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direction. How to capture the temporal and spatial evolution law of rutting and express it
through an explicit model will greatly improve the research level of permanent damage
of asphalt pavement, which is the research difficulty of the industry and also the focus
of this paper. In this paper, RIOHTrack was used to measure the database of more
than 100 million loads of full-scale ring road. Time series method was used to overlay
the original Kou&Cao model framework proposed by our team, and an explicit model
framework was proposed here, which can well present the linear and nonlinear process
of rutting evolution in time and space. The model framework perfectly fits the process
of rutting, the fitting accuracy reaches 0.993 when tested on seven kinds of pavement
structure data. The rolling prediction accuracy reaches 0.972. The proposed model
framework effectively improves the interpretability of the asphalt rutting evolution
model, greatly improves the accuracy of the asphalt rutting evolution model, and has
excellent generalization ability, which is closer to revealing the real situation of the
temporal and spatial evolution of asphalt pavement, and plays an important role in the
study of the long life of asphalt pavement.
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1. Introduction

The study of service performance evolution of asphalt pavement is an important premise to ensure the
service and durability of asphalt pavement, and it has important significance for pavement design and maintenance
decisions. Its research can further play a positive role in optimizing road design, preventive maintenance, and
resource conservation, effectively support environmental protection and energy conservation, and further help
human sustainable development.

The literature [1] pointed out that fatigue damage is an important cause of pavement performance failure.
Rutting is one of the key indexes to evaluate pavement performance and fatigue damage, so it is very important to
study rutting deeply. Exploring the temporal and spatial evolution of rutting is also the main research content of this
paper. Refs. [2,3] pointed out that it is helpful to make a more accurate and more scientific maintenance and repair
plan. By understanding the rutting formation mechanism and influencing factors, it can provide a scientific basis for
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the design and ratio of asphalt mixture, reduce the occurrence of rutting disease by optimizing the material properties
and structural design. Effective research on rutting can reduce road surface diseases, improve smoothness and
stability, and then improve driving safety. Reducing the occurrence of rutting can significantly reduce the cost
of road maintenance and reconstruction, and further save energy. With the increase of global climate change and
extreme weather events, the environmental challenges faced by asphalt pavement are becoming increasingly severe.

Since the 1960s, scholars from various countries have begun to conduct systematic scientific research on the
permanent deformation of asphalt pavements. In 1972, at the Third International Conference on Asphalt Pavement
Structure Design, Barksdale and Romain proposed the layer strain method to predict rutting of flexible pavements [4].
In 1987, at the Sixth International Conference on Asphalt Pavement Structure Design, Eisenmann and Hlilmer
pointed out that the main cause of initial rutting was the compaction deformation of the mixture, and the main
cause of later rutting was the shear push and flow of the mixture [5]. In 2000, Tarvey conducted experiments on
the frequency surface of asphalt pavements and concluded that the shear characteristics of asphalt pavements were
nonlinear [6]. In 2006, at the Tenth International Conference on Asphalt Pavement Design, Humvey and Monisith
conducted experimental studies on rutting of asphalt pavements under different wheel loads, wheel pressures and
temperatures, obtained the experimental section profiles, and found obvious shear deformation at the wheel-rail
edge. Based on the experiments, they established a correct rut prediction method to evaluate the shear resistance
performance of the mixture [7]. Under high-temperature conditions, asphalt mixtures exhibit three properties:
adhesion, elasticity and plasticity, and are more likely to produce irreversible permanent deformation.

One of the key obstacles in researching related models is the lack of data on rutting evolution under standard
axle load levels that meet the requirements of the entire life cycle. Since the Dutch East Indies Road Association
built a full-scale test road in 1920, full-scale accelerated loading tests have undergone a development process of over
a hundred years, playing an important role in improving the pavement design system, perfecting design models and
indicators, and enhancing design reliability [8]. The AASHO test loop completed in 1959 effectively supported the
birth of the world-renowned AASHO Road Design Guide, and in 1984, France conducted accelerated loading tests
on the Nantes Ring Road, continuously verifying and improving the French road design method [9, 10]. The outdoor
accelerated loading tests in South Africa have achieved influential research results through the study of relevant
structures of semi-rigid base asphalt pavements [11]. In the 1950s, the United States began to study long-life asphalt
pavements and defined the lifespan of long-life pavements as 50 years or more, but up to now, there is still no
complete long-life design method system.

