metabolites—2-methyl-3-
oxopentanoic acid, 2-oxohexanoic acid, 6-oxo-1,4,5,6-tetrahydronicotinic acid, and α-ketoisovaleric acid—
exhibited significant diagnostic potential for distinguishing Hrp and Lerp subgroups. Notably, their AUCs 
surpassed typical clinical indicators, demonstrating extremely high sensitivity and specificity in both discovery 
and validation cohorts [43]. Yu Y et al. employed Mdr2 mice as a primary sclerosing cholangitis (PSC) model and 
applied HP-CIL metabolomics technology for untargeted analysis of serum amine/phenolic and carboxylic acid 
metabolomes. The study identified metabolic regulatory changes in PSC model mice after human placental 
mesenchymal stem cell (hP-MSC) treatment, determining eight potential biomarkers—including 2-aminoxylose 
acid semialdehyde, L-1-pyrroline-3-hydroxy-5-carboxylic acid, and L-isoglutamine—for effective disease 
efficacy evaluation [44]. Jacob M et al. utilized HP-CIL metabolomics technology to enhance metabolomics 
sensitivity and throughput in serum samples from dedicator of cytokinesis 8 (DOCK8)-deficient patients and 
severe atopic dermatitis (AD) patients. They identified Hh urine, 3-hydroxyanthranilic acid, and 
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glycinylphenylalanine as DOCK8 deficiency-specific biomarkers, which effectively distinguished DOCK8-
deficient patients from AD patients [45]. Furthermore, they found that tryptophan degradation perturbation and 
increased aspartate availability suggested a link between DOCK8 deficiency and tumorigenesis. 

The dynamic nature of immune system and inflammatory responses poses significant challenges for 
biomarker screening. Although HP-CIL metabolomics technology exhibits technical advantages in dynamic 
monitoring of inflammatory biomarkers, improving detection timeliness and accuracy remains a key challenge. 
Future research should focus on developing dynamic immune metabolic fingerprints to elucidate metabolic 
patterns across diverse inflammatory states. This approach holds potential to enhance diagnostic accuracy— as 
demonstrated in breast and cervical cancer research—and optimize the technology’s efficacy evaluation 
capabilities in immunological and inflammatory diseases. In general, HP-CIL technology has shown its application 
potential in many core fields of medicine with its high coverage and high sensitivity characteristics. The application 
panorama across disease directions can be intuitively understood through Figure 3. 

 

Figure 3. Schematic diagram of the application of HP-CIL metabolomics technology in the core direction of medicine. 

3. HP-CIL Metabolomics Technology Empowers Metabolic Regulation Research in Nutrition and Health 

3.1. Metabolic Analysis of Food Components and Evaluation of Nutritional Intervention Effects 

Through highly sensitive metabolomics analysis, HP-CIL technology also has unique advantages in the 
intersection field of food nutrition and environmental health. It can simultaneously support multi-dimensional 
metabolomics research such as food components, environmental exposure and health risks, as shown in Figure 4. 

HP-CIL metabolomics technology provides a precise technical method for food component analysis and 
nutritional intervention research through high-sensitivity metabolomics profiling. In food safety assessment, this 
technology has revealed potential associations between microbial contamination and human health: Castells-
Nobau et al. used HP-CIL metabolomics technology for untargeted metabolomics analysis of plasma samples and 
found that among 4235 metabolites, tryptophan and phenylalanine metabolic pathways were significantly 
associated with Gokushovirus WZ-2015a phage infection and food addiction. This confirmed that long-term 
consumption of phage-contaminated foods may disrupt gut microbial communities, reduce serotonin synthesis, 
and induce food addiction [46]. In microbial safety control, when combined with high-pressure treatment, HP-CIL 
metabolomics technology accurately assesses microorganism survival potential in sublethal states by monitoring 
energy metabolite fluctuations (e.g., ATP, NADH) and peptidoglycan monomers. For example, after high-pressure 
treatment of protein-rich liquid foods, the technology detects α-keto acids and purine derivatives released by 
damaged microbes, warning of contamination risks 48 h earlier than traditional culture methods [47]. 

Using the 12C/13C dual-labeling strategy in nutritional metabolic pathway analysis, HP-CIL metabolomics 
technology detected 4235 metabolites in a plasma metabolome study of beef cattle. Among these, 1105 metabolites 
were associated with methane emissions and involved core pathways such as arginine-proline metabolism. In the 
high-methane emission group, ornithine—a key metabolite of arginine metabolism—showed a 28% concentration 
decrease, suggesting that arginine decomposition may influence methane production by regulating gut methanogen 
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energy metabolism [48]. Based on these findings, the research team optimized dietary arginine ratios and, 
combined with metabolic fingerprint monitoring, reduced beef cattle methane emissions by 18–22%. They also 
identified 3-hydroxybutyric acid as a biomarker for predicting feed conversion efficiency (r = 0.71) [48]. 

 

Figure 4. Application of HP-CIL Metabolomics Technology in Linking Nutrition, Environment with Health. 

In human dietary intervention studies, the multi-lipid score (MLS) system constructed by HP-CIL 
metabolomics technology demonstrated that a diet rich in unsaturated fats reduced concentrations of 45 lipid 
metabolites—including ceramides and cholesterol esters—by 15–22% and significantly regulated pathways such 
as sphingolipid degradation [49]. MLS was negatively correlated with cardiovascular disease risk: each 1-unit 
decrease in MLS was associated with a 32% reduction in coronary heart disease risk (hazard ratio = 0.68, 95% 
confidence interval 0.59–0.78) and improved type 2 diabetes risk prediction by 26% compared with traditional 
biomarkers. Mechanistic studies revealed that unsaturated fats inhibited hepatic lipogenesis by activating PPARγ 
and downregulating the mTORC1 signaling pathway, evidenced by a 41% decrease in phosphorylated S6K1 [49]. 

In food processing optimization, HP-CIL metabolomics technology identified characteristic metabolites such 
as cyclo(Pro-Leu) and 3-phenyllactic acid in cereal vinegar, with their contents closely correlated with low-salt 
fermentation parameters. For example, in low-salt fermented glutinous rice vinegar (salt content reduced from 
18% to 6%), the concentration of 3-phenyllactic acid increased 1.8-fold, accompanied by a 2.3 log CFU/g increase 
in lactic acid bacteria abundance. This metabolite can serve as an indicator for evaluating microbial activity [22]. 
Following process optimization based on metabolic fingerprints, an enterprise achieved a 15% increase in umami 
amino acid content and a 38% reduction in sodium content, meeting WHO salt reduction standards [22]. 

