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Abstract: Pine wilt disease is a significant global plant epidemic and a management
priority for numerous countries worldwide. Pine wood nematodes can parasitize a wide
range of pine species, making early detection of infected trees essential for preventing
further spread of the disease. Recent advances in deep learning and remote sensing
technologies have enabled efficient automated detection of diseased trees. Most existing
methods rely on convolutional neural network layers for feature extraction and spatial
dimension reduction, which may cause the loss of fine-grained texture details and
lead to misdetection of background elements and visually similar objects. To enhance
diseased tree recognition accuracy, this paper proposes an object detection model using
images captured by unmanned aerial vehicles. The proposed method incorporates
discrete wavelet transform (DWT) to reduce spatial resolution while preserving critical
information for further analysis, and integrates a cross-modal channel enhancement
module within a two-stream feature extraction network. Furthermore, the method
incorporates a RoI-based similarity constraint that applies cosine similarity loss and
classification supervision to ensure coherent feature representations between processing
branches. This approach achieves 89.2% accuracy on the pine wilt disease dataset
and outperforms advanced methods on the VisDrone dataset. Several object detection
models are compared based on the mean average precision (mAP) metric. Results
demonstrate that the DWT-based detection algorithm achieves superior performance in
detecting individual small targets and clustered infected pine trees.

Keywords: pine wilt disease; unmanned aerial vehicle; object detection; deep learning;
image sensors; discrete wavelet transform

1. Introduction

Accurate detection and recognition of plant disease occurrences is essential for forest ecosystem management,
as diseases pose significant threats to both ecological health and economic stability. Invasive pathogens cause
particularly severe damage due to the lack of natural biological controls. Pine wilt disease (PWD) is one of the
most destructive plant diseases and has spread rapidly across much of southern China since it was first detected in
Nanjing in 1982 [1]. It not only causes massive economic losses amounting to billions of Chinese yuan [2], but also
disrupts local pine forest ecosystems and reduces carbon sequestration capacity [3].

The pine wilt nematode (PWN), a plant parasitic nematode belonging to Bursaphelenchus genus, was first
identified as a causal agent of pine forest deterioration in 1971, leading to widespread forest decline throughout
southwestern Japan [4]. The following year, the sawyer beetle species Monochamus alternatus was recognized by
Mamiya and Enda as the primary vector of PWN [5]. Multiple control strategies have been developed to manage
PWN, each with distinct advantages and limitations. Chemical control, while effective, requires careful pesticide
selection and adherence to application principles to minimize risks such as the unintended death of non-target
insects, contamination of water resources, and ecosystem disruption [6]. Biological control utilizes natural enemies
and microbial agents as environmentally friendly alternatives [7–9], although it requires long-term commitment to
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develop suitable control agents. Physical and mechanical control methods, including tree removal, are simple to
operate and cost-effective. Currently, using Unmanned Aerial Vehicles (UAVs) to capture remote sensing images
and employing methods based on artificial intelligence to detect target trees represents an effective and important
approach for early detection. Consequently, integrated pest management approaches that combine diverse control
techniques with advanced detection technologies are increasingly favored due to their complementary advantages.

Machine learning and deep neural networks (DNNs) have demonstrated remarkable capabilities in computer
vision tasks, particularly object detection and image classification. Unlike manually designed filters constrained by
human knowledge, modern neural networks can automatically learn hierarchical feature representations [10], which
has greatly promoted the development of other industries and provided possibilities for combining neural networks
with various tasks such as robotic path planning, manufacturing defect detection, and forestry or agricultural
applications [11–14]. The development of advanced DNN architectures [15–18] has significantly improved the
processing of high-dimensional visual data, making them well suited for remote sensing applications.

Remote sensing techniques significantly enhance target detection and localization by utilizing high-precision
sensors and automated global positioning system (GPS) navigation systems. Researchers have been using this
powerful technology with post-processing procedures to address challenging recognition problems [19–21]. Con-
ventional deep learning methods often struggle with small target detection in high-altitude images, where infected
trees appear as small objects against complex forest backgrounds. Feature extraction from low-resolution imagery
frequently results in the loss of critical texture information, leading to misclassifications between healthy trees
and diseased trees. Additionally, existing object detection frameworks lack effective multi-scale feature fusion
mechanisms to handle the varying sizes of individual and clustered infected trees. Background noise and visual
similarity between diseased trees and other forest elements further complicate accurate detection. To address these
issues, we proposed an object detection model with extra feature processing path leveraging wavelet transform.