Although with the development of technologies such as artificial intelligence, the accuracy of models has
become increasingly precise, the non-explicit nature of the models limits their contribution to engineering design and
implementation. Therefore, the study of display models is indispensable.The Kou&Cao explicit rutting prediction
model proposed by [12] has a good effect to capture the non-stationary evolution trend of rutting. Based on the
research application of author [13], the research of this paper reflects the extraordinary value of the ARIMA model
in capturing seasonal change rules and rutting evolution mechanisms, and greatly improves the explainability and
practical significance of the explicit model. The fitting accuracy is close to or even exceeds that of some verified
machine learning models. Compared with other explicit model methods, the prediction accuracy has achieved the
best results.

Scholars around the world have carried out a large number of accelerated loading or test road section studies,
but the road life obtained by these means is short, and most of them cannot cover the whole life process [14]. At
the same time, loading times of most test data are less, which is far from meeting the requirements of loading
times of the whole life cycle. In addition, most of the existing accelerated loading tests are carried out at a specific
temperature and the environment is fixed, which cannot truly simulate the actual environmental factors. In addition,
the axle load of the test is relatively simple, and the research and data requirements on complex factors are quite
different. The development of the full-scale road came into being, and the research of [15, 16] elaborated the
importance and development process of it.

The research in this paper is based on more than 100 million axle load data of the advanced RIOHTrack
full-scale ring road in nearly 8 years, covering valuable data of rutting evolution, such as structure, axle load,
temperature, humidity, air pressure, radiation, etc. This paper presents an explicit rutting evolution model suitable
for fitting the rutting process and multi-step prediction. On the basis of improving the model’s accuracy and
generalization ability, multi-step prediction is achieved. Compared with mainstream machine learning models under
the same data conditions, it can also have better prediction results. The model adopts data-driven method, coupling
time series with Kou&Cao model, which greatly improves the accuracy and interpretability of rutting prediction
model, and integrates the characteristics of time and space evolution of rut evolution. The model tested seven kinds
of pavement structure data, and the highest fitting accuracy was 0.993, and the highest rolling prediction accuracy
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was 0.972. The proposed model framework greatly improves the accuracy of the asphalt rutting evolution model,
has excellent generalization ability, and is closer to revealing the true meaning of the space-time evolution of asphalt
rutting.

Based on the above introduction, Section 2 further introduces the loading data, Section 3 introduces the model
structure, Section 4 is the simulation and comparison, and Section 5 is the summary and prospect of related content.

2. Data Structure

The research of this project relies on the data of RIOHTrack full-scale ring road, which is obtained from the
actual road surface loading. Researchers in the reference [15, 1 7] elaborated the structure of RIOHTrack full-scale
ring road, located in Tongzhou District of Beijing, the foot Ring Road is 2,038 meters long and 3.75 meters wide,
with an initial investment of hundreds of millions of yuan, covering 19 different forms of mainstream structural
asphalt pavement. Since its completion in November 2015 and the official loading operation in December 2016,
it has lasted nearly 8 years of non-stop loading, and has collected more than 100 million valuable loading and
environmental data.

RIOHTTrack full-scale ring road, covering seven structural forms, 19 kinds of pavement, including 12cm AC
and 16-18cm AC semi-rigid base structure, rigid composite and flip base structure, asphalt concrete structure I
and II, full thickness structure. The soil foundation design modulus of all kinds of structures is 40 MPa, and the
pavement structure is shown as follows Figure 1.
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Figure 1. According to the different types of pavement structure, it is divided into seven kinds of pavement structure,
19 kinds of pavement data content.

