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Abstract: Floods, as natural disasters, have a profound impact on society. 
Assessing them is highly complex due to the interplay of factors such as 
meteorology, topography, and land cover. Accurate forecasting is essential to 
reduce disaster risks, guide emergency response strategies, and minimize economic 
and social losses. Recent advancements in machine learning have significantly 
improved the accuracy of flood predictions, offered more cost-effective solutions 
and enhanced decision-making processes. This paper reviews the most common and 
recent advancements in machine learning applications for flood hazard assessment 
and forecasting and compares their performance with traditional approaches such 
as numerical modelling and remote sensing. While numerical models provide 
detailed predictions, they are computationally demanding and depend on precise 
data inputs. While remote sensing provides valuable large-scale data for flood 
monitoring, it often faces limitations in real-time responsiveness and accuracy, 
particularly under rapidly changing flood conditions. Machine learning addresses 
these limitations by leveraging historical data to identify patterns and refine 
predictions, improving both accuracy and efficiency. Challenges such as the 
variability of model performance across different regions and the requirement for 
high-quality data remain. This paper explores both long-term and short-term flood 
forecasting and the hazard assessment, shows that combining different methods in 
hybrid models can improve accuracy by reducing data uncertainties. Future 
research should prioritize refining machine learning algorithms for diverse 
environments, improving data processing techniques, and developing integrated 
methodologies. These advancements will lead to more reliable flood predictions, 
ultimately helping to mitigate the risks and impacts of flood disasters.  

 Keywords: machine learning; flood hazard assessment; model optimization; 
forecasting 

1. Introduction 

Floods are among the most frequent and devastating natural disasters, posing significant threats to human 
life, infrastructure, and socio-economic stability. Flood forecasting, a vital non-structural measure for flood control 
and disaster mitigation, plays a crucial role in providing accurate and timely predictions of flood events [1]. It 
remains a central focus—and a persistent challenge—in hydrology, as the development of reliable real-time 
forecasting models is one of the most demanding tasks in the field. 
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The destructive force of floods can cause extensive damage to vehicles, public utilities, and critical 
infrastructure, requiring substantial financial resources and prolonged recovery efforts. Disruptions to 
transportation and communication networks further hinder societal functions and impede emergency response 
operations [2]. In addition, floods have severe impacts on agriculture and the environment, triggering widespread 
soil erosion, destruction of vegetation, and disruption of natural habitats. These effects reduce soil fertility, destroy 
wildlife ecosystems, and contribute to biodiversity loss, ultimately threatening ecological balance and 
environmental health [3]. Moreover, floods often result in significant water pollution due to the failure of sewage 
treatment facilities, allowing untreated industrial and domestic wastewater to contaminate rivers, lakes, and other 
water bodies. This contamination not only endangers aquatic ecosystems but also compromises the safety of 
drinking water supplies, increasing the risk of waterborne diseases such as cholera and typhoid fever [4]. 

In recent decades, the frequency and intensity of flood events have risen markedly, primarily due to 
accelerating global climate change. The growing likelihood of extreme and catastrophic events, coupled with 
increasing uncertainty in their spatial and temporal distribution, underscores the urgent need for improved flood 
prediction and management strategies [5]. Enhancing the accuracy of flood forecasting, extending lead times, and 
advancing flood risk mitigation through innovative theories and technologies have become pressing priorities in 
the earth and environmental sciences. 

Despite these needs, the practical application of flood damage models remains limited due to the complex 
nature of flood events and challenges in acquiring high-resolution loss data [6]. Major obstacles include the lack 
of comprehensive damage records, uncertainties in loss estimation, frequent omission of indirect and intangible 
impacts, and difficulties in transferring models across diverse regions and contexts [7]. These challenges continue 
to hinder the development of robust, transferable flood damage models. 

Flood forecasting forms the foundation of disaster impact assessment by estimating the timing, magnitude, 
and spatial extent of flood events. This information provides critical input for identifying affected areas and 
quantifying potential impacts. In this context, machine learning (ML) approaches have emerged as powerful tools 
for flood hazard assessment, particularly in real-time forecasting [8]. By utilizing historical datasets, ML models 
can capture complex, nonlinear relationships between flood flows or water levels and various influencing factors, 
thereby enhancing predictive accuracy through data-driven optimization. Their scalability and computational 
efficiency have generated growing interest within the research community. However, the effective deployment of 
ML models is often constrained by the limited availability of high-quality training and validation data—a persistent 
issue in flood hazard modeling [9]. Furthermore, uncertainties in both input data and model architecture can 
propagate through the forecasting process, amplifying overall prediction uncertainty. Despite recent advances, 
comprehensive frameworks for quantifying and managing these uncertainties remain underdeveloped. 

This article presents a critical review of recent and widely used machine learning models for flood hazard 
assessment, including traditional algorithms, deep learning techniques, and hybrid modeling approaches. It also 
provides a systematic review of ML-based flood hazard assessment studies conducted between 2019 and 2024. It 
also identifies the key challenge of quantifying climate change impacts on flood risk and forecasting. Drawing 
upon the extensive body of research and practical experience in flood modelling, this review highlights the 
distinctive features of these models, examines current optimization strategies, and discusses future directions for 
research. The insights presented aim to inform and guide ongoing efforts to advance flood forecasting and risk 
management within the broader context of Earth and Environmental Science. Although this review focuses on 
recent advancements (2019–2024), it also references several earlier pioneering studies in machine learning-based 
flood modeling to provide historical context and continuity. 

2. Flood Hazard Assessment in Flood Forecasting 

Flood hazard assessment, particularly in forecasting, plays a vital role in natural hazard management. Over time, 
it has evolved from early frequency analysis techniques to sophisticated model simulations and hybrid approaches. 
The origins of flood forecasting date back to the early 20th century, motivated by the need for flood discharge 
estimation and management in large reservoirs [10]. This prompted the development of hydrological statistical tools 
such as the annual maximum peak discharge, annual exceedance probability (AEP), and recurrence interval, which 
remain fundamental for predicting flood probabilities and designing effective flood control measures. 

Extreme value analysis in flood studies typically employs two primary approaches: (1) flood frequency 
analysis based on observed streamflow records, and (2) the combination of design rainfall data with watershed 
models to simulate flood events. Various statistical distribution functions including standard, lognormal, Gumbel, 
and log-Pearson types are applied to characterize the statistical behaviour of extreme flood events [11]. 



Zhang et al.   Earth Environ. Sustain. 2025, 1(1), 21–41 

  23 

The development of hydrological models has significantly enhanced flood forecasting capabilities. Early 
models were often constrained in their ability to simulate hydrological processes across diverse geological 
conditions. In response, distributed watershed models emerged, subdividing catchments into hydrologically 
homogeneous units to improve simulation accuracy. The integration of Geographic Information System (GIS) and 
remote sensing technologies has further strengthened model calibration and parameter estimation, especially in 
data-scarce regions [12]. Forecasting models have progressed from one-dimensional systems for example 
Hydrologic Engineering Center’s River Analysis System (HEC-RAS) and DHI-MIKE11 （Danish Hydraulic 
Institute）to more advanced two-dimensional and three-dimensional models [13]. While 2D models improve 
representation of lateral floodplain flow, 3D models offer high-resolution simulations by solving the full Navier-
Stokes equations, albeit at the cost of significantly greater data and computational requirements [14]. 

Flood risk assessment seeks to evaluate the likelihood and consequences of flood events, considering both 
their spatial distribution and underlying drivers. This process encompasses risk identification, quantification, and 
analysis, integrating hazard, exposure, and vulnerability components. The effectiveness of any assessment 
approach depends on the spatial resolution and completeness of input data, which in turn influences both the 
accuracy and timeliness of the results [15]. Current flood risk assessment methods can be broadly classified into 
five categories: historical hazard analysis, multi-criteria indicator frameworks, remote sensing and GIS-based 
integration, scenario-based simulations, and machine learning approaches [16]. This paper focuses on the latter 
machine learning methods, highlighting their current development, practical advantages, and inherent limitations. 

3. Machine Learning Assisted Assessment Methods 

3.1. General Concepts 

ML is a data-driven approach that identifies patterns in large datasets to support predictive tasks. While 
traditional ML models have provided a foundation for various applications, they often struggle with modeling 
complex, high-dimensional functions due to their relatively simple architectures and computational constraints [17], 
which limits their effectiveness in tasks such as flood forecasting. Historically, urban flood simulation has relied 
on computationally intensive physics-based models. In contrast, data-driven ML methods offer greater efficiency 
and cost-effectiveness, though maintaining a balance between model complexity and predictive accuracy remains 
a significant challenge [18]. 

ML-based flood modeling typically involves several key stages: data acquisition, preprocessing, model 
training, optimization, and validation. Traditional ML models are computationally efficient and relatively easy to 
implement but are limited in their ability to capture complex nonlinear relationships and extract deep features from 
data [19]. Deep learning (DL) models, characterized by multiple hidden layers, are capable of capturing intricate 
patterns and complex dependencies [20]. However, these models require large datasets and significant 
computational resources, which can hinder their scalability, especially in data-scarce environments. 

To address these limitations, hybrid approaches that integrate traditional ML techniques with deep learning 
frameworks have emerged. These methods can enhance performance while mitigating the computational burden 
associated with purely deep models [21]. Future research will likely focus on improving data efficiency, enhancing 
model generalization, and developing novel hybrid architectures that can adapt to diverse flood prediction scenarios. 

Compared to traditional statistical models—which often rely on manual feature engineering and rigid 
assumptions—ML approaches provide greater flexibility. They can automatically uncover latent features and 
nonlinear interactions, thereby reducing bias and improving performance [22]. Nevertheless, ML models face 
persistent challenges, including overfitting, high computational demands, and interpretability issues [23]. 
Techniques such as transfer learning and the incorporation of alternative data sources can partially address these 
limitations [24]. 

Improving model interpretability, ensuring data quality, and enhancing computational efficiency are critical for 
advancing flood forecasting capabilities. The development of robust hybrid models, along with transparent algorithms 
and refined data management strategies, is essential to harness the full potential of ML in disaster prevention and 
emergency management [25]. A key advantage of ML models lies in their adaptability: unlike traditional models that 
require full retraining, ML models can update incrementally as new data becomes available [26]. This dynamic 
learning capability is especially valuable for flood forecasting, where environmental conditions can change rapidly. 

Moreover, ML models can efficiently handle high-dimensional and unstructured data without extensive 
manual preprocessing, thanks to their ability to automatically extract informative features [27]. Their strong 
generalization capabilities allow the application of learned representations to new and unseen scenarios, resulting 
in more reliable predictions compared to traditional methods [28]. However, deep learning models in particular 
remain “black boxes” to many users, raising concerns about transparency and interpretability [29]. Recent 
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advances, such as model-agnostic interpretation techniques, are helping to bridge this gap. Nonetheless, 
interpretability remains crucial in operational contexts like flood forecasting, where stakeholders require 
understandable and justifiable predictions [30]. 

Overfitting also poses a significant risk when models are trained on limited or biased datasets. To ensure 
robust generalization, regularization techniques and careful hyperparameter tuning are essential [31]. 

When evaluating the suitability of ML models for flood prediction, it is important to systematically assess 
their strengths and limitations. Different model types vary significantly in terms of data requirements, 
computational efficiency, predictive accuracy, and interpretability [32]. To facilitate this assessment, Table 1 
presents a strengths-and-weaknesses matrix that compares traditional ML models. This matrix provides 
researchers and practitioners with a structured reference framework, enabling a more informed selection of models 
based on application-specific needs. By analyzing these characteristics, the applicability of various models across 
different flood prediction scenarios can be better understood and leveraged effectively. 

Table 1. Strength and weakness matrix for machine learning models. 

Machine Learning 
Model Strength Weakness Reference 

Linear Regression Fast training speed; low cost;  
Effective for linearly separable data. 

Only use to handle linear 
relationships. [33] 

Decision Tree 
Requires minimal data preprocessing; 
Dealing with both classification and 

regression problems. 