The main contributions of this paper with the wavelet-based detection model can be summarized as follows:
(1) We propose a novel dual-channel feature extraction architecture that integrates a conventional neural network
pathway with a discrete wavelet transform channel, creating a complementary feature fusion mechanism that lever-
ages both spatial and frequency-domain representations. (2) A Haar wavelet-based multilevel feature fusion module
that systematically enhances cross-scale feature integration through hierarchical frequency-domain decomposition,
enabling superior feature refinement across multiple resolution levels. (3) An object-level similarity loss mechanism
is designed that combines cosine similarity constraints with classification supervision, ensuring that both feature
extraction channels learn coherent and discriminative feature representations while improving model robustness, and
reducing false detections in complex backgrounds. (4) A robust framework for the detection of pine wilt disease is
constructed by integrating the proposed feature extraction and refinement modules, demonstrating superior detection
precision relative to existing baseline models.

The structure of this paper is organized as follows: Section 2 reviews related works on traditional PWD
detection, deep learning object detection models, and intelligent PWD recognition models. Section 3 presents the
proposed pine wilt tree detection models, along with its submodules, in detail. In Section 4, results are presented
comparing the proposed model and the state-of-the-art object detection models on the pine trees dataset and
VisDrone dataset [22]. Section 5 provides detection examples and discusses the findings, while Section 6 concludes
the paper.

2. Related Works

Significant efforts by researchers have facilitated the transition from conventional detection methods to DNNs-
based detection approaches leveraging remote sensing techniques. This section surveys relevant work, including
studies on PWD detection, object detection models, and their applications.

2.1. Conventional PWD Detection

Traditional PWD detection methods include resin secretion assessment, morphological analysis under mi-
croscopy, and molecular techniques such as PCR-based genetic identification [23–26]. Although highly accurate,
these laboratory-based methods are time-consuming and impractical for large-scale forest monitoring.

2.2. Deep Learning Based Recognition

Since the introduction of LeNet [27] and AlexNet [28], convolutional neural networks (CNNs) have revolu-
tionized computer vision tasks including object detection, multimodal image-text understanding, intelligent robotics,
image segmentation, and pose estimation [29–32], significantly reducing detection time and enhancing recognition
accuracy. CNNs leverage hierarchical feature extraction through convolutional layers and employ specialized heads
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for various recognition tasks. Several key innovations have substantially enhanced neural network capabilities.
Through gradient-based optimization, back-propagation [33] enables networks to learn features and update weights
automatically. Batch normalization [34] accelerates training convergence and improves model robustness by
addressing internal covariate shift. Perhaps most significantly, residual connections introduced by He et al. [35]
revolutionized network architecture by creating shortcut identity mapping paths that mitigate gradient vanishing
problems, thereby enabling the development of powerful architectures for complex visual recognition tasks.

Object detection has been a popular computer vision technique in recent years, involving the recognition
and localization of objects in images or videos. It transcends basic image classification by providing not only the
categories of objects but also their precise locations, represented as bounding boxes. Region-based Convolutional
Neural Networks (RCNN) [36] and You Only Look Once (YOLO) [37] have been pivotal in the evolution of
object detection algorithms, driving research toward greater accuracy, speed, and efficiency in target detection. In
PWD detection, we employ standard metrics derived from the confusion matrix shown in Figure 1. The confusion
matrix categorizes detection results into four types: True Positives (TP) represent correctly detected diseased trees,
False Positives (FP) indicate healthy trees incorrectly classified as diseased, False Negatives (FN) denote diseased
trees that were missed by the model, and True Negatives (TN) correspond to healthy trees correctly identified as
non-diseased. The equations for Precision and Recall are described as

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
. (2)

Precision and recall are two key metrics used to evaluate classification performance. Recall, also known as
sensitivity, measures the model’s ability to identify all relevant instances. In disease detection applications, high
recall is particularly critical as it ensures that infected trees are not missed, preventing potential disease spread.

Figure 1. Confusion matrix for object detection evaluation.