In this paper, the measured full-scale ring road data of seven structural asphalt pavements are processed by
weighted average of different pavements. In this way, the influence of data anomalies caused by data transmission
on the evolution law can be effectively reduced, and the robustness of the model can be improved. In this paper, a
noise reduction method based on adaptive white noise Empirical Mode decomposition (CEEMDAN) and wavelet
packet adaptive threshold can serve as the tool of model construction and comparison analysis, which has been
proved effective by [18]. The evolution of seven structural road ruts with the loading data is as follows:

As shown in Figure 2, rutting evolution curves and statistical distribution of pavement with different structures
are different. Secondly, rutting depth gradually rises when axle loads increase. The maximum value of the vehicle
appears in the summer high temperature every year, and the ruts gradually decrease with the decrease of the
temperature. From the evolutionary data, the rutting of asphalt pavement has a significant correlation with the
structure, axle load times and temperature factors. However, in the actual data-driven explicit model construction
process, it is impossible to introduce all the major external factors, which reduces the practical significance and
interpretability of model parameters to a certain extent. Therefore, it is particularly valuable to build an interpretable
model that integrates all the factors.

During the construction of the rutting model, features were selected from the RIOHTrack full-scale circular
track data. Finally, two features, namely the axle load frequency and the pavement structure, were chosen as the basis
for constructing the rutting evolution model [12]. Through the feature selection method, the correlation between the
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data features and the rutting evolution was analyzed. The literature [19] conducted a detailed assessment of the
generalization ability of the feature selection for the rutting evolution model construction.
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Figure 2. Rutting evolution process under standard axle load for 100 million times on seven road surfaces.

After eight years of more than 100 million loads of asphalt ruts, fruitful data and theoretical results have been
obtained. According to the conversion model of standard axle load times and asphalt pavement life, the current
pavement life is equivalent to 30 years, which has reached the international advanced level.

On the basis of the above data, combined with the time series, mechanics and empirical theory, the paper
proposes model framework here for the first time.

3. Model Framework

Explicit models are based on clear mathematical equations or physical laws, and the problems are directly
solved through analytical methods or numerical calculations. The concept and techniques of explicit models have
undergone decades of research and practice, and have formed a complete theoretical system and methods. The
construction of explicit models relies on multiple-objective nonlinear material evolution coupling, comprehensive
factor representation of the complex real environment, long data evolution cycles and large data scales, etc. Compared
with the implicit models, they have the characteristics of clear theoretical structure and strong interpretability,
especially in the engineering field, where they can better guide engineering design, form norms and standards.

The rutting evolution data used in this study covers rut, temperature, humidity and other data under standard
axle load 100 million times, but the data fluctuates greatly and is not stable. In order to better integrate time series
model methods, how to effectively extract the nonlinear main trend of data evolution and how or whether to obtain
the effective data of stationarity are particularly critical for time series modeling.

The purpose of this paper is to construct an explicit rutting evolution model framework for asphalt pavement
so as to effectively characterize its evolution scale. Therefore, based on the research results of our team and
superimposed ARIMA model, Kou&Cao-ARIMA model framework of this paper is proposed. Besides the accuracy,
the model also has the characteristics of strong generalization ability. The full-scale track data of RIOHTrack
was analyzed using the random forest method, and finally two features were selected as the basis for model
construction [12].

3.1. Kou&Cao Model Framework

Through literature research and data demonstration, this rutting model frame can excavate the main structure
of asphalt pavement. By effectively selecting the correlation features, the generalization ability of the model can be
improved. Reference [19] have demonstrated and analyzed this, and the model framework in this section is also
built on this basis.

This model framework was first proposed by [12], which effectively characterized the nonlinear relationship
between rutting and axle load on asphalt pavement, as follows,

5
RD; = XA+ Y (awNF + B.N7F). (1)
k=1

where,
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RD; is the rutting depth;

1, here is the number of layers;

ak, A\, i and (B are coefficients;

Ny is the logarithm of the number of loads.

This model is the latest research result, and has shown excellent fitting effect in the literature. The model is
clearly expressed and has strong generalization ability. Compared with the existing mainstream explicit models, this
model shows better fitting accuracy, which is shown in Table 1.

Table 1. Rut fitting effect of seven types of structural pavement.

Statistics/Groups 1 2 3 4 5 6 7
R? 0.967 0.917 0.976 0.974 0.973 0.973 0.975
RMSE 3.066 3.550 3.617 3.945 3.472 3.197 3.374
SSE 1184.72 1587.95  1648.299 1961.294 1519.236  1287.77  1434.613

According to the previous research and demonstration, this model has the potential and ability to capture the
nonlinear process of rutting evolution, so this paper jointly constructs the displayed rutting prediction model.