Prone to overfitting; have problem 
when deal with continuous numerical 

features. 
[34] 

Random Forest Reduce overfitting problem; Robust; 
Suitable for large database. 

High model complexity; Slow 
straining speed; Not suitable for high-

dimension dataset 
[35] 

Support Vector 
Machine 

Suitable for high-dimension dataset; 
Suitable for both linear and non-linear 

classification problem. 

Long training time; Need has data 
normalization and preprocessing. [36] 

K-Nearest Neighbors 
Suitable for small sample datasets. No 
need training phase; Suitable for non-

linear relationship.  

High cost; Sensitive to data scale and 
dimensionality; Sensitive to noisy 

data. 
[37] 

Neural Networks 
Automatically learns complex patterns 
and non-linear relationships from data; 

Suitable for image. 

High model complexity; Long training 
time; Poor interpretability. [38] 

Long Short-Term 
Memory Suitable for learning complex patterns. High model complexity; Long training 

time; Poor interpretability. [39] 

To enhance the reliability and applicability of machine learning in flood forecasting, greater emphasis should 
be placed on developing more interpretable models and improving regularization methods. Tackling the challenges 
of computational demand, model transparency, and overfitting will be crucial for broader adoption and practical 
effectiveness. Hybrid approaches that integrate the strengths of both traditional and machine learning models may 
offer a balanced solution, overcoming individual limitations while maximizing their combined advantages [40]. 

In the field of flood forecasting, a wide range of machine learning models has been extensively employed to 
improve the accuracy and timeliness of predictions. These models include Artificial Neural Networks (ANN), 
Support Vector Machines (SVM), Random Forests (RF), Probabilistic Neural Networks (PNN), Long Short-Term 
Memory networks (LSTM), and the Adaptive Group Method of Data Handling (AGMDH) [41]. Each model offers 
distinct characteristics and advantages. For example, ANN can capture complex nonlinear relationships between 
input and output variables to deliver high-precision forecasts [42]. SVM constructs optimal hyperplanes to separate 
data classes effectively, while RF enhances predictive accuracy and robustness by aggregating multiple decision trees. 
PNN leverages probabilistic approaches for classification and regression tasks. LSTM, a specialized form of recurrent 
neural network, is particularly adept at modeling long-term temporal dependencies in time-series data [43]. 
ASGMDH further contributes to predictive performance by employing polynomial fitting and adaptive 
optimization strategies to improve model generalization [44]. The application of these models in flood forecasting 
not only enhances prediction accuracy but also provides vital support for real-time flood warnings and disaster 
response planning. Table 2 summarizes previous studies of machine learning models used in flood forecasting. 
  



Zhang et al.   Earth Environ. Sustain. 2025, 1(1), 21–41 

  25 

Table 2. Review of machine learning models in flood forecasting. 

Modeling 
Technique Novelty Objective  Accuracy Reference 

Trained ANN 
Square error calculation; 

definition of partial derivatives; 
change in synapse weights 

Achieving highly accurate 
long-term forecasts 

The average prediction error for 
10 days was 50.96 cm. At the 

same time, the differences 
relative to other models ranged 

from 49.22% to 78.98% 

[45] 

Boosting-ANN 
The base learning algorithm 

generates new weak prediction 
rules 

Improving the accuracy of 
the model 

RMSE (0.19), MAPE (2.72) and 
lowest MAE (0.15), NSE (0.99) [46] 

ANN 

The momentum equation in the 
SWE local inertia approximation 
is replaced with two data-driven 

methods (curve fitting and 
artificial neural networks) 

Reduced runtime of diving 
equations and improved 

generalization for real-time 
flood prediction. 

The simulation speed of the 
local inertia model is improved 

by 23%. 
[47] 

RF 
Water depths for the six sections 
of the RF alternative model and 

TUFLOW model  

Improved capacity for real-
time street-scale flood 

warning for urban coastal 
communities to address 

urgent flood nuisance issues 

MSE is 3.2 × 10−6 [48] 

SVR&PNN 
The databases used to train SVR 
and SOM were constructed from 

1D and 2D flood analyses 

Simultaneous prediction of 
rainfall returns periods and 

observation of rainfall 
inundation maps 

The highest fit of the predicted 
flood map for the study area was 

85.94 per cent 
[49] 

SVM 

Two SVM using a numerical 
model as data producer, were 

developed to forecast the flood 
alert and maximum flood depth 

Enabling real-time flood 
forecasting 

RMSE and MBE are below 
0.05, PR and TPRH are above 

90%, and CE and CC are above 
0.9 for SVM model 

[50] 

Advanced LTSM 
 

ASGMDH 

The new polynomial scheme in 
ASGMDH allows for the 

inclusion of second and third 
order polynomials with two or 
three different inputs in each 

polynomial 

Creating four different types 
of models that allow for a 

more comprehensive 
representation of the 

underlying relationships 
between variables. 

About 20% of all forecast 
samples had relative errors of 

less than 1%, while 38% of the 
samples had relative errors of 

less than 2%.  

[51] 

Although traditional two-dimensional hydrodynamic models offer high accuracy, their long simulation 
runtimes hinder real-time flood prediction applications. To address this, researchers proposed a hybrid approach 
that replaces computationally expensive components of fluid dynamics simulations with data-driven 
approximations [40]. Two methods were evaluated: integrated curve fitting and ANN-based models applied to 
finite volume schemes solving the local inertia form of the shallow water equation (SWE). Results demonstrated 
that ANNs trained on randomly sampled datasets yielded higher accuracy than those trained on simulation outputs. 
Moreover, the curve-fitting approach exhibited superior generalization and improved simulation speed by 23%. 

Researchers have introduced a novel system, termed ‘Flood 2.0’ [45], which integrates a proprietary machine 
learning library and a flood-area visualization module to enhance the accuracy of long-term flood forecasting. The 
machine learning library comprises two core components: data preprocessing and prediction. In the preprocessing 
phase, the study employs PNNs to establish data filtering rules that automatically generate high-quality initial 
datasets while removing extraneous noise. In the subsequent prediction phase, a Recurrent Neural Network (RNN) 
is utilized to forecast water levels based on the refined data. Following ten days of predictive experiments, results 
demonstrate that the Flood 2.0 system significantly outperforms existing models, achieving improvements in 
prediction accuracy ranging from 49.22% to 78.98% [45]. These findings underscore the effectiveness of the 
system’s mathematical and technical innovations. 

In a recent study, researchers applied various preprocessing techniques—including Variational Mode 
Decomposition (VMD), Bagging, Boosting, and hybrid methods such as Bagging-VMD and Boosting-VMD—to 
daily rainfall data from Malaysia’s Long Canal Basin. These preprocessing methods were integrated with ANN 
and SVR to improve prediction performance [46]. Among these, the combination of Boosting-VMD with SVR 
and ANN produced the best results, significantly outperforming baseline models. 

Simultaneously predicting rainfall recurrence periods and generating inundation maps is valuable for real-
time flood response. Researchers used PNN and SVR to estimate rainfall recurrence intervals and predict flood 
volumes and inundation maps [49]. The results showed a high fitting degree of 85.94% for expected flood maps, 
demonstrating the practicality of the proposed method in improving urban flood response capabilities. 
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For urban flood forecasting, researchers developed two SVM models to predict flood warnings and maximum 
flood depths. These models integrated numerical simulations from MIKE FLOOD with SVM-based predictions, 
resulting in highly accurate and rapid forecasts. Notably, the SVM model delivered results in just 2.1 milliseconds, 
compared to 25 h required by the numerical model, demonstrating a significant improvement in computational 
efficiency [50]. 

In the context of urban flood prediction, physics-based models are often computationally intensive and time-
prohibitive. To overcome this challenge, the study investigated the use of the RF machine learning algorithm as a 
faster alternative [51]. The RF model was trained to relate terrain and environmental features to hourly water depth 
data derived from high-resolution physical simulations. The results revealed that the RF model reduced 
computation time by a factor of 3000, significantly enhancing the feasibility of real-time decision support systems. 
In a related study, the Adaptive Structural Data Processing Group Method was introduced for daily river flow 
prediction, incorporating historical flow records alongside real-time temperature and precipitation data. The 
simplest model, using maximum temperature, precipitation, and historical flow, achieved high accuracy with an 
R2 value of 0.985 during training and 0.992 during testing. The ASGMDH model demonstrated high reliability 
and practical potential, with a relative error of less than 15% for many samples. 

Accurate prediction of river water levels is critical for effective flood control planning and floodplain 
management. Achieving high predictive accuracy often requires more than raw rainfall inputs and standard 
machine learning regression techniques [52]. Preprocessing methods play a vital role in enhancing data quality 
before applying predictive models. 

Machine learning is widely used to develop empirical models within the framework of data-driven modelling. 
This approach effectively addresses challenges such as system complexity by complementing gaps in scientific 
understanding with models derived directly from data [53]. Compared to traditional simulations, machine learning 
models are typically more cost-effective in terms of computational resources [54]. Moreover, they are particularly 
well-suited for refining or post-processing predictions from physics-based models, enabling better alignment with 
specific local conditions. 

3.2. Uncertainty in Flood Hazard Assessment 

3.2.1. Input Uncertainty 

Uncertainty quantification remains a significant and widely acknowledged challenge in climate science, 
necessitating the integration of multiple emission scenarios and climate models to generate reliable near-term 
projections [55]. However, recent research suggests that fully specified probability distributions accounting for all 
sources of uncertainty may not be essential for effective climate risk assessment [56]. Instead, a discrete, scenario-
based approach purposefully structured to capture high-impact, low-probability events, which provides a practical 
and complementary alternative framework [57]. Numerical simulations demand high precision and 
comprehensive, high-quality datasets to ensure reliable outcomes. Their effectiveness depends critically on the 
integration of extensive hydrological, meteorological, and topographic information [58]. However, discrepancies 
in data accuracy, measurement errors, and inconsistencies can introduce significant uncertainties [59]. Variations 
in hydrological data intervals, meteorological coverage, and terrain resolution, for instance, can markedly 
influence model performance [60]. Rigorous quality control and consistency across datasets are therefore essential 
for the success of numerical simulations. 

Accurate flood prediction relies on high-resolution spatiotemporal inputs, encompassing meteorological, 
hydrological, topographic, and land use data [61]. However, these datasets are often constrained by limited 
availability, missing values, and significant noise, which can compromise prediction accuracy [62]. Addressing 
these data quality issues may require the integration of supplementary data sources and the implementation of 
targeted quality enhancement strategies. 

In areas with limited ground-based observations, satellite and remote sensing products are increasingly 
employed to offer broad-scale insights into flood events [63]. Despite their growing use, these data sources present 
notable limitations, such as coarse spatial resolution, data gaps due to cloud cover, and difficulties in integrating 
heterogeneous datasets [64]. Moreover, intrinsic errors and biases in remote sensing data necessitate rigorous 
correction and validation procedures [65]. 

While recent technological advancements such as improved sensor resolution and increased observation 
frequency are enhancing the spatiotemporal granularity of available data [66], further progress in algorithm 
development is essential to fully exploit these resources for reliable and timely flood forecasting [67]. 

The distinct data requirements of numerical simulation, machine learning, and remote sensing highlight the 
inherent strengths and limitations of each approach [68]. Numerical simulations offer high precision but are 
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constrained by the need for exhaustive and accurate datasets. Machine learning approaches are more adaptable to 
varying data availability but remain vulnerable to errors embedded in historical records. Remote sensing methods 
introduce further complexities associated with resolution variability and processing artifacts, necessitating 
thorough validation [69]. Variations in hydrological data intervals, meteorological coverage, and terrain resolution, 
for instance, can markedly influence model performance. Rigorous quality control and consistency across datasets 
are therefore essential for the success of numerical simulations [70]. Machine learning methods, while typically less 
demanding in terms of data volume, similarly require high data completeness and accuracy. These models infer 
predictive patterns from historical data, rendering them highly sensitive to missing, noisy, or erroneous inputs [71]. 
In flood forecasting applications, inaccuracies in statistical features or historical trends can propagate through 
models and significantly impair predictive performance. 