Deep learning-based object detection approaches can be classified into anchor-based or anchor-free algorithms,
depending on whether predefined anchor boxes are used to align bounding boxes with the extracted feature maps.
Alternatively, the algorithm can be categorized based on whether the model includes a distinct stage for generating
proposal regions, known as one-stage or two-stage methods. Examples of one-stage methods include the YOLO
series [38–40] and Single Shot Multibox Detector (SSD), while two-stage methods include Fast R-CNN [41] and
Faster R-CNN [42]. In contrast to these anchor-based approaches, anchor-free models directly predict boundaries
without predefined anchors [43,44].

Beyond CNN-based architectures, researchers have explored integrating methodologies from Natural Language
Processing (NLP). The self-attention mechanism and Transformer architecture [17,18] have driven evolution from
task-specific language models to large language models. These attention-based approaches have begun to rival
CNN models in computer vision applications. The Vision Transformer (ViT) is a pioneering model that applies the
principles of the Transformer architecture to computer vision tasks, with a greater global context understanding
and a larger receptive field [45]. An end-to-end object detection model with Transformer (DETR) was presented
by Carion et al. [46], which combines a CNN backbone network and Transformer detectors. By treating objects
as a fixed set of learned queries and using Hungarian matching to align predictions with ground-truth boxes, it
eliminates the need for non-maximum suppression. Recently, Zhao et al. [47] proposed a real-time Transformer
detector achieving higher inference speed than YOLO models on Tesla T4 GPU, incorporating intra-scale feature
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interaction and hybrid encoder for reduced latency.
Despite delivering state-of-the-art performance on object detection benchmarks, Transformer-based approaches

require substantial GPU memory and lengthy training schedules, which limits their applicability to practical
downstream tasks and employment to mobile detection devices.

2.3. Deep Learning Based PWD Detection

Recent advances in remote sensing and deep learning have enabled automated PWD detection from UAV
imagery, offering scalable solutions for large-scale forest monitoring. Current approaches primarily utilize two types
of data modalities: hyperspectral and RGB imagery. Hyperspectral images provide rich spectral information across
multiple wavelengths, enabling detailed analysis of chemical properties for disease classification [48–51]. However,
hyperspectral data acquisition is constrained by high costs, technical complexity, and the requirement for lower
flight altitudes, resulting in reduced coverage efficiency. In contrast, RGB imagery offers a practical alternative that
can be efficiently captured at higher altitudes while maintaining sufficient information for disease detection.

Several deep learning approaches have been developed for PWD detection using RGB imagery. Deng et al. [52]
used a Faster-RCNN model with ResNet [35] and predefined some improved anchor boxes on an augmented dataset
containing 1700 pine wilt images. A study was conducted by Oide et al. [53] to investigate the distribution of the
three channels in RGB images of infected trees and applied artificial neural network and support vector machine
on their dataset. Another research [54] built a deep learning model with attention-based fusion of the frequency
domain features and refined RGB imge features, which outperformed the advanced YOLO v5 [55] algorithm on
their pine trees data from Liaoning Province, China. Other researchers also evaluated the performance of commonly
used object detection models on recognizing UAV-captured images [56–59]. These studies have demonstrated
significant improvements in implementing pine disease detection systems, but several limitations remain. First,
some approaches rely on relatively small datasets, which may lead to overfitting and limit generalizability to diverse
forest environments. Additionally, two-stage models such as Faster R-CNN, despite their high accuracy, exhibit
slow inference speeds that hinder their deployment in real-time operational forest monitoring systems.

Detecting small objects in UAV imagery poses significant challenges, especially in forest scenarios where
infected trees manifest as small-scale targets within cluttered backgrounds. Current approaches have explored
various strategies to address scale variation and feature preservation challenges. Feature Pyramid Networks
(FPN) [60] provide multi-scale feature representation, with subsequent works enhancing fusion mechanisms through
adaptive weighting schemes [61]. Ye et al. [62] also enhanced their model by designing a fusion network that
integrates global and local features, with the latter extracted through a self-attention-based backbone network.
Recent developments have incorporated additional prediction heads for small objects [63] and attention mechanisms
to focus on relevant regions [64], with other architectural improvements further demonstrating advances in small
object detection [65–67].