3.2. Stationarity Test

After obtaining the trend term of rutting evolution through the above model, whether the data with the trend
term removed is stationarity or not is the key to whether the time series method is applicable. The stationarity testing
methods mainly include graph analysis, simple statistics and hypothesis testing. This paper adopts the method of
hypothesis testing.

Augmented Dickey-Fuller (ADF) test is one of the most commonly methods to determine the stationarity by
checking whether there is a unit root. Reference [20] verifies the effectiveness of ADF unit root method in complex
data evolution. In this paper, ADF is used to verify the stationarity of the remaining sequences after trend extraction
from Kou&Cao model. If it is not stationary, we further use the difference method to verify its stationarity. If
it is stable, it is directly used for model construction, which also inversely verifies the validity and rationality of
Kou&Cao model framework.

The construction of this paper assumes the following conditions, that is:

e Null hypothesis: There is a unit root.
*  Alternative hypothesis: There is no unit root.

If the null hypothesis (e.g., p > 0.05) cannot be rejected and the sequence is not stationary, it is still necessary
to test the stationarity of the first-order difference of the sequence.

Through the test and analysis of the data, we find that the data is stable after removing the trend item. This
creates conditions for the further construction of time series model, and also proves the effectiveness of trend model.

3.3. The Model Framework of This Paper

If a system’s observed value x; at time ¢ is related not only to its previous observations T;_1, Ty—2, -+, T¢—p
but also to its previous perturbations €;_1, €;_2, - - -, €,_q the perturbations et at time t, then the system is called an
autoregressive moving average system. Its basic form is as follows:

Ty = MNTi_1+ AoZp_o + -+ /\pl‘t_p + 01641 + Oo€p_o + -+ + 9q€t—q- 2)

ARIMA(p, d, q) is called the differential autoregressive moving average model. Through the trend item
extraction and stationarity test of data, and the data need to be non-white noise sequence, further modeling can be
done. Through the above and further ARIMA model order and parameter estimation, the specific model form is
as follows:

RD;(t) = RD; + X,

5
3)
=X+ > (N + BN*) + ARIM A(p, d, q).
k=1

where,
RD; is a nonlinear trend term;
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X, is the stationary or non-stationary random term;

A, a, B, p, q, d are model parameters.

According to the stationarity test of the data of each road section in this paper, it is known that the difference
number made by the time series to become a stationary time series is zero, that is, d = 0, which is the ARMA model.
ARMA model combines autoregressive and moving average methods, and has good predictive performance and
explanatory ability. After obtaining the parameters of the model, forward prediction can be carried out, and the
predicted value can be obtained successively by using the predicted value recursion. The extrapolation prediction
of MA(q) and ARMA(p, q) is generally to convert the MA(q) and ARMA(p, q) models into the corresponding
higher-order AR models, and then extrapolate the prediction formula of the AR models. The prediction error
formula is:

6,5([) = T4 — .ft(l)

“4)
= Yo€i41 + V1€qpi—1 + - FYi_1€41.

The variance of the linear minimum variance prediction is related to the prediction step [, but not to the time
origin ¢ of the prediction. The larger the prediction step size [ is, the larger the variance of the prediction error is, so
the accuracy of the prediction will be reduced.

Remark 1. The model framework is an important discovery in this field. The model has good interpretability. The
structure of the model is clear and the parameter solving speed is fast. Based on the original model proposed by
the author team, the time series model is superimposed to effectively capture the non-stationary and stationary
information of rut evolution. We are surprised to find that the data is stable after stripping the non-stationary trend
term. In this paper, the rolling prediction method is used to improve the model prediction. The model constructed
in this paper has all the advantages of explicit model, and significantly improves the prediction accuracy and
interpretability of rutting evolution model.

4. Simulation and Comparison

The simulation data used in this paper is rutting evolution data of RIHOTRrack full-scale ring road from
November 2016 to December 2023, with a total of 101.49 million standard loading axles. On the basis of the data,
the paper uses CEEMDAN and wavelet packet denoising methods to denoise the data. The data used here covers
rutting and axle load data of 19 types of road structures of seven types of RIOHTrack, with a total of 153 loading
cycles, and the standard axle load times of 1.09 million every two adjacent time intervals.