Integrated ML frameworks hold significant potential for improving the accuracy of flood prediction. One 
notable study proposed a probabilistic two-stage approach that combines decision trees and ANNs to process 
satellite imagery for estimating flood probabilities [72]. This methodology proved effective in mitigating urban 
drainage inundation risks, as demonstrated in the case of Kaohsiung City. In parallel, an ANN-based predictive 
system, validated using upstream discharge data from Sudan’s Dongola Nile River station, demonstrated 
operational reliability for real-time flood hazard detection [73]. These developments illustrate how ML 
architectures enable the synergistic integration of diverse data sources including meteorological observations, 
remote sensing products, and historical datasets to deliver superior forecasting performance [74]. 

To address challenges related to data scarcity and uncertainty in hydrological modelling, researchers have 
proposed a novel synthetic data generation strategy based on Generative Adversarial Networks (GANs) [75]. 
Although still emerging within the field of hydrology, this approach offers promising potential to enhance data 
availability and improve model robustness. 

Mitigating the effects of input uncertainty on flood risk assessment has also become a focal point. Data 
preprocessing plays a critical role in enhancing input quality. Techniques such as data cleaning, interpolation, and 
fusion reduce errors and uncertainties, while multi-source data fusion—integrating satellite remote sensing, ground 
observations, and GIS data overcomes the limitations of individual sources and improves overall data reliability 
and representativeness [76]. Effective preprocessing is essential for improving ML model performance [77], 
particularly in hydrological applications where predictive accuracy is vital for sustainable water resource 
management and environmental forecasting [78]. Key preprocessing practices include data normalization, 
handling of missing values [79], and feature selection [80], which collectively improve dataset integrity and 
optimize model training [81]. These methods help transform raw inputs into more model-suitable formats, thereby 
enhancing predictive capability in complex hydrological contexts [82]. 

Furthermore, uncertainty quantification and propagation techniques such as Monte Carlo simulations and 
Latin Hypercube Sampling are instrumental in evaluating how input uncertainties influence model outputs. 
Incorporating these methods into ML frameworks enables a more robust assessment of prediction reliability [83]. 
By embedding input uncertainties within the model structure, researchers can significantly improve a model’s 
adaptability and resilience under uncertain environmental conditions. 

3.2.2. Parameter Uncertainty 

In numerical simulation, parameter uncertainty stems from the selection of model parameters, the 
establishment of initial conditions, and the specification of boundary conditions. Model parameters are typically 
derived from watershed characteristics and hydrological data, which can theoretically provide direct or indirect 
estimates. However, many parameters must still be determined through optimization, making parameter estimation 
a significant source of uncertainty [84]. The optimization process itself introduces further uncertainties related to 
calibration data selection, optimization method choice, and objective function design. For instance, the use of 
inaccurate or unrepresentative calibration data can adversely impact optimization outcomes. Similarly, 
assumptions and algorithmic choices inherent in different optimization methods can introduce subjectivity into 
parameter estimates [85]. Objective function design also plays a critical role, as different formulations can lead to 
varying results, thereby contributing additional uncertainty [86]. Accurately selecting parameters, defining initial 
and boundary conditions, and optimizing the estimation process thus remain major challenges in numerical 
simulation. Researchers employed the RF algorithm to correct errors in the large-scale European hydrological 
model PCR-GLOBWB [34]. By incorporating model state variables, the study achieved significant improvements 
in streamflow prediction accuracy, reducing model errors across multiple countries. 

Floods are complex natural phenomena exhibiting significant geographical and temporal variability, which 
presents challenges for developing universal models capable of reliably predicting their impacts [87]. Key factors 
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such as flood extent, event duration, terrain morphology, land cover, and rainfall intensity influence the 
spatiotemporal dynamics of flooding and must be carefully considered in modelling efforts [88]. Consequently, 
flood models often require regional calibration and customization to accurately reflect local conditions and event-
specific characteristics. 

A comprehensive understanding of flood dynamics demands the integration of diverse data sources, including 
hydrological models, topographic data, meteorological records, and satellite imagery. This multi-source data 
fusion enhances the accuracy of flood simulations and impact assessments [6], thereby supporting informed 
decision-making throughout the flood management cycle—from preparedness and response to recovery [89]. 

Remote sensing-based water detection typically relies on spectral band segmentation, where delineation 
accuracy is highly sensitive to threshold selection. Inappropriate thresholds can lead to substantial errors in identifying 
water bodies, thereby compromising subsequent analyses [90]. Additionally, the accuracy of water extraction is 
influenced by the spatial resolution, noise levels, and preprocessing techniques applied to the imagery [91]. To 
address these challenges, rigorous preprocessing and adaptive thresholding strategies are essential to improve 
detection reliability. 

In machine learning, hyperparameter optimization is critical for addressing model uncertainty, as 
hyperparameters significantly affect predictive performance. Common optimization methods include manual 
tuning, grid search, and stochastic search [92]. Manual tuning leverages domain expertise, grid search exhaustively 
explores predefined parameter spaces, and stochastic search improves computational efficiency by sampling 
randomly within defined bounds. 

Recent studies have applied advanced machine learning techniques in hydrology, with a focus on algorithms 
such as XGBoost, RF, and stacking ensemble methods. Notably, hybrid architectures combining ANNs with 
ensemble approaches have been developed to exploit the complementary strengths of different models [93]. These 
efforts are further supported by novel feature selection techniques, such as Recursive Feature Elimination (RFE), 
which improve model interpretability and reduce dimensionality [94]. This helps mitigate overfitting, a common 
issue in high-dimensional hydrological datasets. 

Table 3 provides a comparative overview of the four main hyperparameter optimization approaches: manual 
tuning, network search, random search and multiverse approach. Manual tuning leverages domain expertise and 
iterative experimentation. Network search exhaustively evaluates predefined hyperparameter combinations. 
Random search adopts a random sampling strategy within a specified range, potentially achieving superior results 
with lower computational cost [95]. Multiverse approach is by simulating the expansion and contraction process 
of the universe, the “white hole” and “black hole” mechanisms are used to efficiently explore the solution space 
to find the optimal solution, which is particularly suitable for complex multi-peak optimization problems [96]. 
This table is intended to clarify the advantages and limitations of each approach and guide appropriate method 
selection for different modelling scenarios. 

Table 3. Review of the parameter optimization algorithm. 

Method Advantage  Disadvantage Reference 

Manual tunning Can be based on previous experience  Highly specialised requirements when 
selecting a large number of parameters [97] 

Network tunning  Set a range and step size for each 
parameter when searching 

 Huge calculation required when have 
large number of parameters  [98] 

Random search Build the parameters as a stochastic 
model 

Low processing time when have a huge 
parameter set in deep learning [99] 

Multiverse approach Strong adaptability; Simple parameter 
setting; Strong search ability 

Lack of theoretical foundation; 
Randomness [100] 

Optimization algorithms are essential for identifying the optimal hyperparameter combinations. The choice 
of hyperparameters directly impacts model performance, making it critical to employ optimization techniques to 
minimize parameter uncertainty effectively. Practical methods such as cross-validation and grid search are 
commonly used to identify the optimal hyperparameter combinations, enhancing the model’s predictive 
performance and stability [101]. Overall, parameter uncertainty varies among methods, including indicators and 
weights for parameter estimation in numerical simulation, segmentation thresholds in remote sensing and 
telemetry, and hyperparameter selection in machine learning. Each of these aspects involves different degrees of 
uncertainty. Understanding and managing these uncertainties effectively is crucial for improving the accuracy and 
reliability of models. 
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3.2.3. Model Structure Uncertainty 

In numerical simulation, model structure uncertainty primarily arises from two key factors. First, the 
development of model structures often depends on generalizing real-world hydrological processes through 
mathematical and physical formulations [102]. However, these generalizations are constrained by researchers’ 
understanding of water movement mechanisms. Hydrological modelling is influenced by existing theories and 
empirical knowledge, which limits the design and flexibility of model structures. For instance, accurately 
representing nonlinear water flow behaviour or terrain influences is often restricted by current theoretical 
frameworks and observational experience [103]. As a result, fundamental hydrological processes may be 
incompletely represented, and the simplifications and assumptions built into models introduce uncertainty, 
ultimately affecting simulation accuracy. 

Flood prediction models often exhibit complex structural configurations [104], requiring the integration of 
interdependent hydro-meteorological parameters both static and dynamic as model inputs and outputs. These 
systems demand advanced computational frameworks capable of resolving highly nonlinear dynamics [105]. As 
a result, the development and optimization of such models remain challenging tasks [106]. Recent advances in 
machine learning have begun to address these complexities: deep neural architectures and reinforcement learning 
systems now effectively capture variable interdependencies in hydrological forecasting [107], including flood 
prediction [108]. Complementing these approaches, ensemble methodologies—which synthesize consensus-based 
predictions from multiple models—demonstrate enhanced robustness and reliability in hydrological forecasting 
applications [109]. 

In this context, researchers have conducted a comprehensive comparative study introducing a novel hybrid 
architecture specifically designed to address the inherent complexities of hydrological modelling. This architecture 
integrates state-of-the-art machine learning techniques to enhance predictive performance, key contributions of 
this study include an innovative combination of XGBoost with traditional methods such as RF and SVR [110]. 
This hybrid integration not only improves predictive accuracy but also effectively mitigates overfitting an issue 
commonly encountered in hydrological modelling. Furthermore, the research develops a multi-objective 
optimization framework that balances prediction accuracy with computational efficiency, thereby offering a 
rational basis for selecting and deploying machine learning systems [111]. A thorough meta-analysis further 
demonstrates that hybrid models consistently outperform traditional approaches across a range of hydrological 
applications [112]. Case studies presented in the research show significant improvements in flood forecasting and 
groundwater level prediction, highlighting the potential of hybrid models to tackle critical hydrological challenges. 

However, the inherent complexity and variability of hydrological systems shaped by both environmental 
changes and human activities continue to increase model structural uncertainty. Accurately capturing the 
interactions among factors such as rainfall variability, evaporation, soil infiltration, and anthropogenic impacts 
remains a significant challenge [113]. Coupled models, which integrate multiple sub-models to simulate complex 
system behaviours, introduce additional structural uncertainties due to interactions, parameter configurations, and 
integration methods [114]. In the domain of remote sensing, model structure uncertainty is often linked to the choice 
of water extraction algorithms decisions that directly influence the accuracy and reliability of the results [115]. 
Despite recent advancements, significant uncertainties persist. Researchers have reviewed commonly used water 
extraction algorithms, evaluating their characteristics and applications [116]. Careful algorithm selection is therefore 
critical to minimizing uncertainties. For example, optical- and radar-based algorithms each offer distinct advantages 
and limitations [117], depending on the study area, data characteristics, and specific research objectives. 

Figure 1 presents a summary of key machine learning algorithms, with a focus on the evolution of ANN 
architectures. The Single Layer Perceptron (SLP), developed in the 1950s, represents one of the earliest forms of 
ANNs and consists of a simple architecture without hidden layers. In contrast, the emergence of the Multi-Layer 
Perceptron (MLP) in the 1970s marked a significant advancement, introducing one or more hidden layers that 
enabled the modeling of more complex relationships [118]. Deep learning, a more recent and sophisticated subset 
of ANNs, involves the integration of multiple interconnected neural networks to process and learn from complex 
data [119]. Notably, its defining feature lies not merely in the number of hidden layers but in the depth and 
architecture of the network as a whole. This figure illustrates the progression from basic to advanced ANN 
models—SLPs, MLPs, and deep learning—highlighting improvements in predictive accuracy and computational 
capability with each stage of development. 
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Figure 1. Comparison and summary of Machine learning algorithms. 