3.2. Metabolic Risk Early Warning of Environmental-Nutritional Interactions 

The innovative application of HP-CIL metabolomics technology in environmental research offers a crucial 
technical approach for analyzing potential associations between environmental factors and nutritional health. 
Through chemical isotope labeling, this technology enables ultrasensitive detection and precise quantification of 
trace metabolites in complex environmental matrices, supporting environmental pollution monitoring, ecological 
restoration, and mechanistic insights into how environmental stress impacts biological nutritional metabolism and 
health status [50]. In plant-pathogen interaction studies, HP-CIL metabolomics technology employs dual isotope 
labeling (e.g., 12C/13C-dansyl chloride and DmPABr) for untargeted profiling of amine-phenolic, carboxyl, 
phenolic hydroxyl, and carbonyl metabolites. Combined with high-resolution LC-MS separation [51], this 
approach deeply analyzed dynamic metabolic changes in pea roots under pathogen infection and biocontrol 
interventions. Pathogen infection induced 2.89–3.10-fold upregulation of defense hormones like salicylic acid 
(SA) and jasmonic acid (JA), while activating amino acid metabolic pathways (e.g., phenylalanine, methionine). 
These changes directly influenced plant nutrient synthesis and accumulation, thereby impacting nutritional quality 
in the human food chain. Biocontrol bacterial treatment reshaped plant defense signaling by regulating 1-
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aminocyclopropane-1-carboxylic acid (ACC) and 12-oxophytodienoic acid (12-OPDA) metabolism, indirectly 
safeguarding crop nutritional quality and edibility safety. 

In soil and water pollution monitoring, HP-CIL metabolomics technology significantly improves detection 
efficiency for polar pollutants through specific labeling of functional groups like hydroxyl and carbonyl. For 
example, in soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs), derivatization converts 
hydrophobic PAHs into polar derivatives, extending their retention time in reversed-phase chromatography by 30–
50% and increasing detection sensitivity 10–100-fold compared to traditional methods. In groundwater heavy 
metal pollution studies, this technology identified metabolic markers, such as glutathione and citric acid, which is 
associated with uranium and nitrate stress. Concentration changes in these markers correlated significantly with 
abundances of functional bacterial genera (e.g., Geobacter and Pelosinus) in microbial communities. These 
environmental pollutants threaten ecological security and may impact human nutrient absorption and metabolic 
health via the food chain. HP-CIL metabolomics technology has provided early warning signals and intervention 
targets for mitigating pollution-related risks to nutritional health [52]. 

3.3. Toxicological Metabolomics: Analysis of the Association between Chemical Exposure and Health Effects 

HP-CIL metabolomics technology, leveraging its high-sensitivity metabolomics analysis capabilities, plays 
a pivotal role in environmental toxicant research and health risk assessment. By dissecting the mechanisms of 
metabolic dysregulation induced by pollutant exposure, it provides a scientific foundation for protecting human 
nutritional and metabolic health. 

For emerging pollutants (e.g., microplastics and endocrine disruptors), HP-CIL metabolomics technology 
precisely identifies specific metabolic biomarkers through untargeted metabolomics analysis. For example, in 
studies of aquatic organism models exposed to microplastics, the technology revealed significant dysregulation in 
glycerophospholipid metabolism. Phosphatidylethanolamine (PE) species showed >2-fold abundance changes, 
which were significantly negatively correlated with oxidative stress markers (e.g., malondialdehyde). This finding 
highlights how environmental pollutants potentially damage biological membrane structure and metabolic 
function, thereby impacting nutrient transfer in the food chain and human health. In pesticide residue toxicity 
assessment [53], HP-CIL metabolomics technology identified metabolic signatures associated with 
carboxylesterase activity—such as 2,4-dichlorophenoxyacetic acid (2,4-D) conjugates—with a detection limit as 
low as 2 nM and 3-fold higher sensitivity than traditional ELISA. These biomarkers serve not only for ecosystem 
health monitoring but also as early warning markers for evaluating long-term impacts of pesticide residues on 
human nutrient absorption and metabolic function [52]. 

In studies of industrial toxicant exposure, HP-CIL metabolomics technology has deeply revealed the cascade 
interference of heavy metals (e.g., uranium, cadmium) with metabolic pathways [52]. For example, uranium 
pollution induces glutathione metabolism disorders in renal tubular epithelial cells, inhibits key enzymes in the 
cysteine synthesis pathway, and causes oxidative stress damage. By labeling thiol compounds, the technology 
detected a 60% decrease in the intracellular reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, which 
was significantly negatively correlated with renal function damage markers [26]. Impaired kidney function directly 
disrupts human nutrient reabsorption-excretion balance, highlighting HP-CIL metabolomics technology’s value in 
analyzing associations among toxicants, metabolism, and health. In pesticide toxicology, HP-CIL metabolomics 
technology analyzed the cholinergic system interference mechanism of organophosphorus pesticides. Chlorpyrifos 
exposure was found to inhibit acetylcholinesterase activity, accompanied by 1.5–2-fold abnormal increases in 
acetic acid and choline concentrations, while activating the glycolytic pathway to compensate for energy 
metabolism disorders. Additionally, the technology detects adducts of pesticide metabolites with amino acids, 
providing molecular-level evidence for evaluating chronic pesticide exposure risks to human nutritional and 
metabolic functions [54]. 

HP-CIL metabolomics technology exhibits unique advantages in health risk early warning and disease 
association research. Combined with human hepatocyte chips, the technology enables high-throughput assessment 
of chemical hepatotoxicity. By implementing mitochondria-targeted metabolite labeling [53], it captures inhibition 
of the fatty acid β-oxidation pathway by excessive acetaminophen 24 h prior to liver injury, providing a time 
window for early injury warning and nutritional intervention strategies [54]. In embryotoxicity studies, HP-CIL 
metabolomics technology detected abnormal amino acid metabolism—such as decreased tryptophan and 
phenylalanine concentrations—induced by retinoic acid exposure. These metabolic abnormalities were closely 
associated with neural tube developmental defects, offering metabolomic evidence for evaluating environmental 
impacts on maternal-infant nutritional health. In forensic toxicology, the technology assists in determining cause 
of death by analyzing postmortem blood metabolite dynamics (e.g., the linear correlation between lactic 
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acid/trimethylamine concentrations and postmortem interval). This indirectly supports toxicant risk prevention and 
control while providing nutritional health guidance in public health contexts. 

4. Analysis and Application of the Metabolic Mechanism of HP-CIL Metabolomics Technology in  
Sports Health 

4.1. Analysis of Exercise Metabolic Adaptation Mechanisms and Energy Metabolism Optimization 

HP-CIL metabolomics technology exhibits high-precision detection advantages in exercise metabolic 
mechanism research, leveraging its technical feature of isotope internal standard calibration [16]. HP-CIL 
technology provides a systematic tool for the analysis of complex metabolic regulation networks during exercise, 
and its multi-dimensional application logic in the study of exercise metabolic mechanisms can be clearly presented 
in Figure 5. 

 

Figure 5. Multidimensional Application Framework of HP-CIL Technology in Deciphering Exercise Metabolic 
Mechanisms. 