However, challenges remain in applying object detection to forest disease detection. Traditional CNN-based
feature extraction methods often lose critical high-frequency texture information essential for distinguishing subtle
disease symptoms. Hierarchical processing architectures further exacerbate this issue, as fine-grained spatial details
are progressively lost through pooling operations, while high-level semantic information becomes diluted during
multi-scale feature integration. To address these feature preservation challenges, we deploy the discrete wavelet
transform, which enables simultaneous capture of both spatial and frequency domain features while maintaining
invertibility. Our approach reconstructs multi-scale features by selectively preserving specific frequency components
through inverse wavelet transforms, thereby retaining critical texture information essential for disease classification.

3. Materials and Methods

To improve the performance of the proposed object detection model, we integrate multiple specialized modules
into the backbone and optimize the neck architecture. Each module is discussed in detail below.

3.1. The Dual-Channel Feature Extraction Network

In most object detection methods, CNNs take the pivotal role of extracting features from the initial images. The
semantic information becomes richer while the model goes deeper, meanwhile, the representation of texture details
starts to diminish. In image processing, objects and details usually exhibit different properties at different scales.
Intuitively, edge information is more prominent in high-frequency details, whereas shape contours or large structures
are more visible in low frequencies. Therefore, we add a branch to the backbone network and use wavelet transform
to extract the information of high- and low-frequency information in the image. Research has demonstrated that
wavelet transforms are powerful tools for extracting useful features in the frequency domain [68,69]. The Haar
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transform is a compactly supported, dyadic, and orthonormal wavelet transform, which makes it particularly efficient
and suitable for real-time or embedded applications in image processing [70]. Due to its sensitivity to edges and
abrupt changes, the Haar wavelet provides more distinctive representations when applied to tree-like structures
in images.

We incorporate a Haar wavelet transform down-sampling module into one branch of the CNN as an auxiliary
structure to construct feature maps. The architecture of the dual-channel network is shown in Figure 2. The
convolutional pathway uses the CNN module from FasterNet [71] which employs a 2× 2 convolutional kernel with
a stride of 2, to perform convolutional operations, reduce the spatial dimensions, and provide the deeper features
for subsequent layers. The basic block consists of a convolutional layer (Conv), followed by batch normalization
(BN) and Gaussian Error Linear Unit (GELU) activation. To preserve the distinctiveness between the two backbone
streams, the first Conv layer employs two separate sets of parameters. Following that, a partial convolutional layer
(P Conv) [71] is employed for efficient feature extraction. Additionally, the Patch Embedding and Patch Merging
modules are implemented as (Conv Down) modules with zero padding and strides of 4 and 2, respectively. In the
other branch, the Wavelet stream, the Haar discrete wavelet transform is applied as down-sampling operation and
for capturing features in frequency domain using a high frequency filter and a low frequency filter. The operation of
two-dimensional DWT of function f(x, y) with size M ×N can be calculated as

WΦ(j,m, n) =
1√
MN

∑
x

∑
y

f(x, y)Φj,m,n(x, y),

W i
Ψ(j,m, n) =

1√
MN

∑
x

∑
y

f(x, y)Ψi
j,m,n(x, y),

(3)

whereWΦ(j,m, n) calculates an approximation of input; W i
Ψ(j,m, n) represents the wavelet coefficients in specific

orientation i, with i ∈ {H,V,D} corresponding to horizontal, vertical, and diagonal respectively; x and y are
defined as 0 ≤ x, y < M,N ; m and n are the translation factors; and j indicates the level of wavelet decomposition.
In Equation (3), the scaling function and the other three wavelet function can be given as

Φ(x, y) = φ(x)φ(y),

ΨH(x, y) = ψ(x)φ(y),

ΨV (x, y) = φ(x)ψ(y),

ΨD(x, y) = ψ(x)ψ(y),

(4)

where the φ(x) stands for mother scaling function, and is utilized to create a series of approximation at low frequency.
The function ψ(x) is the mother wavelet function, which is responsible for analyzing and encoding the differences
between adjacent approximations, with a focus on high-frequency variations. To perform 2D Haar transform, these
two filter will perform the convolution operation along horizontal and vertical dimension respectively, producing
four different feature maps. The DWT module improves feature representation of the model and enhances robustness
to noise without introducing any new learnable parameters. The Cross-Modal Channel Enhancement (CMCE) fusion
module is applied after the basic block at stage S2, S3, and S4, which will be sent to the refinement module.The
details of CMCE fusion model are illustrated in Section 3.2.

