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Abstract: Tongue image segmentation is a key component of the intelligent 
diagnosis in Traditional Chinese Medicine (TCM), and its accuracy directly affects 
the subsequent classification and diagnostic results. However, current research 
faces challenges due to data scarcity and limited model adaptability. The lack of 
publicly available tongue image datasets restricts the model’s generalization ability, 
while traditional algorithms are highly sensitive to lighting and posture changes. 
Moreover, general deep learning models have not been optimized for the 
characteristics of blurry tongue edges and low contrast background, which often 
leads to loss of details or over-segmentation. To address these issues, this study has 
constructed a high-quality dataset containing 1405 tongue images and proposes a 
lightweight tongue image segmentation network (TSNet). TSNet employs 
depthwise separable convolutions to reduce computational cost, introduces a 
Parallel Atrous Spatial Pyramid Pooling (PASPP) module to extract multi-scale 
features and handle blurred boundaries, and incorporates a Boundary Adjustment 
(BA) module to enhance edge segmentation accuracy. Experimental results show 
that TSNet achieves a mean Intersection over Union (mIoU) of 97.20% while using 
fewer parameters than mainstream models. While preserving tongue details, it 
effectively reduces the number of parameters, providing an efficient solution for 
tongue image segmentation in TCM.  

 Keywords: deep learning; traditional Chinese medicine; tongue image segmentation; 
convolutional neural network 

1. Introduction 

In the long history of clinical diagnosis in Traditional Chinese Medicine (TCM), four basic diagnostic 
methods, inspection, auscultation, inquiry, and palpation, have been established [1]. Among them, tongue 
diagnosis, as the most direct inspection method, has long been used to assess the body’s health status. The shape, 
color, and coating of the tongue can reflect the body’s Qi, blood, Yin-Yang balance, and the function of internal 
organs [2]. However, traditional tongue diagnosis relies heavily on the practitioner’s experience, which is 
subjective and lacks quantitative description, limiting its broader clinical application. 

The deep integration of artificial intelligence and medical imaging technology provides a new path to address 
the above challenges. By using computer vision to quantify tongue features and applying deep learning to establish 
tongue image-syndrome correlation models, TCM tongue diagnosis is transitioning from an experience-based 
approach to a data-driven paradigm [3]. However, during the acquisition of tongue images, due to limitations of 
the capture equipment, the images often include facial background elements such as lips and teeth. Therefore, it is 
necessary to segment the tongue to prevent the background from affecting the analysis. As a fundamental step in 
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intelligent tongue diagnosis, the accuracy of tongue image segmentation directly impacts the reliability of 
subsequent analysis. 

Traditional tongue image segmentation methods, such as thresholding, edge detection, or active contour 
models, typically rely on manually designed features and rules [4]. Although some success has been achieved in 
specific scenarios, these methods have limited general applicability and are highly sensitive to lighting and tongue 
posture changes. Therefore, overcoming the limitations of these traditional methods and improving the accuracy 
and robustness of tongue image segmentation has become a challenging task in the research field. 

In recent years, deep learning technologies have made significant breakthroughs in the medical field [5–9]. 
In particular, Convolutional Neural Networks (CNNs) have also been gradually applied to tongue image 
segmentation. Huang et al. proposed an automatic tongue image segmentation method based on an enhanced fully 
convolutional network. This method uses a deep residual network as the encoder, receptive field modules and a 
Feature Pyramid Network (FPN) decoder, effectively capturing global contextual information and fusing multi-scale 
feature maps to recover the tongue contour. Quantitative evaluation of the SIPL-tongue dataset shows that this method 
outperforms four other deep learning segmentation methods regarding average Hausdorff distance, Dice similarity 
coefficient, accuracy, and sensitivity, demonstrating its potential in automated tongue diagnosis [10]. Yao et al. 
proposed a tongue image segmentation method combining an improved U-Net and edge optimization post-
processing. Through data augmentation, precise network design, and edge optimization, experiments show that 
this method performs excellently on multiple datasets and improves the segmentation results of classic neural 
networks [11]. Jia et al. proposed the QA-TSN model, which addresses the small sample problem through a Tongue 
Style Transfer Generation Network (T-STGN) and uses an improved partial convolution to accelerate real-time 
segmentation. The proposed tongue segmentation loss function (TSL) effectively smooths the tongue boundary. 
Experimental results show that QA-TSN outperforms other methods in segmentation accuracy and frame rate [12]. 
Huang et al. proposed the PriTongueNet model, which improves tongue image segmentation accuracy using an 
attention-guided module and geometric prior loss. Experiments show that the model performs excellently on two 
datasets, with inference time only one-third that of other models. The geometric prior loss significantly improves 
the segmentation performance and can be applied to different network architectures [13]. Although existing deep 
learning models, such as U-Net and DeepLab, have demonstrated outstanding performance in various medical image 
segmentation tasks, the unique challenges posed by TCM tongue images—such as low contrast between the tongue 
area and the background, and unclear tongue boundaries—mean that general-purpose deep learning models have not 
been optimized for these characteristics, resulting in issues such as detail loss or over-segmentation. 