4. Machine Learning in Flood Risk Assessment 

In recent years, ML methods have become valuable tools for flood risk assessment. These techniques leverage 
intelligent algorithms to automatically identify flood risk characteristics and the relationships between driving 
factors, enabling flexible, objective, and rapid evaluations. A range of ML models have been applied to flood risk 
assessment with promising results [120]. Researchers found that the random forest model outperformed SVM in 
flood risk prediction tasks [121]. 

The growing demand for reliable flood risk assessment maps has driven further innovation. Researchers have 
trained flood-related datasets using backpropagation (BP) neural networks, generating risk distribution maps that 
closely aligned with results from the energy-value method [122]. Similarly, a survey showed that the XGBoost 
model could produce high-quality, county-level flood risk maps [123]. Researchers integrated deep learning 
networks with hierarchical analysis to create regional flood risk assessment maps, demonstrating improved 
accuracy through method integration [124]. A study developed an indicator system that incorporates causative 
factors, exposure, and vulnerability for predicting heavy rainfall and flood disasters. They constructed BP and 
XGBoost models and found that the combination of these indicators achieved superior prediction accuracy, even 
without the use of principal component analysis for dimensionality reduction [125]. 

More recently, coupled machine learning methods have emerged as advanced strategies for enhancing model 
performance. By integrating optimization techniques that address both local and global objectives, these methods 
improve predictive accuracy, computational efficiency, and operational cost-effectiveness particularly in scenarios 
involving under-trained datasets. 

Table 4 presents examples where incorporating additional parameters into coupled models significantly 
enhanced prediction outcomes. It also highlights specific optimization strategies and their practical applications in 
managing complex data environments. 

Table 4 outlines the optimization strategies utilized in coupled machine learning models for flood prediction. 
Researchers introduced a combined model integrating CNN, XGBoost, and PLS regression to enhance inflow 
prediction accuracy. The data were divided into low-flow and high-flow subsets, with a specialized inflow-
weighted loss function designed to prioritize accurate prediction during high-flow events. A two-layer stacked 
ensemble was constructed, where CNN, XGBoost, and PLS served as base learners. In the second layer, linear 
regression was employed to mitigate overfitting [123]. The ensemble model significantly reduced RMSE 
compared to individual models. Five-fold cross-validation was applied, and the predictions from base learners 
were used to train the meta-learner, further optimizing model performance. A hybrid deep learning model, 
ConvLSTM, was developed to combine the spatial feature extraction capabilities of Convolutional Neural Networks 
(CNN) with the temporal sequence modeling strengths of Long Short-Term Memory (LSTM) networks [126]. The 
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ConvLSTM architecture consists of three layers: a ConvLSTM2D layer with 128 filters and ReLU activation, a 
flattening layer, and a dense output layer. Using a batch size of 100 and the Adam optimizer, the model was trained 
on precipitation data represented by the Flood Index (IF), which evaluates flood duration, severity, and intensity. 
By integrating historical and real-time rainfall data, the ConvLSTM model predicted daily IF values, achieving 
RMSE values below 0.3 across four station prediction cycles, with Legate-McCabe Efficiency (LME) indices 
ranging from 0.726 to 0.939 [126]. These findings highlight ConvLSTM’s potential utility for disaster 
management and risk mitigation during extreme weather events. 

Table 4. Specific optimization method of coupled machine learning methods. 

Direction for 
Improvement Model  Improvement Method References 

Input data ConvLSTM 

ConvLSTM is a hybrid variant of the LSTM architecture 
that uses convolution operators rather than matrix 

multiplication for state inputs and state-to-state 
transitions. This allows the algorithm to process spatio-
temporal data and use inputs from local neighbours and 

previous states to determine the upcoming state of a 
particular cell in the grid 

[126] 

Function ANFIS optimised using 
genetic algorithms 

A hybrid machine learning model using Adaptive Neuro-
Fuzzy Inference System (ANFIS) and Genetic Algorithm 
which is trained based on temperature, precipitation data 
and river level from two weather stations. Different AFIS 

models with different affiliation functions and 
optimisation techniques were tested and the best 

performing model was selected for further modification. 
The parameters of the selected ANFIS model are then 

optimised using genetic algorithms to obtain better results 

[127] 

Function BiLSTM 

Adding a VMD decomposes and preprocesses the data to 
remove noise and uses the SSA algorithm to intelligently 
find the two parameters of the VMD. Constructed a two-

layer BiLSTM neural network and used the Relu 
activation function instead of the traditional sigmoid 

activation function to reduce gradient descent and 
gradient vanishing during the prediction process 

[128] 

Data pre-
processing 

CNN & XGBoost & PLS 
Use double layer 

stacking 

Noise reduction using data preprocessing, streaming the 
dataset, introducing a special loss function, and 

combining the three model overlays to improve prediction 
accuracy 

[123] 

To enhance nonlinear inference capabilities, the Adaptive Neuro-Fuzzy Inference System (ANFIS) has been 
employed. Based on the Takagi-Sugeno Fuzzy Inference System framework, ANFIS enhances learning by adjusting 
system structures and parameters using neural learning algorithms [127]. Researchers further advanced this approach 
by integrating ANFIS with a genetic algorithm to optimize membership functions and overcome the training 
limitations of conventional feedforward neural networks in forecasting the water levels of the Jhelum River. 

Although LSTM-based models have improved water level prediction accuracy, their unidirectional 
information flow restricts the ability to capture both past and future temporal dependencies. To overcome this 
limitation, researchers proposed bidirectional learning architectures such as BiLSTM. In particular, one study 
developed a BiLSTM attention network for flood risk prediction, in which Variational Mode Decomposition 
(VMD) was used to decompose the input signals into Intrinsic Mode Functions (IMFs) [128]. Each IMF was then 
fed into a two-layer BiLSTM-attention network. Particle Swarm Optimization (PSO) was employed to fine-tune 
both VMD and BiLSTM parameters, significantly reducing storage errors and enhancing predictive accuracy—
especially for peak height and arrival time estimations [129]. 

Traditional statistical methods such as ARMA, ARIMA, and Multiple Linear Regression (MLR) have been 
widely used in flood frequency prediction, with ARIMA generally outperforming ARMA [130]. In contrast, 
machine learning models—such as artificial neural networks, neuro-fuzzy systems, support vector machines, and 
support vector regression—have demonstrated higher predictive efficiency in many applications [131]. Hybrid 
modeling approaches further improve performance; for instance, fuzzy reasoning systems grounded in fuzzy logic 
have shown strong capabilities in modeling nonlinear hydrological phenomena [132]. 
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Building on this, researchers introduced a BiLSTM attention model tailored for flood prediction tasks [133], 
integrating Particle Swarm Optimization to fine-tune parameters and enhance forecasting robustness [134]. 

The final model, which combines multiple strategies, demonstrated superior generalization and lower RMSE 
compared to standard LSTM, BiLSTM, and CNN-BiLSTM configurations. It proved especially effective in high-
risk flood forecasting scenarios [79] 

The development of hybrid and coupled machine learning models marks a major advancement in flood 
prediction and risk assessment. Models such as ConvLSTM effectively leverage both spatial and temporal data to 
surpass the limitations of traditional approaches, while attention-based BiLSTM architectures capture complex 
bidirectional dependencies, enhancing robustness [135]. However, these models require careful optimization and 
validation to avoid issues like overfitting and to maintain generalizability across varied flood scenarios. The 
integration of optimization techniques like Particle Swarm Optimization introduces adaptive capabilities but also 
adds computational complexity [136]. Meanwhile, ensemble approaches like the CNN-XGBoost-PLS model 
highlight the value of combining different algorithms to enhance predictive power and reduce model bias [137]. 
Nevertheless, these hybrid frameworks depend heavily on data quality, segmentation strategies, and validation 
frameworks, emphasizing the ongoing need for rigorous testing to ensure practical applicability in diverse 
environmental contexts. 

5. Summary of Machine Learning Models in Flood Risk Assessment 

To ensure the comprehensiveness and reproducibility of this review, a structured literature search was 
conducted using the Scopus database. The search employed the keywords “flood hazard assessment method” and 
“machine learning,” applied to article titles, abstracts, and keywords. The search was limited to publications from 
2019 to 2024 to capture recent advancements in the field. This initial query yielded approximately 188 records. 

After removing duplicates, the remaining articles underwent a multi-stage screening process, beginning with 
title and abstract reviews, followed by full-text evaluations based on predefined inclusion and exclusion criteria. 
Studies were included if they met the following criteria: (1) written in English; (2) published in peer-reviewed 
journals; and (3) focused explicitly on the application of machine learning techniques to flood-related tasks, 
including real-time forecasting, flood risk mapping, simulation modeling, early warning system optimization, and 
post-event impact assessment. 

To maintain methodological rigor and technical relevance, several exclusion criteria were applied. 
Specifically, the following types of publications were excluded: 
(1) Editorials, letters, opinion pieces, and review articles that lacked original modeling contributions; 
(2) Studies that did not utilize machine learning algorithms, such as those relying exclusively on conventional 

hydrological models (e.g., HEC-RAS, SWAT) or remote sensing–based monitoring; 
(3) Grey literature, including preprints, technical reports, and government publications; 
(4) Non–peer-reviewed materials; and 
(5) Studies where machine learning was used only as a supplementary tool—for example, for image 

preprocessing or data imputation—rather than as the core of the modeling framework. 
Following this rigorous screening process, a total of 174 high-quality studies that met all inclusion criteria were 

selected for in-depth analysis. These studies form the analytical foundation for the discussions and comparisons 
presented in the subsequent sections. 

A slight decline in the number of publications was observed in 2024, possibly reflecting a shift in research 
focus toward the integration of emerging technologies such as artificial intelligence and big data analytics in flood 
hazard assessment. 

Although this review centers on literature from 2019 to 2024, it is important to acknowledge several seminal 
studies from earlier periods that laid the groundwork for current methodologies. For instance, early work 
introduced GA-ANN hybrids for real-time flood prediction [138], demonstrated the efficacy of wavelet-based 
preprocessing in enhancing ANN model performance [139], and explored the use of ANFIS-based flood models 
as early as 2011 [140]. A comprehensive review of machine learning applications in flood modeling up to 2018 
was also conducted [141]. These foundational contributions paved the way for the more advanced and hybridized 
techniques examined in recent years. 

The intensification of global climate change has led to a notable increase in the frequency and severity of 
extreme weather events, contributing to a rise in natural disasters such as flooding [142]. This trend has driven 
growing academic interest in flood risk assessment methods, resulting in a surge of related publications [143]. In 
parallel, technological advancements—particularly in remote sensing, data analytics, and modeling—have 
introduced new tools and methodologies, further stimulating research in this area [144]. 
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The slight downturn in publications in 2024 may suggest research saturation in traditional approaches or a 
redirection toward novel methods. Future research should focus on integrating existing assessment techniques 
with cutting-edge technologies to better address the complexities of environmental change and evolving policy 
demands [145]. 

ML in hydrology faces several persistent challenges. Data availability and quality are often limited by 
incomplete or biased historical datasets, which undermine model robustness and generalizability. The “black box” 
nature of advanced ML architectures particularly hybrid and stacked models reduces transparency and erodes 
stakeholder trust. Moreover, although model interpretability is widely recognized as a critical need, detailed 
methodologies to enhance it are rarely reported, leaving a gap between awareness and practical implementation [146]. 
The high computational demands of training complex ML models further constrain their scalability, particularly 
for real-time applications, where balancing model complexity and computational efficiency becomes essential. 
Additionally, many ML approaches implicitly assume stationarity, limiting their adaptability to evolving 
environmental conditions such as climate variability [147]. The heterogeneity and noise inherent in hydrological 
datasets can degrade model performance and stability, particularly when models are applied across diverse settings. 
Overfitting remains a significant concern, especially when working with small or narrowly defined datasets, further 
diminishing generalizability. Finally, the absence of standardized evaluation metrics hampers model 
benchmarking and the identification of optimal approaches for specific hydrological applications. 