4.1. Model Fitting

Seven types of road data are fitted by using the proposed Kou&Cao-ARIMA model frame. Through the work
in this section, the fitting effect is verified, the nonlinear trend capturing effect of Kou&Cao is also verified in
reverse. The specific steps are as follows:

. Using Kou&Cao model frame and the data after noise removal, the parameters are estimated, and the nonlinear
rutting model suitable for various structure pavement is obtained.

e Calculate the residual error after model fitting.

e (Calculate the stationarity of residual data and determine whether to use ARMA or ARIMA model for
further fitting.

e The time series model is built, and the Kou&Cao model is superimposed to get the final model.

The rutting evolution of seven types of road data was predicted respectively, and the fitting accuracy of all
of them was between 0.9934 and 0.973. It shows that the model framework, with more than 100 million loading
cycles, can perfectly represent its evolutionary data size effectively by the model in this paper. Because the model
frame has a very high fitting effect on all asphalt pavement structures, it reflects the good generalization ability of
the model. The specific fitting results are as the following Table 2.

Table 2. Model fitting accuracy of seven types of asphalt pavement.

Statistics/Groups 1 2 3 4 5 6 7
R? 0.9869 0.9730 0.9910 0.9886 0.9892 0.9894 0.9934
RMSE 2.3663 2.4783 2.5970 2.9108 2.4550 2.2269 1.9088
SSE 856.7002  939.7589 1031.9 1296.3 922.1145 758.7323  557.4823
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Based on the above data, the constructed model framework is fitted and the differential evolution algorithm is
used to obtain the relevant parameter values. The specific results are as the following Table 3.

Table 3. Concrete parameter results that fitted.

Groups 1 2 3 4 5 6 7
A 2.79 x 101 353 x 1011 257 x 101t 573 x 101t 4.79 x 101t 3.81 x 10! 6.18 x 101!
a1 —3.64x1010 —4.61x101° —3.39x1010 —7.52x100 —6.28x10'0 —4.98x10'0 —8.12x10%0
s 3.24 x 109 4.12 x 10° 3.05 x 109 6.74 x 109 5.63 x 102 4.45 x 109 7.29 x 10°
a3 —1.88x 108 —240x 108 —1.79x 108 —3.95x 108 —3.29 x 108 —2.60 x 108 —4.27 x 108
oy 6.45 x 106 8.27 x 106 6.21 x 106 1.37 x 107 1.14 x 107 8.94 x 109 1.48 x 107
as —9.91 x 10* —1.28 x 10° —9.65 x 10* —2.12x 105 —1.76 x 10> —1.38x 10° —2.30 x 10°
B1 —1.48%1012  —1.86x10'2 —1.35x1012 —3.02x10'2 —252x10'2 —2.01x10'2 —3.25x10'2
B2 5.35x 1012 6.73 x 1012 4.84 x 1012  1.08 x 1013 9.09 x 1012 7.27 x 102  1.17 x 1013
B3 —1.26x101  —1.59x10'3  —1.13x1013  —255x10'3 —2.14x10%® —1.71x10'3 —2.74x10!3
Ba 1.76 x 1013 221 x 10" 1.57 x 103  3.53 x 1013 2.96 x 10"  2.38 x 103 3.79 x 10'3
Bs —1.10x1013  —1.38x1013 —9.70x1012 —2.19x1013 —1.84x1013 —1.48x1013 —2.35x1013
p 3 2 3 3 1 1 1
d 0 0 0 0 0 0 0
q 1 3 1 3 1 1 1
Constant —0.0001 —0.0002 —0.0002 0.0018 0.0176 0.0208 0.0227
AR{1} 1.37 1.86 1.21 1.47 0.80 0.82 0.77
AR{2} —0.14 —0.92 0.15 —0.21 / / /
AR{3} —0.35 / —0.48 —0.37 / / /
MA{1} —1.00 —1.38 —1.00 —1.43 —0.21 —0.27 —0.31
MA{2} / 0.08 / 0.44 / / /
MA{3} / 0.30 / -0.01 / / /