In endurance sports research, San-Millán et al. performed graded maximal physiological tests on professional 
cyclists. Using HP-CIL metabolomics technology to process whole blood samples and integrating metabolomics 
analysis, they found significant dynamic changes in tricarboxylic acid cycle (TCA) metabolites during exercise. 
Specifically, α-ketoglutaric acid (+23%), succinic acid (+18%), fumaric acid (+15%), and malic acid (+12%) 
showed notable increases [26]. These changes directly reflect enhanced mitochondrial energy metabolism 
efficiency, providing molecular-level evidence for the continuous energy supply mechanism in long-term 
endurance exercise. Additionally, fluctuations in coenzyme A precursors—pantetheine 4′-phosphate and 
pantothenic acid 4′-phosphate—correlated positively with exercise intensity. Notably, in cyclists with low lactic 
acid accumulation, post-exercise increments of these coenzyme A precursors were 1.7-fold higher than those in 
the high lactic acid group [26], indicating that HP-CIL metabolomics technology can accurately capture 
interindividual differences in energy metabolic pathways. This supports the development of personalized training 
programs based on metabolic profiling. 

In high-intensity interval training (HIIT) research, Meihua et al. applied HP-CIL metabolomics technology 
to analyze sweat samples from long-distance runners, revealing significant post-training upregulation of 
substances like hypoxanthine (↑ 2.1-fold) and pyruvic acid (↑ 1.8-fold), alongside downward trends in amino acid 
derivatives (↓ 35%), vitamin B6 (↓ 28%), and theophylline (↓ 22%) [55]. Metabolic pathway analysis linked these 
changes to purine metabolism (ATP consumption-triggered salvage synthesis activation) and glycolysis-aerobic 
metabolism balance adjustment. This study pioneered non-invasive sampling to characterize metabolic stress 
following HIIT, establishing a novel biomarker panel for exercise injury early warning.In a study of populations 
with varying cardiopulmonary fitness (CRF) and metabolic syndrome (MetS) risks, Fei et al. leveraged HP-CIL 
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metabolomics technology for in-depth plasma analysis, identifying eight differential metabolites including 
methionine, γ-aminobutyric acid, and 2-oxoglutaric acid [37]. The high-CRF group exhibited a 47% higher 2-
oxoglutaric acid concentration than the MetS-risk group, positively correlating with arginine biosynthesis and 
TCA cycle pathway activities [37]. This finding elucidated how CRF mitigates MetS risk via mitochondrial 
metabolism regulation, offering metabolic targets for precision exercise intervention design. 

4.2. Monitoring of Athletes’ Metabolic Health Status and Performance Evaluation 

The core value of HP-CIL metabolomics technology in athlete health monitoring resides in its high-sensitivity 
detection of trace metabolites. Studies show that post-exercise hypoxanthine concentration in sweat increases 1.9–
2.3-fold and strongly correlates with the rating of perceived exertion (RPE) score (r = 0.82, p < 0.01), positioning it 
as a key biomarker for non-invasive fatigue monitoring [55]. Coaching teams can adjust training intensity in real time 
by collecting small-volume sweat samples (≤50 μL) and integrating HP-CIL metabolomics technology quantitative 
analysis (detection limit: 2 nM), reducing overtraining incidence by 35% [55]. 

For dynamic metabolic health assessment, HP-CIL metabolomics technology simultaneously monitors >20 
metabolites—including lactate, pyruvate, and branched-chain amino acids. San-Millán et al. [26] found elite 
endurance athletes exhibited a 22% higher post-exercise pyruvate/lactate ratio than recreational trainees, reflecting 
superior aerobic metabolic efficiency.This enables personalized intervention design: athletes with poor lactate 
clearance can increase lactate threshold intensity by 12% through β-hydroxy-β-methylbutyric acid (HMB) 
supplementation guided by HP-CIL metabolomics technology results. 

In pre-competition metabolic state prediction, HP-CIL metabolomics technology evaluates athlete power 
reserves by analyzing energy metabolism markers (e.g., creatine phosphate PCr, glycogen breakdown products). 
A study of 20 marathoners showed serum PCr levels positively correlated with 30-km post-race sprint capacity (r 
= 0.71), with HP-CIL metabolomics technology offering 40% higher detection accuracy than traditional enzymatic 
methods [26]. This metabolomic prediction model has prolonged athletes’ optimal competitive state maintenance 
by 2–3 days in competition cycle management. 

4.3. Exploration of Metabolic Targets for the Prevention and Treatment of Exercise-Related Metabolic Diseases 

Exercise-Induced Fatigue Intervention: HP-CIL metabolomics technology has unveiled the critical role of 
the hypoxanthine metabolic pathway in exercise-induced fatigue management. Research indicates that athletes 
with post-exercise hypoxanthine levels exceeding 5.2 μM experience 1.8-fold prolonged fatigue recovery times 
compared to those with levels below 3.5 μM. Supplementation with uricase inhibitors (e.g., allopurinol) facilitates 
hypoxanthine clearance, reducing post-exercise blood urea nitrogen levels by 21% [55]. HP-CIL metabolomics 
technology detection further identifies pyruvate dynamics as an early biomarker of fatigue accumulation: a post-
exercise pyruvate/lactate ratio below 0.3 signals the need for training plan adjustment to prevent chronic fatigue 
syndrome [55]. 

Metabolic Syndrome Exercise Intervention: In metabolic syndrome (MetS) intervention, Fei et al. confirmed 
via HP-CIL metabolomics technology that enhancing cardiorespiratory fitness (CRF) elevates 2-oxoglutarate 
levels by 38%, accompanied by activation of the arginine metabolic pathway (ornithine +25%) [37]. This 
metabolic remodeling correlates with improved insulin sensitivity (22% reduction in HOMA-IR) [2]. Clinical trials 
demonstrate that in MetS high-risk groups with baseline 2-oxoglutarate below 12 μM, thrice-weekly moderate-
intensity aerobic exercise (e.g., swimming, 45 min/session) increases 2-oxoglutarate to 18.5 μM within three 
months while reducing waist circumference by 4.2 cm [37]. 

Anti-Doping Detection: While HP-CIL metabolomics technology has not been directly applied to doping 
control, a parallel 12C/13C dual-labeling strategy shows promise in anti-doping research. Wang et al. achieved 
picogram (pg)-level detection of psychostimulants like 1,3-dimethylamylamine in urine by integrating dansyl 
chloride derivatization with LC-HRMS (liquid chromatography–high-resolution mass spectrometry), achieving 
detection limits three orders of magnitude lower than conventional methods [56]. This ultrasensitive approach 
establishes a methodological foundation for future HP-CIL metabolomics technology applications in sports drug 
monitoring, enabling identification of potential doping abuse through metabolite fingerprint analysis. 

5. Metabolomics Support of HP-CIL Metabolomics Technology in Drug Development 

5.1. Detection of Trace Components in Complex Matrices and Exploration of Health-Related Biomarkers 

HP-CIL technology not only performs well in basic research, but also provides key support for new drug 
development through the transformation chain of “diet-metabolism-drug”, as shown in Figure 6. 
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Figure 6. A flow chart of the “Diet-Metabolism-Drugs” research and transformation driven by HP-CIL technology. 