Figure 2 presents a systematic literature summary of machine learning models in flood risk assessment. Based 
on the literature statistics, ANN and RF are the most widely used machine learning models, corresponding to the 
highest number of articles, respectively. This phenomenon reflects these two models’ strong fitting ability and 
predictive accuracy in flood risk assessment. ANN is favoured for its flexibility and nonlinear modelling ability, 
while RF is widely used for its excellent noise immunity and advantages in handling high-dimensional data. 
Researchers chose these well-established models to solve complex flood risk assessment problems. LSTM is a 
deep learning model for processing time series data, has a relatively small number of applications but still shows 
significant potential. The ability of the LSTM model to capture long-term dependencies in time series data makes 
it a promising application for flood prediction. Models such as SVM, Radial Basis Function (RBF), and XGBoost 
appear less frequently in the literature and have also begun to appear in application articles since 2022, which may 
reflect either the limitations of these methods in specific application scenarios or the researchers’ preference for 
more advanced model selection. In addition, the emergence of Hybrid ML models shows researchers’ interest in 
integrated approaches that combine the strengths of different models to improve prediction performance. However, 
their literature volume has not yet reached the level of mainstream models, indicating that there is still room for 
further exploration in this area. 

 

Figure 2. Summary of machine learning model applied in flood risk assessment.  
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6. Future Perspectives 

Flood hazard assessment, particularly in flood forecasting, often faces significant challenges when relying 
solely on a single machine learning model. The practical application of such models is limited by uncertainties in 
input data, model structure, and parameter selection, all of which can undermine forecasting effectiveness. To 
overcome these limitations, researchers have increasingly adopted hybrid models, which integrate machine 
learning with other approaches or optimization techniques to leverage the strengths of multiple models and 
enhance predictive performance. 

Hybrid models improve flood forecasting accuracy through systematic optimization of inputs, structure, 
and parameters. To refine input data, techniques such as grey relational analysis, mutual information, and cross-
correlation are employed to identify the most relevant variables. Grey relational analysis evaluates relationships 
between variables, while mutual information and correlation methods quantify informational value, filtering out 
less significant features. These techniques reduce input uncertainties and establish a more reliable foundation 
for prediction. 

Optimizing model structure is another key aspect of hybrid modelling. Techniques such as genetic algorithms 
are used for feature extraction, simulating natural selection processes to optimize feature subsets. Meanwhile, 
context-aware mechanisms and spatiotemporal attention techniques adjust model weights dynamically, enabling 
the model to better capture evolving patterns over time. By integrating these approaches, hybrid models become 
more adaptable and capable of addressing the complexity inherent in hydrological data. 

Parameter optimization further enhances hybrid model performance. Methods such as genetic algorithms, 
particle swarm optimization, and ant colony optimization efficiently explore parameter spaces to identify optimal 
configurations. The bootstrap method is also widely employed to assess model uncertainty, evaluating stability 
and generalizability through resampling techniques. These advanced optimization strategies significantly 
contribute to improved prediction accuracy and model robustness. 

Hybrid models offer a promising pathway for advancing flood forecasting by combining different modelling 
strategies. They can integrate machine learning models with physical process models and hydrodynamic models 
to simulate rainfall-runoff processes more accurately. Physical models provide detailed representations of 
hydrological processes, while machine learning models excel at capturing complex, nonlinear relationships. 
Alternatively, hybrid models can combine multiple machine learning models through ensemble learning methods, 
which aggregate diverse predictions to improve accuracy, generalization, and computational efficiency. 

This article classifies popular machine learning models in flood forecasting into traditional and deep learning 
models based on structural complexity. Traditional models often struggle to capture historical temporal 
information and demonstrate limited learning capabilities. In contrast, deep learning models excel at extracting 
temporal patterns, but face challenges related to complex architectures and high computational demands. Hybrid 
models address these challenges by optimizing inputs, structures, and parameters, thereby improving prediction 
accuracy, extending the forecast horizon, and meeting practical needs from a multidimensional perspective. 

Hybrid modelling is becoming a significant trend in flood forecasting research. Future efforts should focus on 
deeper integration of physical process-based models with machine learning techniques to achieve more accurate 
simulations of water flow and flood risks. Enhanced flood forecasting can support more effective flood mitigation 
strategies and reduce societal and environmental impacts. By combining the strengths of various modelling approaches 
and continuously optimizing inputs, structures, and parameters, hybrid models have the potential to substantially 
improve the accuracy and reliability of flood forecasts. Researchers should continue to explore optimization strategies 
and incorporate the latest technological advances to further enhance flood early warning systems and provide more 
effective solutions to the growing challenges posed by climate change and increasing flood risks. 

7. Conclusions 

This paper reviews significant machine learning models used in flood hazard assessment, categorizing them 
into traditional and deep learning models, further divided into short-term and long-term predictions. It highlights 
research from 2019 to 2024, analyses representative models, and discusses their advantages, limitations, and future 
development. In flood forecasting, model selection is influenced by accuracy, speed, data requirements, and 
practical application concerns. 

Traditional hydrological models simulate detailed watershed processes and provide valuable insights. They 
require extensive data and are computationally intensive, which limits their flexibility. In contrast, data-driven 
machine learning models are more accessible to construct and implement, but they demand high-quality data and 
often lack interpretability. Traditional machine learning methods, such as decision trees and random forests, 
struggle with temporal data. Deep learning models excel in processing temporal information but come with higher 
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computational costs due to their complexity. Machine learning has the potential to significantly enhance the 
accuracy and reliability of flood forecasting by analysing vast datasets to uncover complex relationships and 
patterns, thereby offering a more comprehensive understanding of flood risks. However, the application of 
machine learning in flood prediction requires careful consideration of its limitations and potential pitfalls. Ensuring 
data quality, regularly updating models, minimizing bias, and preventing overfitting are critical to maintaining 
model reliability and performance. Despite these challenges, ongoing advancements in machine learning are 
expected to drive more sophisticated and effective forecasting solutions. Staying abreast of emerging 
developments and continuously exploring new applications of machine learning remains essential for maximizing 
its potential across diverse domains. 

To address these limitations, hybrid models have emerged, combining the strengths of various approaches to 
enhance forecast accuracy and generalization. By integrating the advantages of different models, hybrid 
approaches improve forecasting periods and meet practical requirements. With advancements in machine learning 
and the increasing informatization of water conservancy, the demand for sophisticated models is rising. Future 
applications of machine learning are expected to significantly impact flood forecasting, watershed management, 
and water resource optimization, providing innovative tools for intelligent water management. 

Funding 

This research was funded by the University of Technology Sydney, Australia (UTS, RIA NGO). The APC is 
waived by EESUS.  

Institutional Review Board Statement 

Not applicable  

Informed Consent Statement 

Not applicable  

Data Availability Statement 

Not applicable  

Acknowledgments 

This research was mainly supported by University of Technology Sydney, Australia (UTS, RIA NGO). 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Refadah, S.S. Development in Flood Forecasting: A Comprehensive Review of Complex and Machine Learning Models. 
Phys. Chem. Earth Parts A/B/C 2025, 139, 103975. https://doi.org/10.1016/j.pce.2025.103975. 

2. Iosub, M.; Enea, A. Flood Early Warning and Risk Modelling. Hydrology 2022, 9, 57. https://doi.org/10.3390/hydrology 
9040057. 

3. Rupngam, T.; Messiga, A.J. Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a 
Changing Climate. Sustainability 2024, 16, 6141. https://doi.org/10.3390/su16146141. 

4. Yang, S.-N.; Chang, L.-C. Regional Inundation Forecasting Using Machine Learning Techniques with the Internet of 
Things. Water 2020, 12, 1578. https://doi.org/10.3390/w12061578. 

5. Meresa, H.; Tischbein, B.; Mekonnen, T. Climate Change Impact on Extreme Precipitation and Peak Flood Magnitude 
and Frequency: Observations from CMIP6 and Hydrological Models. Nat. Hazards 2022, 111, 2649–2679. 
https://doi.org/10.1007/s11069-021-05152-3. 

6. Merz, B.; Kreibich, H.; Schwarze, R.; et al. Review Article “Assessment of Economic Flood Damage”. Nat. Hazards 
Earth Syst. Sci. 2010, 10, 1697–1724. https://doi.org/10.5194/nhess-10-1697-2010. 

7. Redondo-Tilano, S.A. Emerging Strategies for Addressing Flood-Damage Modeling Issues: A Review. Int. J. Disaster 
Risk Reduct. 2025, 116, 105058. 



Zhang et al.   Earth Environ. Sustain. 2025, 1(1), 21–41 

  36 

8. Kumar, V.; Sharma, K.V.; Mangukiya, N.K.; et al. Machine Learning Applications in Flood Forecasting and Predictions, 
Challenges, and Way-out in the Perspective of Changing Environment. AIMSES 2025, 12, 72–105. https://doi.org/10.3934/ 
environsci.2025004. 

9. Grigg, N.S. Comprehensive Flood Risk Assessment: State of the Practice. Hydrology 2023, 10, 46. https://doi.org/10.3390/ 
hydrology10020046. 

10. Todini, E. Flood Forecasting and Decision Making in the New Millennium. Where Are We? Water Resour. Manag. 2017, 
31, 3111–3129. https://doi.org/10.1007/s11269-017-1693-7. 

11. Wright, D.B.; Yu, G.; England, J.F. Six Decades of Rainfall and Flood Frequency Analysis Using Stochastic Storm 
Transposition: Review, Progress, and Prospects. J. Hydrol. 2020, 585, 124816. https://doi.org/10.1016/j.jhydrol.2020. 
124816. 

12. Chatrabhuj; Meshram, K.; Mishra, U.; Omar, P.J. Integration of Remote Sensing Data and GIS Technologies in River 
Management System. Discov. Geosci. 2024, 2, 67. https://doi.org/10.1007/s44288-024-00080-8. 

13. Chu, H.; Wu, W.; Wang, Q.J.; et al. An ANN-Based Emulation Modelling Framework for Flood Inundation Modelling: 
Application, Challenges and Future Directions. Environ. Model. Softw. 2020, 124, 104587. https://doi.org/10.1016/j.envsoft. 
2019.104587. 

14. Li, X.; Dellinger, G.; Erpicum, S.; et al. 2D and 3D Computational Modeling of Surface Flooding in Urbanized Floodplains: 
Modeling Performance for Various Building Layouts. Water Resour. Res. 2024, 60, e2023WR035149. https://doi.org/10.1029/ 
2023wr035149. 

15. Rehman, S.; Sahana, M.; Hong, H.; et al. A Systematic Review on Approaches and Methods Used for Flood Vulnerability 
Assessment: Framework for Future Research. Nat. Hazards 2019, 96, 975–998. https://doi.org/10.1007/s11069-018-
03567-z. 

16. Tabasi, N.; Fereshtehpour, M.; Roghani, B. A Review of Flood Risk Assessment Frameworks and the Development of 
Hierarchical Structures for Risk Components. Discov. Water 2025, 5, 10. https://doi.org/10.1007/s43832-025-00193-2. 

17. Machine Learning for Big Data Analytics. In Big Data Analytics; Springer Nature: Cham, Switzerland, 2024; pp. 193–
231; ISBN 978-3-031-55638-8. 

18. Adekunle, B.I.; Chukwuma-Eke, E.C.; Balogun, E.D.; et al. Machine Learning for Automation: Developing Data-Driven 
Solutions for Process Optimization and Accuracy Improvement. IJMRGE 2021, 3, 800–808. https://doi.org/10.54660/.ijmrge. 
2021.2.1.800-808. 

19. Karim, F.; Armin, M.A.; Ahmedt-Aristizabal, D.; et al. A Review of Hydrodynamic and Machine Learning Approaches 
for Flood Inundation Modeling. Water 2023, 15, 566. https://doi.org/10.3390/w15030566. 

20. Keum, H.J.; Han, K.Y.; Kim, H.I. Real-Time Flood Disaster Prediction System by Applying Machine Learning 
Technique. KSCE J. Civ. Eng. 2020, 24, 2835–2848. https://doi.org/10.1007/s12205-020-1677-7. 