The measured data verify that the model has excellent fitting effect, and its result is significantly higher than
that of other explicit models. The fitting effects are shown in Figures 3-9.
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Figure 3. The first group of asphalt pavement rutting fitting effect drawings, the fitting accuracy is 0.987, the RMSE
is 2.366, the SSE is 856.7002.
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Figure 5. The third group of asphalt pavement rutting fitting effect drawings, the fitting accuracy is 0.991, the RMSE
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Figure 6. The fourth group of asphalt pavement rutting fitting effect drawings, the fitting accuracy is 0.989, the
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Figure 7. The fifth group of asphalt pavement rutting fitting effect drawings, the fitting accuracy is 0.989, the RMSE
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Figure 9. The seventh group of asphalt pavement rutting fitting effect drawings, the fitting accuracy is 0.993, the
RMSE is 1.909, the SSE is 557.482.

4.2. Model Prediction

According to the model fitting study, the model has an excellent fitting effect. However, the prediction of
rutting evolution is a great test for the model constructed by small sample time series.

This paper improved the one-step prediction of ARIMA by adopting a rolling prediction mode, so that each
time point in the test data set participated in iteration, as follows:

e Obtain the nonlinear evolution model and parameters of the training set by using model (1) to predict the trend
of the test set.

e Obtain the pre - ¢ time prediction error time series and evaluate its stability.

e Perform ARIMA prediction on the error of £ + 1 time to obtain the predicted value of the time.

e The above test data is supplemented with the training set data to train new trends and ARIMA models.

e step by step iteration 1~4 steps, ¢ + k, k = 2... Iteratively forecast the test set at all times and complete the
prediction of all test sets.

This is essentially an extension of the single-step prediction of the ARIMA model, but the single-step prediction
with a period interval of about 1.09 million standard axle loads has significant significance for engineering practice.

In this section, we take the first 80% as the training set and the rest as the test set. The seven groups of data
were predicted respectively, and the coefficient of determination of the fitting of the training set was between 0.965
and 0.989, and the coefficient of determination of the prediction effect of the test set was between 0.842 and 0.972.
The specific results are as following Table 4.

https://doi.org/10.53941/ams.2025.100005 9 of 14


https://doi.org/10.53941/ams.2025.100005

Kou et al. Appl. Math. Stat. 2025, 2(2), 5

Table 4. Coefficient of determination of model training set and test set prediction.

Determination/Groups 1 2 3 4 5 6 7
Training 0.985 0.965 0.989 0.977 0.976 0.975 0.969
Test 0.902 0.842 0.922 0.960 0.961 0.972 0.885

The intuitive prediction effects of the specific model are shown in Figures 10-16 .
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Figure 10. Predictive effects of Group 1’s test set and training set.
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Figure 11. Predictive effects of Group 2’s test set and training set.
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Figure 12. Predictive effects of Group 3’s test set and training set.
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Figure 13. Predictive effects of Group 4’s test set and training set.
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Figure 14. Predictive effects of Group 5’s test set and training set.
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Figure 15. Predictive effects of Group 6’s test set and training set.
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Figure 16. Predictive effects of Group 7’s test set and training set.
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4.3. Model Comparison

In this paper, an explicit rutting prediction model suitable for all asphalt pavement structures is constructed by
time series method superimposed with Kou&Cao nonlinear model. Through data fitting and prediction research
verification, the phased model results are obtained. The Burgers model is introduced in detail in Article [21]. It is
improved and applied in this section. The JTG D50-2017 model, described in detail in reference [22], has better
applicability to the data.

This paper selected mature explicit comparison models for comparison, including Kou&Cao model, improved
Burgers (R-B) and JTG D50-2017 specification (R-2017) model, which are introduced as follows:

(1) R-B model, is a nonlinear visco-elasto-plastic model. It can describe the accelerated creep stage of
asphalt well.