The core value of HP-CIL metabolomics technology in drug development is first reflected in its capability 
for accurate trace component detection in complex matrices and biomarker discovery. In anti-doping analysis, 
urine samples contain interfering substances (e.g., proteins, organic acids, inorganic salts), while target doping 
agents often exist at trace concentrations and many exhibit isomeric structures. Traditional detection methods 
frequently face challenges like insufficient sensitivity and quantitative/qualitative deviations. 

HP-CIL metabolomics technology employs dansyl chloride (DNS-Cl) derivatization for isotope dual-labeling 
of amine- or phenolic hydroxyl–containing psychostimulants (e.g., 1,3-dimethylamylamine, amphetamine), 
combined with high-resolution LC-HRMS to construct a quantitative method [56]. In anti-doping analysis, the 
HP-CIL technique distinguishes endogenous and exogenous doping substances through an “endogenous-
exogenous metabolite database”. Human metabolomics databases are typically categorized into endogenous and 
exogenous categories. By chemically isotopically labeling functional groups such as amine/phenolic and carboxyl 
groups, HP-CIL combines liquid chromatography-mass spectrometry (LC-MS) with sample comparison against 
endogenous databases (matching metabolites with physiological abundance are identified as endogenous; those 
matching exogenous databases or showing abnormal abundance relationships with endogenous isotopically 
labeled peaks indicate the presence of exogenous doping substances). This methodology provides a scientific basis 
for distinguishing between these two categories. Compared to conventional approaches, the isotope internal 
standards introduced by this technology mimic the chemical properties and chromatographic behavior of target 
analytes, effectively overcoming matrix-induced ion suppression/enhancement. This significantly improves 
detection sensitivity, enabling picogram (pg)-level quantification of doping agents. By optimizing HSS T3 column 
mobile phase composition, gradient elution protocols, and MRM HR mass spectrometry parameters, HP-CIL 
metabolomics technology achieves baseline separation and precise discrimination of isomers (e.g., p-
hydroxyamphetamine/p-methylamphetamine) in complex urine matrices. This establishes a robust technical 
foundation for anti-doping detection in international competitions and sports drug compliance evaluation. 

In biomarker-driven drug development, HP-CIL metabolomics technology deepens exploration of disease-
related metabolic signatures by targeting specific functional group metabolic pathways. Take bladder cancer 
diagnostic research as an example: urinary biomarkers often exhibit low abundance and wide dynamic range, 
challenging traditional detection methods to capture effective signals. HP-CIL metabolomics technology integrates 
multi-platform analyses (LC-FT/MS and LC-HCT/MS), first using isotope-labeling reagents to chemically 
derivatize target amine/phenolic metabolites (e.g., O-phosphoethanolamine, uridine) for enhanced mass 
spectrometry response. Secondly, it ensures quantification accuracy via standard curve construction and optimizes 
MRM fragment ions (e.g., O-phosphoethanolamine m/z 375.1 → 252.1) to improve detection sensitivity and 
specificity [24]. 

This approach not only validated O-phosphoethanolamine as a potential bladder cancer biomarker (AUC = 
0.709) but also improved diagnostic accuracy to AUC = 0.7265 through multi-biomarker integration (combined 
with uridine) [24]. The functional group–based metabolomic strategy significantly enhances biomarker screening 
efficiency, providing a systematic technical pathway for drug target identification. It enables researchers to capture 
trace metabolic signals in complex diseases, accelerating drug development. 

5.2. Analysis of the Interaction Mechanisms among Drugs, Metabolism, and Diet and Research on Health 
Intervention Strategies 

Another key application of HP-CIL metabolomics technology in drug development resides in its unique value 
for in-depth drug action mechanism analysis and dietary metabolism research. In the Phase III clinical study of 
upadacitinib (AbbVie) for ankylosing spondylitis, traditional research methods struggled to accurately characterize 
the drug’s subtle regulatory effects on systemic metabolism. The research team applied high-performance chemical 
isotope dual-labeling metabolomics to systematically analyze serum samples from placebo and upadacitinib 
treatment groups. By comparing dynamic changes in hundreds of metabolites, they uncovered for the first time 
the drug’s subtle modulation of tryptophan and histidine biochemical pathways in patients. Specifically, HP-CIL 
metabolomics technology enables quantitative tracking of metabolite transformation via stable isotope labeling, 
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combined with high-resolution mass spectrometry full-scan and targeted analysis modes. It also clarifies metabolic 
network remodeling mechanisms after drug intervention through metabolic pathway enrichment analysis. The 
ultra-high-quality metabolomics data not only demonstrate HP-CIL metabolomics technology’s potential in 
elucidating drug treatment mechanisms but also help researchers understand how drug intervention affects human 
physiological processes at the metabolic level. This provides a critical basis for optimizing drug dosages, screening 
responsive populations, and enhancing clinical efficacy. 

HP-CIL metabolomics technology also serves as a bridge in dietary impact research on human metabolism, 
offering novel insights for drug development. Using wolfberry tea as a case study, researchers applied an 12C/13C 
isotope labeling strategy to systematically analyze urinary metabolome dynamics before and after consumption. 
This approach enabled precise evaluation of metabolic pathways for wolfberry tea bioactive components (e.g., 
polysaccharides, flavonoids) and identification of diet-regulated potential biomarkers [57]. 

This research paradigm extends to analyzing how different foods/beverages impact disease-related metabolites: 
through long-term tracking of pre/post-diet metabolomic changes, integrating machine learning algorithms to explore 
correlations between key metabolites and disease risks, and identifying potential biomarkers to uncover new drug 
targets. For instance, in prediabetes dietary intervention studies, HP-CIL metabolomics technology screens insulin 
sensitivity–related metabolic markers by analyzing gut microbiota metabolite changes following dietary fiber intake, 
providing theoretical support for new hypoglycemic drug development.With advancements in labeling reagents and 
automation of the analysis process, HP-CIL metabolomics technology will further integrate drug mechanism research 
with dietary metabolism data, unlocking greater potential in personalized medicine and novel drug metabolomics 
research. This drives drug development toward more precise and efficient directions [58]. 

6. Expansion of Health Relevance in Metabolic Studies Using HP-CIL Metabolomics Technology in  
Other Fields 

6.1. Construction of Metabolic Fingerprint Maps of Fermented Foods and Optimization of Health-Related Quality 

HP-CIL metabolomics technology has demonstrated exceptional application in fermented food component 
research. Using four-channel chemical isotope labeling (amine/phenol, carboxylic acid, hydroxyl, carbonyl 
channels), researchers achieved systematic analysis of complex metabolic networks in high-salt fermented foods 
(e.g., soy sauce, fermented bean curd). Three typical fermented foods—fermented red chili sauce, soy sauce, and 
fermented bean curd—were subjected to comprehensive metabolomic profiling. 

Fermented red chili sauce samples yielded 6329 peak pairs, of which 5938 (93.8%) were identified/matched, 
enabling in-depth analysis of 1152 high-confidence metabolites. Key metabolic pathways included 
arginine/proline metabolism and amino acid–tRNA biosynthesis. Soy sauce samples revealed 9353 peak pairs 
(8345 identified/matched, 87.1%), covering tyrosine metabolism and alanine/aspartate/glutamate pathways. 
Fermented bean curd samples showed 10,076 peak pairs (8499 identified/matched, 84.3%), involving amino acid–
tRNA biosynthesis and arginine/proline metabolism [59]. 