3.2. Cross-Modal Channel Enhancement Module

The CMCE module serves as a feature enhancement mechanism, which is designed to improve the representa-
tion of multi-scale features in deep networks. It enhances the discriminative power of feature maps by leveraging
channel-wise interactions and mutual information sharing. The CMCE module can be defined as follows.

fa, fb = Split(x), x ∈ RB×2C×H×W , (5)

where Split() denotes that the input tensor x is equally split along the channel dimension into two feature maps, fa
and fb, each with shape RB×C×H×W . Here, B, C, H , and W represent the batch size, number of channels, height,
and width, respectively. To obtain global contextual information, average pooling is applied to both branches

f pool
a =

1

H ·W

H∑
i=1

W∑
j=1

fa(:, :, i, j), f pool
b =

1

H ·W

H∑
i=1

W∑
j=1

fb(:, :, i, j). (6)
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The pooled features are then passed through a shared attention subnetwork composed of two convolutional layers
and nonlinearities

A(a) = σ (Conv (ReLU (Conv (a)))) , (7)

where Conv denotes a convolutional neural network layer, and σ is the sigmoid function that maps the output to the
range between 0 and 1. The cross-modal enhancement is performed by

f enhanced
a = fa + fb · A

(
f pool
a

)
, f enhanced

b = fb + fa · A
(
f pool
b

)
, (8)

in which · denotes element-wise multiplication with broadcasting. Finally, the enhanced features and the fused
representation are combined with a residual structure to form the module output

ffused = ReLU (BN (Conv (x))) , (9)

Out = Concat
(
f enhanced
a + ffused, f

enhanced
b + ffused

)
, (10)

where Concat(fa, fb) operation concatenates two elements as one output.

Figure 2. The proposed dual-channel feature extraction model containing a convolutional flow and a wavelet
transform flow. The CMCE and IDWAF modules are detailed in Figure 3.

The structure of the CMCE module is depicted in the left part of Figure 3. By employing a feature enhancement
mechanism, the module enables the model to maintain consistency between the two channels while extracting deep
features, particularly when detecting the same object or processing the same region. As described in Equation (5),
features from a lower-level extraction layer are divided into CNN part and wavelet part along the channel dimension.
To enhance both streams, the module generates attention weights based on the counterpart branch, enabling
cross-modal fusion along the channel axis. This process, detailed in Equation (7), utilizes a ’squeeze’ operation
inspired by the Convolutional Block Attention Module (CBAM) [72]. While our approach shares the element-wise
multiplication principle with attention mechanisms like CBAM, our CMCE module differs in that it specifically
targets cross-modal feature enhancement rather than single-channel attention. This operation implements selective
information gating that enhances relevant features while suppressing irrelevant information. A bottleneck-like
convolutional layer is employed as a projection shortcut to compute the fused features from the original input.
Subsequently, an additional layer is used to align the fused features with the enhanced representations, enabling
effective integration of both streams.
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(a) CMCE module architecture (b) IDWAF module architecture

Figure 3. The architecture of proposed modules: (a) CMCE module and (b) IDWAF module.

3.3. Multi-Scale Wavelet Alignment Fusion

In the most CNN-based object detection model, an FPN structure and Path Aggregation Network (PAN) [73]
module are used for feature refinement with top-down and bottom-up procedures, where features from adjacent
layers are fused in a step-by-step manner. While this process is effective in many scenarios, it can result in the loss
of fine details during the cross-level fusion process. Our feature refinement neck structure is illustrated in Figure 3a.
In the first stage, intermediate features are generated using the Information Fusion Module (IF) and Information
Injection Module (Inject) with the same settings as in the Gold-YOLO model [74], where the IF integrates features
from four different scales to ensure sufficient and efficient information aggregation, and the Inject modules are
responsible for further extraction and fusion. In the second stage, the neck network, information from P2, P3 and
P4 is aggregated with a self-attention based module for future processing. In the refinement from high-level to
low-level, the Inverse Discrete Wavelet Transform (IDWT) is used as an up-sampling process to reconstruct the
high-resolution feature maps. IDWT can improve the fusion of multiscale features by combining both fine and
coarse information, resulting in better detection of objects at different scales [75,76]. The structure of the Inverse
Discrete Wavelet Alignment Fusion (IDWAF) is presented in the right part of Figure 3b. The fusion procedure
employs Depthwise convolution (DWConv) [77] to process the input from adjacent layers concurrently, further
extracting local details. This combination helps the model obtain complementary information. Finally, the results
on three scales are used for object localization, boundary regression, classification, and loss computation.