This study proposes a tongue image segmentation network (TSNet) based on CNN to address these issues. 
The network integrates depthwise separable convolutions, parallel atrous spatial pyramid pooling modules [14], 
and boundary optimization mechanisms, aiming to improve the accuracy and efficiency of tongue image 
segmentation. By constructing a high-quality dataset containing 1405 tongue images, this study provides an 
effective solution for tongue image segmentation in TCM. Experimental results show that TSNet preserves tongue 
details and reduces the number of parameters. Despite the challenges posed by complex backgrounds and diverse 
tongue images, TSNet achieves a mean Intersection over Union (mIoU) of 97.20%, demonstrating its potential in the 
intelligent automation of TCM tongue diagnosis. The main contributions of this paper are summarized as follows. 
(1) Constructed a large-scale, high-quality dataset in the field of TCM tongue diagnosis, covering multi-source 

and diverse tongue images, which addresses the lack of publicly available data and provides a standardized 
foundation for future research. 

(2) Proposed an improved PASPP module with optimized atrous convolution settings to effectively enhance 
multi-scale feature extraction, specifically targeting challenges such as blurred tongue boundaries and strong 
background interference. 

(3) Designed a Boundary Adjustment (BA) module that significantly improves the model’s ability to extract 
tongue edge contours, making it particularly suitable for fine-grained segmentation of complex tongue shapes 
in TCM applications. 

(4) Developed an end-to-end TSNet architecture that achieves high segmentation accuracy (97.20% mIoU) and 
high pixel accuracy (98.52% MPA (mean pixel accuracy)), while significantly reducing model complexity 
with fewer parameters (48.74 M). Compared to other models, TSNet outperforms in segmentation accuracy, 
improving by 0.48% over FusionNet (FusionNet mIoU: 96.72%) and 2.49% over GCN (GCN mIoU: 
94.71%). At the same time, TSNet has significantly fewer parameters than FusionNet (81.68 M) and GCN 
(58.14 M), demonstrating its potential in computational efficiency and practical applications. 
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The rest of this paper is organized as follows. Section 2 introduces the proposed model, Section 3 presents 
the experimental data and details of the experiments and analyzes the results, and finally, Section 4 provides the 
discussion and conclusion. 

2. Method 

The TSN model consists of three parts: feature encoding, contextual awareness, and feature decoding, as 
shown in Figure 1. After inputting the tongue image, the model performs feature extraction through multiple layers 
of convolution, batch normalization, and activation functions. To reduce parameters, depthwise separable 
convolutions and max pooling operations are used. Next, adaptive pooling and the ASPP module are applied to 
enhance the image’s localization and recovery capabilities. The feature decoding part gradually restores the feature 
map details through operations like transposed convolution, pooling indices, and boundary adjustment (BA) while 
adjusting the channel numbers and sizes of the feature maps. The final output is the optimized result. The overall 
architecture improves feature extraction accuracy while effectively enhancing boundary detail recovery. 

 

Figure 1. The overall architecture of the TSNet. 

2.1. Feature Encoding Module 

The feature encoding part consists of four encoder blocks, each comprising two convolutional layers. At the 
output of each convolutional layer, activation functions, and batch normalization mechanisms are added to enhance 
the network’s non-linear expressiveness and training stability. To effectively reduce the model’s parameter count 
and lower the risk of overfitting, some traditional convolutional layers are replaced with depthwise separable 
convolutions. Depthwise separable convolutions decompose the convolution operation, significantly reducing 
computational complexity while maintaining model performance. 