Comparative analysis of fermented red chili sauces with different salt contents revealed significant metabolite 
concentration variations. In low-salt samples, metabolite changes correlated with active microbial metabolism: 
microorganisms proliferated rapidly in suitable environments, driving metabolic product shifts. High-salt samples 
showed metabolite changes primarily influenced by physical factors (e.g., osmotic pressure). These findings 
provide a critical basis for food component regulation, enabling precise formula adjustment, product quality 
optimization, and development of consumer-tailored fermented foods. 

6.2. Analysis of Plant Metabolic Diversity and Identification of Health-Related Quality in Geographical 
Indication Products 

HP-CIL metabolomics technology exhibits unique value in trace metabolite detection within complex plant 
matrices, owing to its high sensitivity and wide coverage advantages. In a comparative study of mugwort from 
different origins, the technology identified 154 differentially expressed metabolites between Xinye and Neixiang 
mugwort, primarily involved in phenylpropanoid metabolism, lysine degradation, and taurine metabolism 
pathways. For instance, flavonoids (e.g., salvigenin, 3,6,7,3′,4′-pentamethylquercetin) were significantly more 
abundant in Xinye mugwort, while phenolic acids (e.g., p-coumaric acid) showed higher concentrations in Neixiang 
samples [60]. These differences provide a material basis for geographical indication quality authentication of 
mugwort and reveal correlations between metabolite accumulation and environmental adaptability. 

Notably, HP-CIL metabolomics technology enabled accurate quantification of low-abundance metabolites 
by integrating dansylation derivatization with ultra-high-performance liquid chromatography–tandem mass 
spectrometry (UHPLC-Q-TOF/MS). In the taurine metabolism pathway, this approach detected 2.3-fold higher 
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taurine levels in Xinye mugwort versus Neixiang, alongside 1.8-fold lower hypotaurine concentrations. Such 
metabolic dynamics not only reflect plant environmental responses but also offer a novel dimension for medicinal 
plant quality evaluation. 

6.3. Microbial Metabolic Mechanisms and Their Potential Impact on Host Health 

HP-CIL metabolomics technology enables extensive applications in microbiology, providing critical 
technical support for dissecting microbial-host interactions and microbial community functions. 

In research on plant-microorganism interactions, consider the biological control of pea root rot. HP-CIL 
metabolomics technology detected a 2–3-fold increase in phenylpropanoid pathway products (e.g., coumaric acid, 
ferulic acid) in Paenibacillus polymyxa–treated plant roots. These compounds function as plant stress-resistant 
signaling molecules and promote beneficial microorganism colonization [50,61]. The study also revealed that this 
bacterial strain disrupts pathogenic bacterial membranes by secreting cyclic lipopeptides, inducing accumulation of 
defense metabolites (e.g., jasmonic acid, salicylic acid) and activating plant induced systemic resistance (ISR) [50]. 
Figure 7 HP-CIL Technology-Driven Cross-Domain Metabolic Decoding Framework of “Plant-Food-Microbe”. 

 

Figure 7. HP-CIL Technology-Driven Cross-Domain Metabolic Decoding Framework of “Plant-Food-Microbe”. 

For investigations into microbial plant growth promotion, HP-CIL metabolomics technology confirmed that 
Bacillus subtilis regulates plant nitrogen metabolism, leading to significant increases in root nitrogen transport 
metabolites (e.g., glutamine, asparagine). This enhances ammonium nitrogen transformation efficiency in 
rhizosphere soil, with plant hormones and extracellular enzymes secreted by B. subtilis boosting root nitrogen 
absorption efficiency by up to 35% [62]. 

In the research on gut microbiota, HP-CIL metabolomics technology enables nanomolar-level detection of 
key metabolites (e.g., short-chain fatty acids SCFAs, bile acids) in gut microbiota studies, addressing detection 
limitations of traditional methods for low-concentration analytes [23,63]. For instance, a dietary fiber intervention 
study using HP-CIL metabolomics technology revealed significant increases in SCFA levels (e.g., acetic acid, 
propionic acid), which positively correlated with improvements in host blood glucose and cholesterol parameters 
[63]. In marine carbon cycle research, HP-CIL metabolomics technology quantified carbon transfer efficiency 
between phytoplankton and heterotrophic bacteria (e.g., SAR11, Roseobacter) via isotope labeling/tracking, 
confirming that their metabolic activities are modulated by light cycles and nutrient concentrations [64]. In soil 
microbiology, HP-CIL metabolomics technology analysis of pea root rot biocontrol identified over 20 distinct 
metabolites (e.g., cyclic lipopeptides, polyketides) from Bacillus subtilis–based antagonistic strains—detecting 
threefold more metabolites than traditional methods and enabling tracking of antibacterial substance secretion 
dynamics [50]. Pea rhizosphere soil studies further showed that high-fertility soil harbored fiber-degrading 
microbiota producing elevated SCFA levels, with metabolic products directly linked to soil carbon/nitrogen cycling 
functions. This approach effectively overcomes single-gene sequencing limitations in functional verification. 

7. Challenges and Prospects of HP-CIL Metabolomics Technology Application 

7.1. Challenges 

7.1.1. Fluctuations in Labeling Efficiency Mediated by Derivatizing Reagents and Limitations in Functional 
Group Adaptation 

The HP-CIL technology encounters multidimensional technical bottlenecks during derivatization, with core 
challenges focusing on labeling efficiency stability and metabolite functional group compatibility. On one hand, 
labeling efficiency is significantly affected by environmental factors. For instance, when the temperature increases 
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from 25 ℃ to 37 ℃, the labeling efficiency of dansyl chloride for amine/phenolic metabolites (e.g., xanthine) drops 
from 92% to 78%, directly causing detection failure in 12% of Alzheimer’s disease (AD) saliva samples containing 
low-abundance amine metabolites (e.g., 5–10 nM phenylproline) [9,25]. Regarding bromide labeling of DmPA for 
hydroxyl metabolites, a mere 0.5-unit pH fluctuation (from 8.0 to 7.5) results in a 12% decrease in labeling efficiency. 
This reduces signal response and quantitative repeatability (CV rising to 18%) for hydroxyl biomarkers like 3-
hydroxycanine in Parkinson’s disease serum. These issues compound the inherent detection limitations of hydroxyl 
metabolites in four-channel CIL technology, further restricting metabolic coverage [18,25]. Additionally, existing 
derivatization reagents demonstrate limited adaptability to specific functional group metabolites. For instance, the 
dyesulfonamide hydrazine labeling of carbonyl metabolites shows only 65% reaction efficiency for low-molecular-
weight aldehydes, significantly lower than the 90% efficiency observed with ketone metabolites. This results in a 
30% reduction in detection rates for energy metabolism biomarkers like acetaldehyde in sports medicine research. 
Similarly [55], the dansyl chloride derivatization commonly used in anti-doping tests exhibits batch-to-batch 
variations ±10% in labeling efficiency for amine-containing stimulants such as 1,3-dimethylpentylamine [56]. 
Furthermore, subtle variations in instrument stability (e.g., temperature fluctuations ±2 ℃ in mass spectrometry ion 
sources) may cause signal loss of certain derivatives. This issue becomes particularly evident in trace metabolite 
analyses like serum bile acid detection, further compromising data integrity and failing to meet the demands for 
simultaneous and precise analysis of diverse metabolites in complex biological samples [15,25,51]. 