3.4. Object Level Similarity Loss

To enhance feature consistency and improve detection robustness, we introduce an object level similarity loss
(SimLoss) that operates on dual-branch feature representations. This mechanism maintains coherent feature learning
across different processing paths while providing specialized supervision for detected objects. The model used
target bounding boxes to perform Region of Interest align operation [78] of the feature maps from two parallel
branches. The SimLoss are combined with a cosine similarity loss and a classification supervision loss. The cosine
similarity loss is described as

Lcos =
1

N

N∑
i=1

(
1− eiA · eiB

|eiA||eiB |

)
, (11)

where eij are obtained by the same encoder network from two separate streams. To ensure that the encoded
feature representations capture semantically meaningful information and prevent the model from converging to
non-discriminative feature spaces, classification supervision is applied to both processing branches

Lcls =
1

2
(LCE(pA,y) + LCE(pB ,y)) , (12)

where LCE represents the cross-entropy loss function, with p and y denoting the prediction and target, respectively.
The final loss combines the original detection loss and the cosine similarity loss with the proposed object-level
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constraints, which is defined as
Ltotal = Ldet + λ1Lcos + λ2Lcls, (13)

where λ1 and λ2 are balance weights for similarity and classification losses.

4. Results

To validate the effectiveness of our approach, we conducted extensive comparative experiments against
state-of-the-art methods on two datasets.

4.1. Dataset and Setups

This study focuses on forest in several counties within Yichang City, Hubei Province, China, from which the
data was collected. Yichang City is characterized by a vast forested area, with tree cover exceeding 55%, which
presents significant potential for the application of intelligent detection algorithms. Our drones are equipped with
Global Navigation Satellite receivers. During flight operations, a mobile receiver is deployed alongside a base
station receiver to capture observations. The data were captured in 2022 by an image sensor at an altitude of more
than 1000 m with a spatial resolution of better than 0.6 m. All images were preprocessed to a uniform resolution
of 1000× 1000 pixels. After annotation, we obtained 2360 images and annotated 2962 pine tree instances, which
were divided into training, validation, and test datasets with 1321, 331, and 708 images, respectively, following
an approximate ratio of 6:1:3. During training, several data augmentation techniques were employed, including
saturation adjustment, vertical and horizontal flipping, mixup [79], and mosaic technique [40]. Three samples from
our dataset and one augmented sample with bounding boxes are presented in Figure 4.

(a) (b) (c) (d)

Figure 4. Representative samples from the pine wilt disease dataset: (a–c) infected trees, (d) data augmentation
preprocessing.

The object detection model is developed using the Ultralytics YOLO Vision platform [55], with the backbone
structure and configurations based on the FasterNet architecture [71]. The detection heads are adopted from the
YOLOv8 detector [80]. The AdamW optimizer [81] is used with an initial learning rate of 0.001. In addition, a
warm-up strategy and cosine annealing scheduler are applied during training. The balance weights in our loss
function λ1 and λ2 are set to 1.0 and 0.5. The entire project is implemented using PyTorch version 1.13.1, and all
models are trained on an NVIDIA A100 GPU provided by the Digital Research Alliance of Canada [82]. During the
training process, a hard negative mining strategy is used, and the model weights are updated using both SIoU [83]
bounding box loss and our proposed similarity loss. All experiments are trained for 300 epochs with a batch size of 48.

4.2. Comparisons

Our focus is primarily on evaluating the performance of our models on our pine wilt trees dataset and to
perform rapid detection of all infected trees in the test images. For the detection of pine wilt disease, it is crucial to
identify all infected trees, as undetected infections can lead to rapid disease spread. Thus, we use Recall, Average
Precision (AP), and AP at a threshold of 0.50 (AP@50) as the evaluation metrics, which are presented in the
COCO dataset as the evaluation metrics [84]. Additionally, the number of Parameters (Params) of the model
and Gigabyte Floating-point Operations (GFLOPS) of the model are calculated to assess computational cost. We
compare representative models, including Cascade R-CNN [85], advanced YOLO algorithms, RT-DETR with
ResNet50 as the backbone, and the proposed model, on our pine wilt dataset. As illustrated in Table 1, our model
outperforms 3.2% and 2.6% compared to YOLOv8-s.
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Table 1. Comparative analysis of various detectors was conducted on our pine trees dataset, with the top-ranked
results highlighted in bold. The evaluation metrics used were Average Precision (AP) and Average Precision at an
Intersection over Union (IoU) threshold of 0.5 (AP@50).