Depthwise separable convolution can be divided into two main operational processes. The first is the 
depthwise convolution operation, during which each input channel is convolved with an independent convolution 
kernel, generating a set of output channels. Since each output channel only depends on a single input channel, this 
operation efficiently processes each channel, reducing computational complexity. Next is the pointwise 
convolution operation, where a 1 × 1 convolution kernel processes all pixels. Each output pixel only depends on 
the pixel value at the corresponding position in the input image, thus enabling cross-channel feature integration. 
This depthwise separable convolution structure effectively compresses the computation load and has been proven 
effective in various tasks, making it an essential technique for building efficient convolutional neural networks. 

2.2. Contextual Awareness Module 

The contextual awareness module consists of the Atrous Spatial Pyramid Pooling (ASPP) module, which 
aims to expand the receptive field and capture global information. This module is located between the feature 
encoding extraction and decoding modules, serving as a transition between encoding and decoding. This study 
designed two architectures to evaluate and compare the performance of ASPP. Parallel Atrous Spatial Pyramid 
Pooling (PASPP) and Series Atrous Spatial Pyramid Pooling (SASPP) were trained and evaluated for performance. 
Figure 2 shows the structures of SASPP and PASPP. 
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The PASPP module comprises four dilated convolution modules and one global pooling module. Each dilated 
convolution module includes a dilated convolution operation, batch normalization layer, and activation function. 
To avoid the grid effect caused by non-orthogonal convolutions, the dilation rates of each dilated convolution 
module are set to 1, 6, 12, and 18. The input data is first pooled through the global pooling operation and then 
combined with the outputs of the four dilated convolution modules through upsampling, ultimately producing the 
network’s output. The SASPP module, on the other hand, consists of four dilated convolution modules. After the 
input data is processed by the four dilated convolution module (DCM), the output is further processed through a 
batch normalization (BN) layer to ensure the stability and robustness of the output features. The ASPP architecture 
effectively enhances the model’s ability to perceive information at different scales, allowing it to capture essential 
features in various contextual environments, thereby improving its overall performance. 

 

Figure 2. Structure of SASPP and PASPP. 

2.3. Feature Decoding Module 

The feature decoding module aims to restore the high-level semantic features and spatial information 
extracted by the feature encoding module. This module consists of four decoding blocks, including an upsampling 
module, a boundary adjustment module, and a 1 × 1 convolutional layer. The output of each decoding block is 
fused with the production of the feature encoding module, gradually restoring the image’s detailed information. 
The Pooling Index (PI) [15] mechanism is introduced to further improve the tongue’s localization and 
reconstruction. Through this mechanism, the feature encoding and decoding modules can more effectively fuse 
global and local information, thereby enhancing the model’s localization accuracy and reconstruction performance. 

BA module is added to the decoding module to enhance the boundary segmentation performance. The 
structure of the BA module is shown in Figure 3. The BA module has two parallel paths. The first path consists of 
a 1 × 1 convolutional module, while the second path comprises standard convolution and 1 × 1 convolution layers. 
After processing through batch normalization and activation function layers, the outputs of both paths are summed, 
resulting in the final output of the module. This structure effectively refines boundary information, optimizing the 
output of the decoding module and improving the model’s boundary accuracy in segmentation tasks. Through this 
design, the feature decoding module not only restores the spatial structure of the image but also enhances the model’s 
performance in fine boundary segmentation and accurate localization, thereby boosting overall performance. 

 
Figure 3. Structure of boundary adjustment module. 
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3. Experiments and Results 

3.1. Dataset 

This study systematically constructs a tongue image dataset to address the current lack of publicly available 
datasets in traditional Chinese medicine tongue diagnosis. Through cross-institutional collaboration and a multi-
source data collection strategy (including offline collection, research project accumulation, and online public data 
screening), 1405 standardized tongue images were integrated. The details of the dataset are shown in Table 1. The 
tongue contour segmentation annotations were completed using the Labelme software labelme 5.1.1, establishing 
pixel-level segmentation labels for data annotation. Figure 4 shows representative raw tongue images and their 
corresponding annotation results. The dataset is randomly divided into training, validation, and testing sets in a 
6:2:2 ratio. 

Table 1. Information of the tongue image datasets. 

Dataset Numbers Marking Status Data Sources 
Dataset 1 300 With a marked [16] 
Dataset 2 1105 Not marked Collected by professional (Our team) 

 
Figure 4. Some examples of tongue image segmentation dataset. 