21. Clegg, G.; Haigh, R.; Amaratunga, D. Towards an Improved Understanding of Participation in Natural Hazard Early 
Warning Systems. IJDRBE 2022, 13, 615–631. https://doi.org/10.1108/IJDRBE-11-2020-0120. 

22. Cerqueira, V.; Torgo, L.; Soares, C. A Case Study Comparing Machine Learning with Statistical Methods for Time Series 
Forecasting: Size Matters. J. Intell. Inf. Syst. 2022, 59, 415–433. https://doi.org/10.1007/s10844-022-00713-9. 

23. Bejani, M.M.; Ghatee, M. A Systematic Review on Overfitting Control in Shallow and Deep Neural Networks. Artif. 
Intell. Rev. 2021, 54, 6391–6438. https://doi.org/10.1007/s10462-021-09975-1. 

24. Xu, Y.; Lin, K.; Hu, C.; et al. Deep Transfer Learning Based on Transformer for Flood Forecasting in Data-Sparse Basins. 
J. Hydrol. 2023, 625, 129956. https://doi.org/10.1016/j.jhydrol.2023.129956. 

25. Hasan, M.; Rabbi, M.F.; Hamja, M.A.; et al. Enhancing Flood Forecasting Performance Using Effective and Transparent 
Explainable Hybrid Deep Learning Model. Earth Sci. Inf. 2025, 18, 417. https://doi.org/10.1007/s12145-025-01930-w. 

26. Luo, Y.; Yin, L.; Bai, W.; et al. An Appraisal of Incremental Learning Methods. Entropy 2020, 22, 1190. https://doi.org/10. 
3390/e22111190. 

27. Mumuni, A.; Mumuni, F. Automated Data Processing and Feature Engineering for Deep Learning and Big Data 
Applications: A Survey. J. Inf. Intell. 2025, 3, 113–153. https://doi.org/10.1016/j.jiixd.2024.01.002. 

28. Kawaguchi, K.; Kaelbling, L.P.; Bengio, Y. Generalization in Deep Learning. arXiv 2017, arXiv:1710.05468. https://doi.org/ 
10.48550/ARXIV.1710.05468. 

29. Carabantes, M. Black-Box Artificial Intelligence: An Epistemological and Critical Analysis. AI Soc. 2020, 35, 309–317. 
https://doi.org/10.1007/s00146-019-00888-w. 

30. Sit, M.; Demiray, B.Z.; Xiang, Z.; et al. A Comprehensive Review of Deep Learning Applications in Hydrology and 
Water Resources. Water Sci. Technol. 2020, 82, 2635–2670. https://doi.org/10.2166/wst.2020.369. 

31. Overfitting, Model Tuning, and Evaluation of Prediction Performance. In Multivariate Statistical Machine Learning 
Methods for Genomic Prediction; Springer International Publishing: Cham, Switzerland, 2022; pp. 109–139; ISBN 978-
3-030-89009-4. 



Zhang et al.   Earth Environ. Sustain. 2025, 1(1), 21–41 

  37 

32. Akinsoji, A.H.; Adelodun, B.; Adeyi, Q.; et al. Integrating Machine Learning Models with Comprehensive Data 
Strategies and Optimization Techniques to Enhance Flood Prediction Accuracy: A Review. Water Resour. Manag. 2024, 
38, 4735–4761. https://doi.org/10.1007/s11269-024-03885-x. 

33. Kim, S.-J.; Bae, S.-J.; Jang, M.-W. Linear Regression Machine Learning Algorithms for Estimating Reference 
Evapotranspiration Using Limited Climate Data. Sustainability 2022, 14, 11674. https://doi.org/10.3390/su141811674. 

34. Mienye, I.D.; Jere, N. A Survey of Decision Trees: Concepts, Algorithms, and Applications. IEEE Access 2024, 12, 
86716–86727. https://doi.org/10.1109/ACCESS.2024.3416838. 

35. Shen, Y.; Ruijsch, J.; Lu, M.; et al. Random Forests-Based Error-Correction of Streamflow from a Large-Scale 
Hydrological Model: Using Model State Variables to Estimate Error Terms. Comput. Geosci. 2022, 159, 105019. 
https://doi.org/10.1016/j.cageo.2021.105019. 

36. Evgeniou, T.; Pontil, M. Support Vector Machines: Theory and Applications. In Machine Learning and Its Applications; 
Paliouras, G., Karkaletsis, V., Spyropoulos, C.D., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, 
Germany, 2001; Volume 2049, pp. 249–257; ISBN 978-3-540-42490-1. 

37. Guo, G.; Wang, H.; Bell, D.; et al. KNN Model-Based Approach in Classification. In On the Move to Meaningful Internet 
Systems 2003: CoopIS, DOA, and ODBASE; Meersman, R., Tari, Z., Schmidt, D.C., Eds.; Lecture Notes in Computer 
Science; Springer: Berlin/Heidelberg, Germany, 2003; Vol. 2888, pp. 986–996; ISBN 978-3-540-20498-5. 

38. Di Franco, G.; Santurro, M. Machine Learning, Artificial Neural Networks and Social Research. Qual. Quant. 2021, 55, 
1007–1025. https://doi.org/10.1007/s11135-020-01037-y. 

39. Van Houdt, G.; Mosquera, C.; Nápoles, G. A Review on the Long Short-Term Memory Model. Artif. Intell. Rev. 2020, 
53, 5929–5955. https://doi.org/10.1007/s10462-020-09838-1. 

40. Fei, K.; Du, H.; Gao, L. Accurate Water Level Predictions in a Tidal Reach: Integration of Physics-Based and Machine 
Learning Approaches. J. Hydrol. 2023, 622, 129705. https://doi.org/10.1016/j.jhydrol.2023.129705. 

41. Asif, M.; Kuglitsch, M.M.; Pelivan, I.; et al. Review and Intercomparison of Machine Learning Applications for Short-
Term Flood Forecasting. Water Resour. Manag. 2025, 39, 1971–1991. https://doi.org/10.1007/s11269-025-04093-x. 

42. Wang, G.; Yang, J.; Hu, Y.; et al. Application of a Novel Artificial Neural Network Model in Flood Forecasting. Env. 
Monit. Assess. 2022, 194, 125. https://doi.org/10.1007/s10661-022-09752-9. 

43. Li, J.; Wu, G.; Zhang, Y.; et al. Optimizing Flood Predictions by Integrating LSTM and Physical-Based Models with 
Mixed Historical and Simulated Data. Heliyon 2024, 10, e33669. https://doi.org/10.1016/j.heliyon.2024.e33669. 

44. Fofanah, A.J.; Koroma, S.; Sesay, A.B.; et al. Artificial Neural Network Model with Adaptive GMDH Technique for 
Non-Linear Regression Prediction. IJSER 2021, 12, 1142–1150. https://doi.org/10.14299/ijser.2021.05.05. 

45. Palchevsky, E.; Antonov, V.; Filimonov, N.; et al. Development of an Intelligent System for Early Forecasting and 
Modelling of Flood Situation on the Example of the Republic of Bashkortostan Using a Proprietary Machine and Deep 
Learning Library. J. Hydrol. 2024, 633, 130978. https://doi.org/10.1016/j.jhydrol.2024.130978. 

46. Tiu, E.S.K.; Huang, Y.F.; Ng, J.L.; et al. An Evaluation of Various Data Pre-Processing Techniques with Machine 
Learning Models for Water Level Prediction. Nat. Hazards 2022, 110, 121–153. https://doi.org/10.1007/s11069-021-
04939-8. 

47. Jamali, B.; Haghighat, E.; Ignjatovic, A.; et al. Machine Learning for Accelerating 2D Flood Models: Potential and 
Challenges. Hydrol. Process. 2021, 35, e14064. https://doi.org/10.1002/hyp.14064. 

48. Zahura, F.T.; Goodall, J.L.; Sadler, J.M.; et al. Training Machine Learning Surrogate Models from a High-Fidelity 
Physics-Based Model: Application for Real-Time Street-Scale Flood Prediction in an Urban Coastal Community. Water 
Resour. Res. 2020, 56, e2019WR027038. https://doi.org/10.1029/2019WR027038. 

49. Kim, H.I.; Han, K.Y. Inundation Map Prediction with Rainfall Return Period and Machine Learning. Water 2020, 12, 
1552. https://doi.org/10.3390/w12061552. 

50. Yan, J.; Jin, J.; Chen, F.; et al. Urban Flash Flood Forecast Using Support Vector Machine and Numerical Simulation. J. 
Hydroinform. 2018, 20, 221–231. https://doi.org/10.2166/hydro.2017.175. 

51. Letessier, C.; Cardi, J.; Dussel, A.; et al. Enhancing Flood Prediction Accuracy through Integration of Meteorological 
Parameters in River Flow Observations: A Case Study Ottawa River. Hydrology 2023, 10, 164. 
https://doi.org/10.3390/hydrology10080164. 

52. Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. 
Water Resour. Res. 2018, 54, 8558–8593. https://doi.org/10.1029/2018wr022643. 

53. An, H.; Ouyang, C. A hybrid framework for real-time flash flood forecasting in small ungauged catchments: Integrating 
hydrodynamic simulations with LSTM networks. J. Hydrol. 2025, 661, 133688. https://doi.org/10.1016/j.jhydrol.2025. 
133688. 

54. Xu, C.; Zhong, P.A.; Zhu, F.; et al. A hybrid model coupling process-driven and data-driven models for improved real-
time flood forecasting. J. Hydrol. 2024, 638, 131494. https://doi.org/10.1016/j.jhydrol.2024.131494. 



Zhang et al.   Earth Environ. Sustain. 2025, 1(1), 21–41 

  38 

55. Majhi, A.; Dhanya, C.T.; Chakma, S. Mutual Information Based Weighted Variance Approach for Uncertainty 
Quantification of Climate Projections. MethodsX 2023, 10, 102063. https://doi.org/10.1016/j.mex.2023.102063. 

56. Higuera Roa, O.; Bachmann, M.; Mechler, R.; et al. Challenges and Opportunities in Climate Risk Assessment: Future 
Directions for Assessing Complex Climate Risks. Environ. Res. Lett. 2025, 20, 053003. https://doi.org/10.1088/1748-
9326/adc756. 

57. Wu, W.; Emerton, R.; Duan, Q.; et al. Ensemble Flood Forecasting: Current Status and Future Opportunities. WIREs 
Water 2020, 7, e1432. https://doi.org/10.1002/wat2.1432. 

58. Moges, E.; Demissie, Y.; Larsen, L.; et al. Review: Sources of Hydrological Model Uncertainties and Advances in Their 
Analysis. Water 2020, 13, 28. https://doi.org/10.3390/w13010028. 

59. Tudaji, M.; Nan, Y.; Tian, F. Assessing the Value of High-Resolution Data and Parameter Transferability across 
Temporal Scales in Hydrological Modeling: A Case Study in Northern China. Hydrol. Earth Syst. Sci. 2025, 29, 2633–
2654. https://doi.org/10.5194/hess-29-2633-2025. 

60. Zhang, Z.; Zhang, Q.; Singh, V.P.; et al. River Flow Modelling: Comparison of Performance and Evaluation of 
Uncertainty Using Data-Driven Models and Conceptual Hydrological Model. Stoch. Env. Res. Risk Assess. 2018, 32, 
2667–2682. https://doi.org/10.1007/s00477-018-1536-y. 

61. Zhu, Q.; Qin, X.; Zhou, D.; et al. Impacts of Spatiotemporal Resolutions of Precipitation on Flood Event Simulation 
Based on Multimodel Structures—A Case Study over the Xiang River Basin in China. Hydrol. Earth Syst. Sci. 2024, 28, 
1665–1686. https://doi.org/10.5194/hess-28-1665-2024. 