Model Recall AP@0.5 AP Params GFLOPs

Cascade R-CNN [85] 0.751 0.824 0.457 69.4 M 119.0

YOLOv5u-s [55] 0.756 0.851 0.491 9.1 M 24.0

YOLOv6-s [86] 0.746 0.850 0.490 16.3 M 44.2

YOLOv8-s [80] 0.801 0.860 0.504 11.1 M 28.6

YOLOv11-s [80] 0.776 0.874 0.518 9.4 M 21.6

RTDETR-r50 [47] 0.81 0.878 0.513 42.8 M 130.5

Ours 0.824 0.892 0.53 13.5 M 30.9

4.3. Ablation Study

To verify the effectiveness of the proposed modules, we separately examined the DWT down-sampling module,
the CMCE module, and the similarity loss. The original YOLOv8-s model is selected as the baseline model. We
integrated our proposed DWT backbone network, CMCE module and similarity loss into the baseline model, and
tested their combinations to evaluate their synergistic effects. According to Table 2, the CMCE module demonstrates
an improvement in both AP and AP@50 compared to simple concatenation fusion, indicating that the cross-modal
feature enhancement mechanism effectively captures comprehensive information. The DWT down-sampling in
the backbone also shows improvement compared to conventional convolutional down-sampling and the FasterNet
backbone [71], demonstrating that frequency-domain decomposition preserves critical fine-grained features that are
typically lost in down-sampling operations. The similarity loss contributes an additional improvement (from 0.881
to 0.887), which is crucial for maintaining consistency of the feature across the dual channels and reducing false
positives. Although both streams employ the same architecture for feature extraction, the dual-channel fusion model
achieves improved accuracy over single-channel approaches, validating our hypothesis that combining spatial and
frequency-domain representations enhances detection capability. Furthermore, the combination of DWT, CMCE,
and SimLoss results in a 2.7% enhancement in AP@50 compared to the baseline YOLOv8-s model.

Table 2. Ablation study on the proposed components: DWT-backbone, FasterNet, CMCE module, and SimLoss.
✓indicates the component is included in the configuration. The best scores are highlighted in bold.

DWT-backbone FasterNet CMCE SimLoss AP@50 AP

✓ 0.877 0.511
✓ 0.880 0.514
✓ ✓ 0.881 0.519
✓ ✓ 0.884 0.523
✓ ✓ ✓ 0.887 0.524

To investigate the performance of Haar wavelet transform, we compared models that replace the Haar transform
with other wavelet transforms. We also tested learnable wavelets [87] to evaluate the adaptive model’s performance.
Results are shown in Table 3. Although other wavelet transforms achieve competitive results, Haar wavelet still
achieves the highest mAP on the PWD dataset. We evaluated the Frame Per Second (FPS) performance on a
laptop equipped with GTX 4070 GPU, and the Haar wavelet approach outperformed strided convolution. To further
validate the effectiveness of our DWT-based approach, we conducted Grad-CAM [88] visualization analysis as
shown in Figure 5. Comparing the attention heatmaps, the DWT channel focuses more on specific tree regions
while the conventional layers focus on broader image contexts, which demonstrates their complementary strengths
when combined in our dual-channel framework.

We also evaluated the hyperparameter λ1 and λ2 in our proposed similarity loss function. The experiments
achieved best results when λ1 and λ2 were set to 1.0 and 0.5, respectively. Experimental results are shown in
Table 4.
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Table 3. Experimental results with different wavelet transforms and convolutional operations, with the top-ranked
model scores highlighted in bold.

Transform AP@50 AP FPS

Conv 0.872 0.521 107.5
Daubechies (db2) 0.887 0.525 -
Learnable DWT 0.885 0.520 -
Haar 0.892 0.53 144.9

Table 4. Ablation study results for similarity loss hyperparameters λ1 and λ2, with the best scores highlighted in bold.