This study constructs a multi-stage data preprocessing system for the tongue image segmentation task. First, 
image size statistics revealed significant dimensional heterogeneity in the dataset. The bilinear interpolation 
algorithm standardizes all samples to a resolution of 416 × 352. Next, spatial domain filtering (Gaussian filter, 
bilateral filter) was applied to eliminate noise interference, and morphological opening operations were used to 
remove minor artifacts. Finally, based on a dynamic augmentation strategy, random rotations of ±15°, vertical 
flips, and HSV space parameter perturbations were introduced during the training phase to enhance the model’s 
robustness to lighting variations. 

3.2. Performance Evaluation Metrics 

This study uses mean Intersection over Union (mIoU) and mean pixel accuracy (MPA) to evaluate the 
performance of different neural segmentation methods. mIoU is the ratio of the intersection and union points 
between the model’s predicted results for each category and the true label values, and then the average is taken. 
Its definition is as follows. 

1

1 K
i

i i i i

TP
mIoU

K TP FP FN


   (1)
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where True Positive (TP) is the number of correctly segmented target pixels, True Negative (TN) is the number of 
correctly segmented background pixels, False Positive (FP) is the number of background pixels incorrectly 
segmented as target, and False Negative (FN) is the number of target pixels incorrectly segmented as background. 

3.3. Experimental Environment and Configuration 

The training and testing tasks for the tongue image segmentation model are implemented based on the 
PyTorch deep learning framework. The Adam optimizer is used to optimize the training process, and cross-entropy 
is employed as the loss function. The initial learning rate is set to 1 × 10−4, halved every 10 iterations to promote 
model convergence and improve segmentation accuracy. The batch size is set to 16. These settings remain 
consistent across all models. Each model is trained under the same conditions, and the best-performing validation 
set weights are saved for subsequent testing. 

3.4. Experimental Environment and Configuration 

3.4.1. Comparisons with Other Methods 

To evaluate the effectiveness of TSNet, we conducted a comparative analysis of its segmentation 
performance. The selected comparative models include FCN [17], SegNet [15], GCN [18], FusionNet [19], 
DeepLabv3+ [20], and BiSeNet [21].  

Table 2 shows a performance comparison of different segmentation models, including mIoU (mean 
Intersection over Union), MPA (mean pixel accuracy), and the number of parameters. As shown in Table 2, the 
TSNet model excels in all evaluation metrics, particularly demonstrating its unique advantage in balancing 
accuracy and computational efficiency. Specifically, TSNet achieved the best mIoU of 97.20. The MPA is 98.52, 
only slightly lower than FusionNet. However, in practical applications, TSNet showcases excellent computational 
efficiency with a more reasonable parameter count (48.74 M). Compared to other models, such as FusionNet 
(81.68 M) and GCN (58.14 M), TSNet has fewer parameters, which allows it to maintain high accuracy while 
offering more substantial computational efficiency. In addition, TSNet performs better in balancing computational 
efficiency and performance compared to models like BiSeNet (mIoU: 93.54, MPA: 97.83, Parameters: 12.41 M) 
and DeepLabv3+ (mIoU: 96.05, MPA: 98.08, Parameters: 54.94 M). Particularly, TSNet demonstrates relatively 
excellent characteristics in balancing model size and accuracy. Its design allows it to provide efficient inference 
speeds across different hardware environments, while ensuring desirable segmentation accuracy. 

Table 2. Performance comparison of different segmentation models. The bold values indicate the best results, and 
the underlined values indicate the second-best results. 

Model mIoU MPA Parameter  
FCN 96.80 98.48 20.22 M 

SegNet 96.54 98.30 29.46 M 
GCN 94.71 97.60 58.14 M 

FusionNet 96.72 98.55 81.68 M 
DeepLabv3+ 96.05 98.08 54.94 M 

BiSeNet 93.54 97.83 12.41 M 
TSNet 97.20 98.52 48.74 M 

Figure 5 demonstrates the visual segmentation results of different methods, where TSNet shows a clear 
advantage, surpassing other existing tongue segmentation methods. In contrast, although other models can capture 
the shape of the tongue to some extent, they commonly suffer from issues such as blurred boundaries, over-
segmentation, or loss of details. TSNet effectively avoids these problems, providing more accurate and consistent 
segmentation results, especially in handling the tongue’s edges, where it excels in clearly defining the tongue’s 
contours and accurately capturing details. In contrast, other models fall short in boundary definition and detail 
precision, often leading to over-segmentation or under-segmentation, particularly with complex or irregular tongue 
shapes. In summary, TSNet not only improves accuracy in the tongue segmentation task but also enhances 
robustness and boundary detail capture, demonstrating stronger adaptability. 
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Figure 5. Visualization results of segmentation across different models. 