1 N,/10000 1 _oTBy
RDgr_p =100 . -(1—e <"n2 (N,/10000
R-B [6aTE1 Ty, e T, (1-e 2 (Ns/ ) )
I'(o —oy)
—————=(N,/10000)"].
10060, (1Vs/10000)7]
where,
0 o< o,
I(oc—o05) = (6)
o—0s 0>0

o is the constant stress, o is the yield stress, RDr_ p represents the rutting depth under R-B model, N represents
the cumulative axle load number, a and b are the model coefficients, T is the external environment temperature, F
represents the elastic modulus of the Kelvin model, 7; represents the viscosity coefficient of the Kelvin model in this
prediction model, F5 represents the elastic modulus of the Maxwell model, 72 represents the viscosity coefficient of
the Maxwell model in this prediction model, and 73 represents the viscosity coefficient.

(2) R-2017 model, is obtained by using RIOHTrack data to modify parameters of the rutting model in the
specification JTG D50-2017. The rutting prediction model of Formula (7) is as follows:

RDpg_9017 = aTpet"Pi°Ne3® Ryi. (7

where, T}, represents the equivalent temperature of the asphalt layer under permanent deformation, P; represents
the vertical compressive stress of the top surface of the asphalt mixture layer ¢, V.3 represents the cumulative acting
times of the design lane to reach the design service life, R,; represents the pressure, a, b, c and d are the regression
coefficients.

Using the latest rutting loading data, by introducing and comparing the above model, the first group of data is
selected as the research comparison data to start the work in this section. Model fitting is the basis for testing the
model. The fitting effect is analyzed, and the specific effect parameters are as the following Table 5.

Through the above data research, compared with the relevant models, the model proposed in this paper has
achieved excellent fitting effect, the specific details can be found in Table 6. The model constructed in this paper
can capture the non-stationary trend under the condition of its nonlinear and non-stationary characteristics, and
introduce time series method to achieve better research results through rolling prediction.

The model construction of time series superposition enables the model to supplement the rolling prediction
mechanism on the basis of explicit expression, and greatly improves the fitting and prediction ability of the model.

Compared to previous studies, the predictive effect of this model is much higher than that of other explicit
models. Ref. [23] trained three deep learning models (RNN, LSTM, and GRU) with different structures and
sequence lengths, the results show that the best prediction effect of the deep learning model on RIOHTrack data is
R? =0.899, lower than the best prediction effect of the model proposed in this paper.The data of the RNN, LSTM
and GRU models were all optimized for pavement structure data through the k-means clustering algorithm. The
effect of this model is the average value of all the structural pavement results. The model proposed in this paper has
the characteristics of having few input features, clear parameters, and high prediction step size and accuracy.The
comparison results are as follows.
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Table 5. Comparative analysis of model fitting effect.

Statistics Kou & Cao-ARIMA Kou & Cao R-B R-2017
R2 0.987 0.975 0.944 0.938
RMSE 2.37 3.25 4.45 5.048

SSE 856.70 1616.43 2688.23 3797.09

Table 6. Comparison with mainstream machine learning models.

Model Types Training Test Prediction Step  Input Features Parameters Number
Kou&Cao-ARIMA 0.977 0.921 30 2 21
KM-GRU 0.989 0.899 11 32 Unknown
KM-LSTM 0.975 0.813 11 32 Unknown
KM-RNN 0.954 0.773 11 32 Unknown

5. Summary and Outlook

In this paper, Kou&Cao-ARIMA model is proposed innovatively through a data-driven method, which solves
the problems of insufficient data mining theory, model accuracy and reliability to a certain extent. The data effect of
the model in this paper is significantly higher than that of the existing explicit model, and the fitting and prediction
accuracy of ruts of different pavement structures are good, and the maximum values are 0.993 and 0.972, respectively.
The model is simple in expression, interpretable and generalization ability, which is conducive to further research
and engineering practice, and has significant significance for the study of rutting on asphalt pavement.

How to reveal the true meaning of rutting evolution is the eternal theme of asphalt pavement rutting research,
which still needs further bold exploration. In order to continuously optimize the model framework and propose a
more effective theoretical framework, the following contents need to be further studied and perfected:

Firstly, the validity of the model framework in this paper is verified on more data sets. Due to the limitation of
the measured loading data, it is necessary to expand the validation data set. Secondly, with the deepening of rut
loading data, the inflection point mechanism of rut needs to be further explored and demonstrated. At the same time,
the study of rutting evolution still needs to strengthen international exchanges and jointly improve the theoretical
and research level.
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