7.1.2. Methodological Limitations of Precise Quantification of All Metabolites 

The HP-CIL technology employs a four-channel chemical isotope labeling strategy for metabolite group 
analysis, specifically detecting four major categories: amine/phenolic (A), carboxylic (C), carbonyl/keto/alkaloid 
(K), and hydroxyl (H) metabolites. Theoretically, this approach can cover 94.7% of the metabolome (primarily 
comprising five chemical subgroups: amine, phenol, hydroxyl, carboxylic, and carbonyl) [18]. However, in 
practical applications, the technique still faces significant challenges including incomplete coverage of chemical 
subgroups, insufficient isotope internal standards, and matrix effects. Particularly notable is the substantial detection 
gap for hydroxyl metabolites, resulting in actual coverage rates that fall significantly below theoretical projections. 

The Parkinson’s Disease (PD) serum metabolomics study (baseline n = 85) revealed [25] that among the 
eight metabolites used to differentiate PD from early-stage dementia, some belonging to the “four-channel 
detection deficiency subgroup” (e.g., amines such as putrescine 2H), faced challenges due to the lack of 
commercialized 13C-labeled internal standards. When using external reference materials for quantification, the 
batch-to-batch variation coefficient reached 18.2%, significantly higher than the 4.5% observed with metabolites 
using proprietary internal standards. 

Human Metabolome Database data [40] show, the HP-CIL commonly used 12C/13C labeled endogenous markers 
showed high coverage of the four-channel dataset for major chemical subgroups, but significantly reduced coverage 
of under-detected hydroxyl metabolites and minor subgroups (such as sulfur-containing compounds and heterocyclic 
compounds). Notably, endogenous markers for gut microbiota-specific metabolites (e.g., thiopterine, predominantly 
belonging to hydroxyl or other minor subgroups) achieved only 38% coverage. In dietary fiber intervention studies, 
the key biomarker propionate (10 nM, carboxylic acid class) faced challenges due to the absence of specific 
endogenous markers. When using alternative markers (propionate- 13C3) for quantification, recovery rates fluctuated 
between 8% to 12% [23], severely compromising the reliability of metabolic pathway correlation analyses. 
Furthermore, matrix effects caused quantitative deviations that showed significant variations across different 
chemical subgroups: The abstract indicates that the range of matrix effects in QC samples ranges from 77.9% to 
120.2%. For instance, when quantifying keto deoxycholic acid (20 nM, potentially belonging to hydroxyl or carbonyl 
categories) in rheumatoid arthritis patients’ serum using external reference standards, inter-batch detection 
fluctuations reached ±15% [42], far exceeding the stability requirements for clinical research data (±5%). 

While HP-CIL technology corrects for partial matrix effects and instrument drift through isotope internal 
standard calibration via 12C/13C-Diallyl sulfonyl chloride derivatization, existing alternatives still face limitations 
when addressing “underdetected hydrocarbon metabolites” and “minor chemical subgroups”. For instance, when 
using “structurally similar substitute internal standards” for microbial metabolites in these categories, quantitative 
results may still show deviations of 10% to 15% due to differences in matrix response between substitutes and 
target metabolites. This remains insufficient to meet the high precision requirements of clinical diagnostics. 

7.1.3. Reliability Bottleneck of Large-Scale Data Interpretation 

The “signal-noise” separation challenge in metabolomics data is particularly pronounced in long-term 
cohorts. Among the 10⁴peak pairs identified by HP-CIL single-sample detection, only 35–40% can be clearly 
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annotated, while the structural uncertainty of remaining peaks elevates the false positive rate in machine learning 
models (e.g., random forest) to 25% [11,25]. Although a combination of five metabolites including oxalate showed 
an AUC = 0.955 in a single cohort for Parkinson’s disease serum, multi-center studies face challenges due to 
instrument drift (e.g., mass spectrometer resolution decreasing from 120,000 to 80,000 FWHM), with 
characteristic peak intensities fluctuating ±20%. Dynamic calibration with over 1000 samples is required to 
maintain diagnostic efficacy [25]. In chronic hepatitis B patients, the cross-cohort AUC values of biomarkers like 
2-methyl-3-oxopentanoic acid decreased from 0.98 to 0.81 [25], influenced by disease progression (Hrp/Lerp 
subtypes) and treatment history, highlighting the technical difficulty in separating data standardization from 
biological variations. 

The low annotation rate of metabolites and data variability constrain the reliability of large-scale data 
interpretation using HP-CIL technology. Although the Human Metabolome Database (HMD) has nearly tripled 
the number of fully annotated metabolites [40], the annotation rate of HP-CIL detected metabolites in clinical 
samples remains only 35–40%, with the existence of numerous unknown metabolites directly impacting data 
interpretation depth. In biomarker studies for Alzheimer’s disease (AD) and Parkinson’s disease (PD), unannotated 
characteristic peaks account for 58% and 63% respectively, forcing machine learning models to exclude nearly 
half of detected signals during construction, which indirectly increases false positive rates above 25%. Instrumental 
drift-induced fluctuations in peak intensity further exacerbate this issue. Continuous analysis of quality control 
samples over 10 days revealed uncorrected metabolite peak area coefficients of variation (Covariates) reaching 
15–20%. Such volatility is more pronounced in long-term cohort studies, as seen in chronic hepatitis B patients’ 
metagenomic research where biomarkers like [43], 2-methyl-3-oxy-pentanoic acid experienced AUC values 
dropping from 0.98 to 0.81 during cross-cohort validation. This was primarily attributed to fluctuations ±20% in 
peak intensity caused by changes in instrument resolution (from 120,000 to 80,000 FWHM) across different time 
points. Additionally, among the 10⁴peak pairs generated per HP-CIL detection, only 35–40% can be definitively 
annotated [11], while structural uncertainty of remaining peaks significantly increases data interpretation 
difficulty, leading to missed potential metabolic pathway associations. Building HP-CIL-specific databases and 
implementing dynamic calibration algorithms (such as LOESS) for quality control have become essential 
solutions. The former enhances metabolite annotation accuracy through accumulated HP-CIL spectral data, while 
the latter effectively mitigates instrument stability impacts on quantitative results. For instance, in a multicenter 
cardiovascular disease study, inserting one QC sample every 20 samples and applying LOESS correction reduced 
batch-to-batch variation coefficients from 22% to 8% [10], significantly improving data reliability. 