62. Sutton, R.T. Climate Science Needs to Take Risk Assessment Much More Seriously. Bull. Am. Meteorol. Soc. 2019, 100, 
1637–1642. https://doi.org/10.1175/BAMS-D-18-0280.1. 

63. Schumann, G.; Giustarini, L.; Tarpanelli, A.; et al. Flood Modeling and Prediction Using Earth Observation Data. Surv. 
Geophys. 2023, 44, 1553–1578. https://doi.org/10.1007/s10712-022-09751-y. 

64. Sood, A.; Smakhtin, V. Global Hydrological Models: A Review. Hydrol. Sci. J. 2015, 60, 549–565. 
https://doi.org/10.1080/02626667.2014.950580. 

65. Kurniawan, R.; Sujono, I.; Caesarendra, W.; et al. Detection of Flood-Affected Areas Using Multitemporal Remote 
Sensing Data: A Machine Learning Approach. Earth Sci. Inf. 2025, 18, 35. https://doi.org/10.1007/s12145-024-01549-3. 

66. Tao, Y.; Tian, B.; Adhikari, B.R.; et al. A Review of Cutting-Edge Sensor Technologies for Improved Flood Monitoring 
and Damage Assessment. Sensors 2024, 24, 7090. https://doi.org/10.3390/s24217090. 

67. Yuan, Q.; Shen, H.; Li, T.; et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges. 
Remote Sens. Environ. 2020, 241, 111716. https://doi.org/10.1016/j.rse.2020.111716. 

68. Tijerina‐Kreuzer, D.; Condon, L.; et al. Continental Hydrologic Intercomparison Project, Phase 1: A Large-Scale 
Hydrologic Model Comparison Over the Continental United States. Water Resour. Res. 2021, 57, e2020WR028931. 
https://doi.org/10.1029/2020wr028931. 

69. Luo, P.; Luo, M.; Li, F.; et al. Urban Flood Numerical Simulation: Research, Methods and Future Perspectives. Environ. 
Model. Softw. 2022, 156, 105478. https://doi.org/10.1016/j.envsoft.2022.105478. 

70. Chen, Z.; Lin, X.; Xiong, C.; et al. Modeling the Relationship of Precipitation and Water Level Using Grid Precipitation 
Products with a Neural Network Model. Remote Sens. 2020, 12, 1096. https://doi.org/10.3390/rs12071096. 

71. Chen, G.; Hou, J.; Liu, Y.; et al. Urban Inundation Rapid Prediction Method Based on Multi-Machine Learning Algorithm 
and Rain Pattern Analysis. J. Hydrol. 2024, 633, 131059. https://doi.org/10.1016/j.jhydrol.2024.131059. 

72. Dodangeh, E.; Choubin, B.; Eigdir, A.N.; et al. Integrated Machine Learning Methods with Resampling Algorithms for 
Flood Susceptibility Prediction. Sci. Total Environ. 2020, 705, 135983. https://doi.org/10.1016/j.scitotenv.2019.135983. 

73. Ghorpade, P.; Gadge, A.; Lende, A.; et al. Flood Forecasting Using Machine Learning: A Review. In Proceedings of the 
2021 8th International Conference on Smart Computing and Communications (ICSCC), Kochi, Kerala, India, 1–3 July 2021. 

74. Chen, J.-C.; Shu, C.-S.; Ning, S.-K.; et al. Flooding Probability of Urban Area Estimated by Decision Tree and Artificial 
Neural Networks. J. Hydroinform. 2008, 10, 57–67. https://doi.org/10.2166/hydro.2008.009. 

75. Elsafi, S.H. Artificial Neural Networks (ANNs) for Flood Forecasting at Dongola Station in the River Nile, Sudan. Alex. 
Eng. J. 2014, 53, 655–662. https://doi.org/10.1016/j.aej.2014.06.010. 

76. Teng, J.; Jakeman, A.J.; Vaze, J.; et al. Flood Inundation Modelling: A Review of Methods, Recent Advances and 
Uncertainty Analysis. Environ. Model. Softw. 2017, 90, 201–216. https://doi.org/10.1016/j.envsoft.2017.01.006. 

77. Tehrany, M.S.; Pradhan, B.; Mansor, S.; et al. Flood Susceptibility Assessment Using GIS-Based Support Vector 
Machine Model with Different Kernel Types. CATENA 2015, 125, 91–101. https://doi.org/10.1016/j.catena.2014.10.017. 

78. Barrera-Animas, A.Y.; Oyedele, L.O.; Bilal, M.; et al. Rainfall Prediction: A Comparative Analysis of Modern Machine 
Learning Algorithms for Time-Series Forecasting. Mach. Learn. Appl. 2022, 7, 100204. https://doi.org/10.1016/j.mlwa.2021. 
100204. 

79. Heydari, S.; Reza Nikoo, M.; Mohammadi, A.; et al. Two-Stage Meta-Ensembling Machine Learning Model for 
Enhanced Water Quality Forecasting. J. Hydrol. 2024, 641, 131767. https://doi.org/10.1016/j.jhydrol.2024.131767. 



Zhang et al.   Earth Environ. Sustain. 2025, 1(1), 21–41 

  39 

80. Ikram, R.M.A.; Hazarika, B.B.; Gupta, D.; et al. Streamflow Prediction in Mountainous Region Using New Machine 
Learning and Data Preprocessing Methods: A Case Study. Neural Comput. Applic 2022, 35, 9053–9070. 
https://doi.org/10.1007/s00521-022-08163-8. 

81. Kigo, S.N.; Omondi, E.O.; Omolo, B.O. Assessing Predictive Performance of Supervised Machine Learning Algorithms 
for a Diamond Pricing Model. Sci. Rep. 2023, 13, 17315. https://doi.org/10.1038/s41598-023-44326-w. 

82. Shim, J.; Hong, S.; Lee, J.; et al. Deep Learning with Data Preprocessing Methods for Water Quality Prediction in 
Ultrafiltration. J. Clean. Prod. 2023, 428, 139217. https://doi.org/10.1016/j.jclepro.2023.139217. 

83. Xiao, H.; Cinnella, P. Quantification of Model Uncertainty in RANS Simulations: A Review. Prog. Aerosp. Sci. 2018, 
108, 1–31. 

84. Teweldebrhan, A.T.; Burkhart, J.F.; Schuler, T.V. Parameter Uncertainty Analysis for an Operational Hydrological 
Model Using Residual-Based and Limits of Acceptability Approaches. Hydrol. Earth Syst. Sci. 2018, 22, 5021–5039. 
https://doi.org/10.5194/hess-22-5021-2018. 

85. Razavi, S.; Tolson, B.A.; Burn, D.H. Review of Surrogate Modeling in Water Resources. Water Resour. Res. 2012, 48, 
e2020WR028931. https://doi.org/10.1029/2011wr011527. 

86. Chowdhuri, I.; Pal, S.C.; Chakrabortty, R. Flood Susceptibility Mapping by Ensemble Evidential Belief Function and 
Binomial Logistic Regression Model on River Basin of Eastern India. Adv. Space Res. 2020, 65, 1466–1489. 
https://doi.org/10.1016/j.asr.2019.12.003. 

87. Momeneh, S.; Nourani, V. Performance Evaluation of Artificial Neural Network Model in Hybrids with Various 
Preprocessors for River Streamflow Forecasting. AQUA—Water Infrastruct. Ecosyst. Soc. 2023, 72, 947–968. 
https://doi.org/10.2166/aqua.2023.010. 

88. Albano, R.; Limongi, C.; Dal Sasso, S.F.; et al. Flood Scenario Spatio-Temporal Mapping via Hydrological and 
Hydrodynamic Modelling and a Remote Sensing Dataset: A Case Study of the Basento River (Southern Italy). Int. J. 
Disaster Risk Reduct. 2024, 111, 104758. https://doi.org/10.1016/j.ijdrr.2024.104758. 

89. Tarasova, L.; Merz, R.; Kiss, A.; et al. Causative Classification of River Flood Events. Wiley Interdiscip. Rev. Water 
2019, 6, e1353. 

90. Feyisa, G.L.; Meilby, H.; Fensholt, R.; et al. Automated Water Extraction Index: A New Technique for Surface Water 
Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029. 

91. Jin, H.; Fang, S.; Chen, C. Mapping of the Spatial Scope and Water Quality of Surface Water Based on the Google Earth 
Engine Cloud Platform and Landsat Time Series. Remote Sens. 2023, 15, 4986. https://doi.org/10.3390/rs15204986. 

92. Coates, G.; Li, C.; Ahilan, S.; et al. Agent-Based Modeling and Simulation to Assess Flood Preparedness and Recovery 
of Manufacturing Small and Medium-Sized Enterprises. Eng. Appl. Artif. Intell. 2019, 78, 195–217. https://doi.org/10.1016/ 
j.engappai.2018.11.010. 

93. Frame, J.M.; Kratzert, F.; Klotz, D.; et al. Deep Learning Rainfall–Runoff Predictions of Extreme Events. Hydrol. Earth 
Syst. Sci. 2022, 26, 3377–3392. https://doi.org/10.5194/hess-26-3377-2022. 

94. Lou, P.; Wu, T.; Yin, G.; et al. A Novel Framework for Multiple Thermokarst Hazards Risk Assessment and Controlling 
Environmental Factors Analysis on the Qinghai-Tibet Plateau. CATENA 2024, 246, 108367. https://doi.org/10.1016/j.catena. 
2024.108367. 

95. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. 
96. Yang, L.; Shami, A. On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice. 

Neurocomputing 2020, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061. 
97. Keyes, D.E.; McInnes, L.C.; Woodward, C.; et al. Multiphysics Simulations: Challenges and Opportunities. Int. J. High. 

Perform. Comput. Appl. 2013, 27, 4–83. https://doi.org/10.1177/1094342012468181. 
98. Kruse, D.A.; Schonbein, W.; Dosanjh, M.G.F. A Statistical Analysis of HPC Network Tuning. In Proceedings of the 

Proceedings of the SC’23 Workshops of the International Conference on High Performance Computing, Network, 
Storage, and Analysis, Denver, CO, USA, 12–17 November 2023; pp. 458–465. 

99. Borrell, R.; Dosimont, D.; Garcia-Gasulla, M.; et al. Heterogeneous CPU/GPU Co-Execution of CFD Simulations on the 
POWER9 Architecture: Application to Airplane Aerodynamics. Future Gener. Comput. Syst. 2020, 107, 31–48. 
https://doi.org/10.1016/j.future.2020.01.045. 

100. Mira, D.; Pérez-Sánchez, E.J.; Borrell, R.; et al. HPC-Enabling Technologies for High-Fidelity Combustion Simulations. 
Proc. Combust. Inst. 2023, 39, 5091–5125. https://doi.org/10.1016/j.proci.2022.07.222. 

101. Pathiraja, S.; Moradkhani, H.; Marshall, L.; et al. Data-Driven Model Uncertainty Estimation in Hydrologic Data 
Assimilation. Water Resour. Res. 2018, 54, 1252–1280. https://doi.org/10.1002/2018wr022627. 

102. Clark, M.P.; Slater, A.G.; Rupp, D.E.; et al. Framework for Understanding Structural Errors (FUSE): A Modular 
Framework to Diagnose Differences between Hydrological Models. Water Resour. Res. 2008, 44, W00B02. 
https://doi.org/10.1029/2007wr006735. 



Zhang et al.   Earth Environ. Sustain. 2025, 1(1), 21–41 

  40 

103. Gupta, H.V.; Clark, M.P.; Vrugt, J.A.; et al. Towards a Comprehensive Assessment of Model Structural Adequacy. Water 
Resour. Res. 2012, 48, W08301. https://doi.org/10.1029/2011wr011044. 

104. Seydi, S.T.; Kanani-Sadat, Y.; Hasanlou, M.; et al. Comparison of Machine Learning Algorithms for Flood Susceptibility 
Mapping. Remote Sens. 2022, 15, 192. https://doi.org/10.3390/rs15010192. 