λ1 λ2 AP@50 AP

1.0 0.25 0.882 0.522
1.0 2.0 0.881 0.527
0.5 0.5 0.88 0.525
2.0 0.5 0.881 0.527
1.0 0.5 0.892 0.53

Figure 5. GradCAM visualization comparison showing original input image (left), attention heatmap with DWT-
based feature extraction (middle), and attention heatmap with conventional convolution (right).

4.4. Comparisons on VisDrone Dataset

To further validate the generalizability and robustness of our proposed model, we conduct additional ex-
periments on the VisDrone dataset [22], which presents similar challenges to our pine wilt disease recognition
task. The VisDrone dataset has 6471 images for training and 1610 for validation, with 10 different classes being
annotated. It is a large-scale benchmark dataset specifically designed for object detection in drone-captured images,
containing dense annotations of small objects in complex aerial scenes. The experimental results in Table 5 show
that our proposed model outperforms advanced YOLO algorithms on this publicly available challenging dataset,
further validating the effectiveness of our approach for small object detection in aerial imagery. Figure 6 shows
the smoothed training curves of different models on VisDrone, where our method (red line) demonstrates superior
performance compared to baseline YOLO models.

Table 5. Experiments on VisDrone validation dataset with advanced object detection models, with the top-ranked
scores highlighted in bold.

Models Recall AP@50 AP

Yolov8-s 0.393 0.404 0.238
Yolov10-s 0.387 0.395 0.236
Yolov11-s 0.391 0.401 0.238

Ours 0.396 0.412 0.243
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(a) Training progress on pine wilt dataset (b) Training progress on VisDrone dataset

Figure 6. Training curves comparison showing mAP evolution across epochs for different models.

5. Discussion

The experimental results demonstrate the effectiveness of our proposed approach for pine wilt disease detection
in UAV imagery. The superior performance can be attributed to several key factors. First, the frequency-domain
analysis through DWT decomposition enables the model to capture subtle texture changes that are often missed by
conventional CNN-based methods. Second, the object-level similarity constraint prevents the dual streams from
learning conflicting representations, ensuring consistent feature learning across processing paths.

As shown in Figure 7, our proposed model successfully identifies small infected objects that are often missed
by YOLOv8-s algorithms, particularly for targets near image boundaries where traditional methods struggle with
blurred features. The cross-dataset evaluation on VisDrone further validates the generalizability of our approach,
though detecting extremely small objects remains challenging.

(a)

(b)

Figure 7. Comparison of detection of YOLOv8-s and our proposed model: (a) Results of our DWT-based model, (b)
Results of YOLOv8-s model.

40



Zhou and Yang Sens. AI 2025, 1(1), 30–44

However, we observed limitations in detecting dead trees that lack distinctive visual features. Since these
dead trees may still harbor vectors or pathogens, future work could explore multi-stage classification schemes to
differentiate various infection stages and incorporate additional spectral information for comprehensive disease
monitoring. Additionally, although learnable wavelets did not demonstrate superior results in this work, investigating
adaptive wavelet selection mechanisms remains worthwhile and could optimize performance for different forest
environments. Furthermore, extending the framework to real-time processing would enable autonomous UAV-based
monitoring systems for practical deployment.

6. Conclusions

In this study, we propose a DWT-based dual-channel pine tree detection algorithm, aimed at enhancing the
accuracy of detecting small, infected pine trees in UAV imagery. Our approach employs a two-stream architecture
where input features are split into dual-channels for parallel processing. The DWT down-sampling module serves as
an auxiliary feature extraction component that captures both spatial and frequency domain information while preserv-
ing fine-grained details often lost in conventional pooling operations. To ensure feature consistency between the two
channels, we introduce an object-level similarity constraint that enforces cosine similarity between corresponding
feature representations. In the decoder pathway, IDWT operations replace traditional upsampling methods, enabling
principled reconstruction of spatial details from frequency components. The complete framework is integrated with
YOLO detection heads to provide optimization for pine wilt disease recognition. Experimental results demonstrate
that the proposed approach significantly enhances detection accuracy compared to baseline methods.
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The VisDrone2019 dataset is available at https://github.com/VisDrone/VisDrone-Dataset. The code will be
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