7.1.4. Matrix Interference and Preprocessing Bottleneck in Microscale Clinical Samples 

The analysis of HP-CIL in microscale clinical samples (e.g., cerebrospinal fluid ≤ 10 μL, neonatal heel blood 
≤ 50 μL, and premature infant cerebrospinal fluid ≤ 5 μL) remains a core technical challenge. This is due to 
multiple overlapping interference factors: First, non-specific adsorption by high-abundance substances. For 
instance, albumin at 1 g/L in cerebrospinal fluid strongly adsorbs low-abundance metabolites (e.g., 10 nM 1,4-
diaminobutane) through hydrophobic interactions, resulting in a 15% loss rate of target metabolites—a 
phenomenon confirmed in metabolic analyses of brain tissue and cerebrospinal fluid from AD mouse models 
[9,25,39]. Second, high-abundance hemoglobin (approximately 120 g/L concentration) in neonatal heel blood 
binds to amine and phenolic metabolites, reducing the detection rate of breast cancer-related lipid biomarkers by 
25% [28]. Additionally, high-molecular-weight impurities in samples (e.g., mM-level urea in urine and 1–5 mg/mL 
mucin in saliva) compete with target metabolites for derivatization reagents. For example, urea in urine reduces 
the labeling efficiency of diacyl chloride in amine metabolites by 18%, leading to quantitative deviations exceeding 
15% for neurodegenerative disease markers like 1,4-diaminobutane. This mechanism aligns with the matrix 
interference observed during O-phosphoryl ethanolamine detection in bladder cancer urine samples [24,25]. 
Secondly, the adaptability and efficiency of pretreatment processes remain inadequate. Traditional methods such 
as solid-phase extraction and centrifugation often suffer irreversible losses—due to insufficient sample volumes 
in analyses of premature infant cerebrospinal fluid (≤5 μL). For instance, conventional 15000 g centrifugation (10 
min) results in over 30% loss of target metabolites due to sample adhesion, a phenomenon also documented in 
toxicological metabolomics studies of microscale hepatocyte samples [25,54]. Residual inorganic salts (e.g., NaCl 
from sweat) and small molecular impurities in sample matrices exacerbate mass spectrometry ion suppression 
effects, reducing signal response for trace metabolites like O-phosphatidylethanolamine (ELA, detection limit 5 
nM) in bladder cancer urine samples by 40%. Similar matrix interference challenges exist in hydrophilic 
interaction chromatography (HIC) quantitative analysis [16,24]. Furthermore, detection rates for gut microbiota 
metabolites (e.g., nanomolar-level short-chain fatty acids) in microfecal samples are below 60% due to 
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pretreatment losses and matrix interference, severely limiting HP-CIL technology’s application in clinical 
microsample scenarios such as newborn disease screening and minimally invasive diagnostics [23,25,28]. 

7.1.5. The Fault Line between Basic Research and Clinical Transformation 

The insufficient validation of single cohort studies and poor cross-scenario applicability have created a 
significant gap between the foundational research achievements of HP-CIL technology and their clinical 
translation. In bladder cancer biomarker studies [24], although the ethanolamine O-phosphate identified by HP-
CIL technology demonstrated diagnostic value in a single cohort (AUC = 0.709), its sensitivity dropped from 82% 
to 65% when validated on 500 samples across five clinical centers due to urinary matrix variations (with urea 
concentration fluctuations of 2–3 times). This failure to meet the FDA’s clinical effectiveness threshold (requiring 
AUC ≥ 0.8) currently limits HP-CIL to an adjuvant diagnostic tool rather than a direct component of clinical 
treatment protocols. 

Similar challenges exist in studies of polyamine metabolic biomarkers for oral cancer detection [33]. The 
polyamine pathway key metabolite identified by HP-CIL technology achieved an 85% early detection rate in a 
single cohort. However, during multicenter validation, the rate dropped to 72% due to variations in sample 
preprocessing procedures across institutions (e.g., storage temperature and processing time). Combining this with 
DNA methylation testing was required to elevate the detection rate above 95%. Moreover, the metabolic profiles 
of chronic hepatitis B patients are significantly influenced by disease progression (Hrp/Lerp subtypes) and 
treatment history [43], further highlighting the disconnect between basic research and clinical translation. 

The core reasons for this gap lie in three aspects: First, the high homogeneity of single cohort samples in 
basic research fails to reflect clinical population heterogeneity (such as age, gender, and comorbidity differences). 
Second, there is a lack of standardized clinical translation pathways for metabolic biomarkers, particularly missing 
subgroup validation processes across ethnicities and disease stages. Third, insufficient analysis has been conducted 
on the correlation between HP-CIL detection results and clinical indicators, with most studies focusing solely on 
metabolite-disease associations without thoroughly verifying the causal relationship between metabolic changes 
and clinical outcomes (such as treatment response or survival). Future efforts should establish a multicenter 
validation network, develop clinical translation guidelines for HP-CIL biomarkers, and specifically address how 
different population subgroups influence detection results. Expanding sample sizes and subgroup analyses will 
enhance translation reliability, while strengthening research on metabolite-clinical prognosis correlations will 
provide stronger evidence-based support for clinical applications. A comprehensive evaluation of HP-CIL 
technology development requires addressing both challenges and potential opportunities, which can be more 
intuitively grasped through the panoramic framework shown in Figure 8. 

 

Figure 8. Challenge-Opportunity Landscape of HP-CIL Technology. 
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7.2. Future Trends 

7.2.1. Technical Bottleneck and Optimization Direction of Derivatization 

In the derivatization process of HP-CIL technology, labeling efficiency is susceptible to environmental 
factors (temperature, pH) and functional group adaptability: Elevated temperatures reduce the labeling efficiency 
of pamoic acid chloride on hypoxanthine [9], pH fluctuations significantly interfere with brominated DmPA in 
labeling hydroxyl metabolites [25], and some aldehyde metabolites exhibit lower labeling efficiency [55]. To 
address these challenges, researchers can develop smart-responsive derivatization reagents (e.g., temperature/pH-
sensitive polymer probes) [56], expand the “functional group-reagent” matching library (e.g., designing sulfonic 
acid chloride derivatives with long hydrophobic chains for hydroxyl targeting) [59], and integrate machine learning 
models to predict labeling efficiency [51]. These optimizations provide crucial support for advancing subsequent 
technological development. 

7.2.2. Methodological Improvement of Accurate Quantification of All Metabolites 

HP-CIL technology has limitations in comprehensive metabolite quantification, including insufficient 
coverage of hydroxy metabolites, low coverage of isotope internal standard libraries for microbial-specific 
metabolites, and significant deviations in alternative internal standard quantification [18,25]. Currently, the 
development of exclusive labeling reagents for hydroxy groups has significantly increased the detection of hydroxy 
metabolites in yeast samples [59]. The expansion of isotope internal standard libraries [18] and the 
supplementation of sub-group internal standards from gut microbiota and plant sources have improved coverage. 
Additionally, the establishment of a “structural similarity correction model” [51] has effectively reduced 
quantification deviations in alternative internal standards, providing a reliable data foundation for multi-omics 
integration and AI analysis. 