3.4.2. Ablation Study 

In this section, we conduct ablation studies to analyze the effectiveness of the proposed framework. Table 3 
presents the different configurations of the model in the ablation experiments and their performance results. 

Table 3. Ablation study results. 

BA SASPP PASPP mIoU Parameter 
- - - 95.89 8.48 M 
√ - - 96.58 39.82 M 
√ √ - 96.74 47.16 M 
√ - √ 97.20 48.74 M 

According to the data in Table 3, when no additional modules (BA, SASPP, PASPP) are used, the model’s 
mIoU is 95.89 with 8.48M parameters. After introducing the BA module, the mIoU increases to 96.58, but the 
parameter count significantly rises to 39.82 M, indicating that the BA module contributes to performance 
improvement. Further adding the SASPP module leads to a slight increase in mIoU to 96.74, but the parameter 
count increases again to 47.16 M. Finally, when the BA and PASPP modules are combined, the model’s mIoU 
reaches the highest value of 97.20, with the parameter count at 48.74 M. This indicates that the combination of the 
BA and PASPP modules significantly enhances model performance, and the increase in parameters aligns with 
the performance improvement. As our model, the final configuration demonstrates an effective balance between 
high performance and computational cost, showcasing its effectiveness in the tongue segmentation task. 

4. Discussions and Conclusions 

This study proposes a new tongue image segmentation model, TSNet. The model integrates depthwise 
separable convolution, parallel atrous spatial pyramid pooling (PASPP), and boundary adjustment (BA) 
mechanisms, achieving a mIoU of 97.20% and an MPA of 98.52%, demonstrating outstanding segmentation 
performance. A key contribution of TSNet is its ability to strike a good balance between high segmentation 
accuracy and computational efficiency. Compared to other advanced models, such as FusionNet and GCN, TSNet 
achieves a higher mIoU score while maintaining a lower parameter count (48.74 M). The design of TSNet enables 
real-time performance even in resource-constrained environments and maintains high accuracy with minimal 
computational overhead. 

In addition, the PASPP and BA modules proposed in this study not only demonstrate significant performance 
improvements within TSNet, but we also believe they hold strong potential for integration into other advanced 
backbone networks. Both modules feature modular and architecture-agnostic designs, making them suitable for 
embedding into mainstream segmentation networks such as UNet, DeepLabv3+, and SwinUNet. They are 
particularly effective in addressing common challenges in medical image segmentation, such as blurred boundaries 
and the need for multi-scale contextual awareness. Although we have not yet conducted a systematic evaluation 
of these modules in other architectures due to time and resource constraints, we plan to explore this direction in 
future work to assess their robustness and applicability across different tasks and networks, and to provide valuable 
insights for modular design in medical image segmentation. 
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Although TSNet has achieved promising results, some limitations can still be addressed in future work. First, 
the dataset used in this study contains 1405 tongue images, but it still does not fully represent the various shapes, 
colors, and conditions of tongue images. Future research could expand the dataset, particularly considering the 
tongue features across different populations, to improve the model’s generalization capability. Secondly, TSNet 
faces issues with boundary recognition, mainly when the contrast between the tongue and the background is low 
or the edges are blurry. Future work could introduce boundary optimization mechanisms, such as boundary 
regression modules, conditional random field post-processing, and boundary loss functions, to improve 
segmentation accuracy and enhance the model’s robustness in practical applications. In addition, although the 
PASPP and BA modules have shown strong potential within TSNet, their application in other backbone networks 
has not been fully explored. Future research will investigate the feasibility of integrating these modules into other 
mainstream networks to assess their generalizability and scalability. 

In summary, TSNet provides a high-precision, computationally efficient solution for tongue image 
segmentation in Traditional Chinese Medicine, balancing segmentation accuracy and computational efficiency. 
By integrating methods such as depthwise separable convolution, PASPP, and BA, TSNet performs exceptionally 
well across various evaluation metrics, demonstrating its potential in the intelligentization of Traditional Chinese 
Medicine tongue diagnosis. Future research will focus on expanding the dataset, improving model efficiency, and 
exploring the application of TSNet in real-time diagnostic tools. 
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