105. Yu, X.; Wang, Y.; Wu, L.; et al. Comparison of Support Vector Regression and Extreme Gradient Boosting for 
Decomposition-Based Data-Driven 10-Day Streamflow Forecasting. J. Hydrol. 2020, 582, 124293. https://doi.org/10.1016/ 
j.jhydrol.2019.124293. 

106. Qi, W.; Ma, C.; Xu, H.; et al. A Review on Applications of Urban Flood Models in Flood Mitigation Strategies. Nat. 
Hazards 2021, 108, 31–62. https://doi.org/10.1007/s11069-021-04715-8. 

107. Tien Bui, D.; Hoang, N.-D.; Martínez-Álvarez, F.; et al. A Novel Deep Learning Neural Network Approach for Predicting 
Flash Flood Susceptibility: A Case Study at a High Frequency Tropical Storm Area. Sci. Total Environ. 2020, 701, 
134413. https://doi.org/10.1016/j.scitotenv.2019.134413. 

108. Xu, T.; Liang, F. Machine Learning for Hydrologic Sciences: An Introductory Overview. WIREs Water 2021, 8, e1533. 
https://doi.org/10.1002/wat2.1533. 

109. Li, H.; Zhang, C.; Chu, W.; et al. A Process-Driven Deep Learning Hydrological Model for Daily Rainfall-Runoff 
Simulation. J. Hydrol. 2024, 637, 131434. https://doi.org/10.1016/j.jhydrol.2024.131434. 

110. Li, D.; Ma, J.; Rao, K.; et al. Prediction of Rainfall Time Series Using the Hybrid DWT-SVR-Prophet Model. Water 
2023, 15, 1935. https://doi.org/10.3390/w15101935. 

111. Solanki, H.; Vegad, U.; Kushwaha, A.; et al. Improving Streamflow Prediction Using Multiple Hydrological Models and 
Machine Learning Methods. Water Resour. Res. 2025, 61, e2024WR038192. https://doi.org/10.1029/2024wr038192. 

112. Rozos, E. Assessing Hydrological Simulations with Machine Learning and Statistical Models. Hydrology 2023, 10, 49. 
https://doi.org/10.3390/hydrology10020049. 

113. Beven, K. Facets of Uncertainty: Epistemic Uncertainty, Non-Stationarity, Likelihood, Hypothesis Testing, and 
Communication. Hydrol. Sci. J. 2016, 61, 1652–1665. https://doi.org/10.1080/02626667.2015.1031761. 

114. Feng, D.; Zheng, Y.; Mao, Y.; et al. An Integrated Hydrological Modeling Approach for Detection and Attribution of 
Climatic and Human Impacts on Coastal Water Resources. J. Hydrol. 2018, 557, 305–320. https://doi.org/10.1016/j.jhydrol. 
2017.12.041. 

115. Zounemat-Kermani, M.; Batelaan, O.; Fadaee, M.; et al. Ensemble Machine Learning Paradigms in Hydrology: A Review. 
J. Hydrol. 2021, 598, 126266. https://doi.org/10.1016/j.jhydrol.2021.126266. 

116. Solakian, J.; Maggioni, V.; Lodhi, A.; et al. Investigating the Use of Satellite-Based Precipitation Products for Monitoring 
Water Quality in the Occoquan Watershed. J. Hydrol. Reg. Stud. 2019, 26, 100630. https://doi.org/10.1016/j.ejrh.2019. 
100630. 

117. Schlaffer, S.; Matgen, P.; Hollaus, M.; et al. Flood Detection from Multi-Temporal SAR Data Using Harmonic Analysis 
and Change Detection. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 15–24. https://doi.org/10.1016/j.jag.2014.12.001. 

118. Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P. A Survey on Deep Learning for Big Data. Inf. Fusion. 2018, 42, 146–157. 
https://doi.org/10.1016/j.inffus.2017.10.006. 

119. Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. https://doi.org/10.1016/ 
j.neunet.2014.09.003. 

120. Nguyen, H.D.; Nguyen, Q.-H.; Dang, D.K.; et al. A Novel Flood Risk Management Approach Based on Future Climate 
and Land Use Change Scenarios. Sci. Total Environ. 2024, 921, 171204. https://doi.org/10.1016/j.scitotenv.2024.171204. 

121. Liu, M.; Lü, H.; Lindenschmidt, K.-E.; et al. Hazard Assessment and Prediction of Ice-Jam Flooding for a River 
Regulated by Reservoirs Using an Integrated Probabilistic Modelling Approach. J. Hydrol. 2022, 615, 128611. 
https://doi.org/10.1016/j.jhydrol.2022.128611. 

122. Alkaabi, K.; Sarfraz, U.; Darmaki, S.A. A Deep Learning Framework for Flash-Flood-Runoff Prediction: Integrating 
CNN-RNN with Neural Ordinary Differential Equations (ODEs). Water 2025, 17, 1283. 

123. Zhang, W.; Wang, H.; Lin, Y.; et al. Reservoir Inflow Predicting Model Based on Machine Learning Algorithm via Multi‐
model Fusion: A Case Study of Jinshuitan River Basin. IET Cyber-Syst. Robot. 2021, 3, 265–277. https://doi.org/10.1049/csy2. 
12015. 

124. Pham, B.T.; Luu, C.; Dao, D.V.; et al. Flood Risk Assessment Using Deep Learning Integrated with Multi-Criteria 
Decision Analysis. Knowl.-Based Syst. 2021, 219, 106899. https://doi.org/10.1016/j.knosys.2021.106899. 

125. Ahmed, A.A.; Sayed, S.; Abdoulhalik, A.; et al. Applications of Machine Learning to Water Resources Management: A 
Review of Present Status and Future Opportunities. J. Clean. Prod. 2024, 441, 140715. https://doi.org/10.1016/j.jclepro. 
2024.140715. 

126. Moishin, M.; Deo, R.C.; Prasad, R.; et al. Designing Deep-Based Learning Flood Forecast Model with ConvLSTM 
Hybrid Algorithm. IEEE Access 2021, 9, 50982–50993. https://doi.org/10.1109/ACCESS.2021.3065939. 



Zhang et al.   Earth Environ. Sustain. 2025, 1(1), 21–41 

  41 

127. Imran, M.; Sheikh Abdul Khader, P.; Rafiq, M.; et al. Forecasting Water Level of Glacial Fed Perennial River Using a 
Genetically Optimized Hybrid Machine Learning Model. Mater. Today: Proc. 2021, 46, 11113–11119. https://doi.org/10. 
1016/j.matpr.2021.02.256. 

128. Ni, C.; Fam, P.S.; Marsani, M.F. A Data-Driven Method and Hybrid Deep Learning Model for Flood Risk Prediction. 
Int. J. Intell. Syst. 2024, 2024, 3562709. https://doi.org/10.1155/2024/3562709. 

129. Shi, X.; Gao, Z.; Lausen, L.; et al. Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model. Adv. 
Neural Inf. Process. Syst. 2017, 30. 

130. Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA, and the Autoregressive 
Artificial Neural Network Models in Forecasting the Monthly Inflow of Dez Dam Reservoir. J. Hydrol. 2013, 476, 433–
441. https://doi.org/10.1016/j.jhydrol.2012.11.017. 

131. Sharma, S.; Kumari, S. Comparison of Machine Learning Models for Flood Forecasting in the Mahanadi River Basin, 
India. J. Water Clim. Chang. 2024, 15, 1629–1652. https://doi.org/10.2166/wcc.2024.517. 

132. Tabbussum, R.; Dar, A.Q. Modelling Hybrid and Backpropagation Adaptive Neuro-Fuzzy Inference Systems for Flood 
Forecasting. Nat. Hazards 2021, 108, 519–566. https://doi.org/10.1007/s11069-021-04694-w. 

133. Nie, Y.; Wang, H.; Zhang, H.; et al. Research on Flood Prediction Based on Optimized AI Model VMD_BiLSTM: A 
Case Study in BeiJing Flood, China. Res. Sq. 2025. https://doi.org/10.21203/rs.3.rs-5351059/v1. 

134. Fan, Z.; Zhang, J.; Chen, Y.; et al. Urban Flood Prediction Model Based on Transformer-LSTM-Sparrow Search 
Algorithm. Water 2025, 17, 1404. https://doi.org/10.3390/w17091404. 

135. Zhao, X.; Dong, S.; Rao, H.; et al. Water Flow Forecasting Model Based on Bidirectional Long- and Short-Term Memory 
and Attention Mechanism. Water 2025, 17, 2118. https://doi.org/10.3390/w17142118. 

136. Darabi, H.; Torabi Haghighi, A.; Rahmati, O.; et al. A Hybridized Model Based on Neural Network and Swarm 
Intelligence-Grey Wolf Algorithm for Spatial Prediction of Urban Flood-Inundation. J. Hydrol. 2021, 603, 126854. 
https://doi.org/10.1016/j.jhydrol.2021.126854. 

137. Akbarian, H.; Gheibi, M.; Hajiaghaei-Keshteli, M.; et al. A Hybrid Novel Framework for Flood Disaster Risk Control in 
Developing Countries Based on Smart Prediction Systems and Prioritized Scenarios. J. Environ. Manag. 2022, 312, 
114939. https://doi.org/10.1016/j.jenvman.2022.114939. 

138. Sulaiman, M.; El-Shafie, A.; Karim, O.; et al. Real-time flood forecasting by employing artificial neural network based 
model with zoning matching approach. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 9357–9393. https://doi.org/10.5194/hessd-
8-9357-2011. 

139. Tiwari, M.K.; Chatterjee, C. Development of an accurate and reliable hourly flood forecasting model using wavelet–
bootstrap–ANN (WBANN) hybrid approach. J. Hydrol. 2010, 394, 458–470. https://doi.org/10.1016/j.jhydrol.2010.10.001. 

140. Anar, P.L.; Darani, H.S.; Nafarzadeg, A.R. Application of ANN and ANFIS Models for Estimating Total Infiltration 
Rate in an Arid Rangeland Ecosystem. Res. J. Environ. Sci. 2011, 5, 236–247. https://doi.org/10.3923/rjes.2011.236.247. 

141. Mosavi, A.; Ozturk, P.; Chau, K. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 
1536. https://doi.org/10.3390/w10111536. 

142. Hirabayashi, Y.; Mahendran, R.; Koirala, S.; et al. Global Flood Risk under Climate Change. Nat. Clim. Chang. 2013, 3, 
816–821. https://doi.org/10.1038/nclimate1911. 

143. Nanda, A.R.; Nurnawaty; Mansida, A.; et al. A Bibliometric Analysis of Trends in Rainfall-Runoff Modeling Techniques 
for Urban Flood Mitigation (2005–2024). Results Eng. 2025, 26, 104927. https://doi.org/10.1016/j.rineng.2025.104927. 

144. Cui, P.; Bazai, N.A.; Qiang, Z.; et al. Flood Risk Assessment with Machine Learning: Insights from the 2022 Pakistan Mega-
Flood and Climate Adaptation Strategies. NPJ Nat. Hazards 2025, 2, 42. https://doi.org/10.1038/s44304-025-00096-1. 

145. Liu, W.; Feng, Q.; Engel, B.A.; et al. A Probabilistic Assessment of Urban Flood Risk and Impacts of Future Climate 
Change. J. Hydrol. 2023, 618, 129267. https://doi.org/10.1016/j.jhydrol.2023.129267. 

146. Kratzert, F.; Klotz, D.; Herrnegger, M.; et al. Toward Improved Predictions in Ungauged Basins: Exploiting the Power 
of Machine Learning. Water Resour. Res. 2019, 55, 11344–11354. https://doi.org/10.1029/2019wr026065. 

147. Barbhuiya, S.; Manekar, A.; Ramadas, M. Performance Evaluation of ML Techniques in Hydrologic Studies: Comparing 
Streamflow Simulated by SWAT, GR4J, and State-of-the-Art ML-Based Models. J. Earth Syst. Sci. 2024, 133, 136. 
https://doi.org/10.1007/s12040-024-02340-0. 

 