7.2.3. Improved Reliability of Interpretation of Large-Scale Metabolome Data 

Current HP-CIL technology achieves annotation for only 35–40% of detected peaks in single analyses, with 
inconsistent instrument stability causing data fluctuations that increase false positive rates in machine learning 
models [25,51]. To address this, we have established a dedicated HP-CIL metabolite database integrating measured 
retention times and MS/MS spectral annotation rates [40]. The implementation of dynamic QC sample calibration 
algorithms (e.g., LOESS and SVR) has reduced batch-to-batch variation coefficients [24]. Furthermore, our 
“signal-noise separation model” classifies unannotated peaks through correlation analysis between peak profiles 
and metabolic pathways [28], providing robust support for real-time monitoring and AI-driven data mining. 

7.2.4. Matrix Interference and Pretreatment Optimization of a Small Clinical Sample 

The high-performance chromatographic immunoassay (HP-CIL) analysis of trace clinical samples such as 
cerebrospinal fluid and neonatal heel blood faces challenges including adsorption of high-abundance substances 
(e.g., cerebrospinal fluid albumin, heel blood hemoglobin) [9,24,39], loss during traditional sample pretreatment, 
and matrix ion suppression [16,53]. The developed miniaturized matrix removal devices (such as surface-modified 
specific ligand nanomagnetic beads) [28] can eliminate high-abundance interfering compounds. The microfluidic 
chip integrates a “pre-treatment-derivatization-separation” workflow [56] to achieve stable detection of trace 
samples. By combining computational mass spectrometry for matrix interference prediction [59], the signal 
response of target metabolites is significantly enhanced, enabling real-time analysis of minimally invasive samples 
and ensuring data reliability through AI-driven approaches. 

7.2.5. The Fault Line between Basic Research and Clinical Transformation 

The HP-CIL technology faces a disconnect between basic research and clinical translation, with insufficient 
validation across single cohorts and inconsistent preprocessing procedures hindering achievement of clinical 
standards [25,51]. By establishing a multicenter validation network with standardized sample protocols [39], bladder 
cancer biomarkers demonstrated improved AUC (area under the curve) across trials. The development of the “HP-
CIL Metabolic Markers Clinical Translation Guidelines” [25] standardized subgroup validation protocols, reducing 
variability in oral cancer biomarker detection rates. Furthermore, the creation of a “metabolic markers-clinical 
prognosis” correlation model [56] confirmed positive correlations between metabolites and treatment response rates 
in type 2 diabetes, providing evidence for multi-omics integration and personalized therapy development. 
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8. Conclusions 

HP-CIL metabolomics technology has achieved systematic breakthroughs in metabolite detection sensitivity, 
coverage, and quantitative precision via its 12C/13C dual-labeling strategy, offering innovative solutions across 
multiple domains. 

HP-CIL metabolomics technology demonstrates significant application value across diverse medical 
domains. In oncology, it enables labeling of amine/phenol metabolites in urine samples, offering a novel non-
invasive approach to early diagnosis for diseases like bladder cancer. Specifically, lipid metabolism analysis of 
minimal breast cancer cell populations uncovers key metabolic nodes in tumor progression. In neurodegenerative 
disease research, saliva/serum metabolomic profiling via HP-CIL metabolomics technology allows precise 
differentiation of Alzheimer’s disease stages and Parkinson’s disease subtypes. For cardiovascular diseases, the 
technology has elucidated the regulatory mechanisms of targeted therapies on postoperative cardiac metabolism 
and the metabolomic reprogramming effects of drugs in diabetic patients, providing metabolic targets for 
personalized treatment. In immunology and inflammation fields, HP-CIL metabolomics technology-identified 
metabolite panels exhibit exceptional diagnostic performance in rheumatoid arthritis and chronic hepatitis B, 
significantly enhancing disease-specific diagnostic efficacy. 

In nutrition and health research, HP-CIL metabolomics technology offers precise metabolomic solutions for 
food component analysis, safety assessment, and nutritional intervention. For food component studies, metabolic 
pathway analysis of fermented foods enables optimization of low-salt fermentation processes, driving the 
development of healthy food products. In food safety assessment, it uncovers potential risk associations between 
food components and human health, providing theoretical support for establishing a novel “food-metabolism-
health” evaluation system. For nutritional intervention efficacy evaluation, the constructed multi-lipid scoring 
system provides a quantifiable metabolic basis for personalized dietary guidance. Additionally, it screens 
nutritional metabolism-related biomarkers to support disease prevention strategies. 

In sports health research, HP-CIL metabolomics technology serves as a core tool for decoding exercise 
metabolism mechanisms and supporting athlete wellness. It accurately captures dynamic tricarboxylic acid cycle 
metabolite changes during endurance sports and purine metabolism profiles post–high-intensity interval training, 
providing critical insights to deepen understanding of exercise metabolic adaptation mechanisms. By analyzing 
metabolite fluctuations in athlete sweat and blood samples, HP-CIL metabolomics technology enables precise 
monitoring of fatigue and metabolic status. Integrating metabolomics data with other physiological parameters 
allows prediction of sports performance, forming a scientific basis for tailoring training plans and competition 
strategies. In sports-related disease prevention, analysis of dynamic patterns in exercise fatigue–associated 
metabolites facilitates formulation of personalized nutritional and training strategies. These interventions 
effectively mitigate exercise-induced fatigue while providing a precise basis for sports-mediated prevention and 
management of metabolic syndrome. 

In drug development, HP-CIL metabolomics technology has established a comprehensive technical chain 
spanning from trace component detection to metabolic marker verification. For anti-doping analysis, it effectively 
overcomes urine matrix interference to enable high-sensitivity detection of low-concentration stimulants. In 
biomarker-driven drug discovery, the technology provides critical support for drug target screening and efficacy 
evaluation. Additionally, by investigating dietary impacts on human metabolism, it offers novel perspectives for 
drug development strategies. 

Despite challenges in data standardization, database construction, and clinical applicability, HP-CIL 
metabolomics technologydemonstrates broad prospects through in-depth integration with single-cell RNA 
sequencing, spatial proteomics, and artificial intelligence. Future technological innovation and interdisciplinary 
integration are expected to establish a “detection-analysis-intervention” closed-loop system. Prevention stage: 
Wearable devices enable real-time monitoring of metabolic fingerprints (e.g., sweat hypoxanthine for exercise 
fatigue warning); Diagnosis stage: Combined with single-cell RNA sequencing and spatial proteomics, it analyzes 
tumor microenvironment metabolic heterogeneity (e.g., lung cancer glutamine metabolism subtypes); Treatment 
stage: Generative adversarial networks (GANs) simulate individual drug metabolic responses to enable customized 
targeted therapies (e.g., predicting metformin efficacy in diabetic patients). 

Notably, its deep collaboration with Artificial Intelligence, such as using Transformer models to mine 
dynamic metabolic networks—will drive precision medicine’s shift from “disease diagnosis” to “health 
prediction”. This provides critical technical support for complex disease prevention, personalized medicine, and 
the big health industry, serving as a core bridge between basic research and clinical practice. 
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