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Abstract: Type 2 diabetes (T2D) is a common chronic metabolic disease that poses a major challenge to global 
public health. Dysfunction of epididymal adipose tissue (eWAT) plays a pivotal role in the progression of T2D. 
However, the metabolic alterations occurring in eWAT under diabetic conditions remain incompletely understood. 
This study aims to comprehensively explore the metabolic changes in eWAT of db/db mice, a well-established 
model of T2D, by integrating untargeted metabolomics, targeted metabolomics, and lipidomics analysis. Our 
results reveal significant perturbations in the purine and histidine metabolic pathways. Specifically, we observed 
marked reductions in key metabolites, including adenosine monophosphate (AMP), xanthine, hypoxanthine, 
adenosine, and inosine, in the eWAT of db/db mice. Additionally, there were significant increases in short- and 
medium-chain acylcarnitines, along with elevated levels of short-chain fatty acids and tricarboxylic acid (TCA) 
cycle intermediates. Notably, distinct patterns of alterations in triglycerides, ceramides, and phosphatidylcholines 
were observed with each characterized by specific structural attributes. These results offer new perspectives on 
the metabolic reprogramming of eWAT in the diabetic state and identify potential targets for the development of 
therapeutic strategies. 
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1. Introduction 

Type 2 diabetes (T2D) is a globally prevailing metabolic disorder that poses substantial public health 
challenges owing to its link with severe complications, including diabetic nephropathy, cardiovascular diseases, 
and retinopathy [1]. Insulin resistance, a metabolic condition characterized by impaired cellular sensitivity to 
insulin, represents a central pathophysiological feature of T2D, predominantly disrupting the functions of adipose 
tissue, liver, and skeletal muscle [2]. Adipose tissue is essential for maintaining systemic glucose homeostasis, 
functioning by sequestering surplus energy stored as triglycerides and mobilizing fatty acids during fasting states [3]. 
Dysregulated adipose tissue function in T2D disrupts systemic glucose and lipid metabolism, contributing to 
disease progression [4]. 

Epididymal adipose tissue (eWAT) is a distinct type of white adipose tissue marked by larger internal 
adipocytes and the secretion of various bioactive adipokines and inflammatory factors, which are critical for 
maintaining metabolic homeostasis [5]. For instance, FGF21 promotes lipid and glucose homeostasis and exhibits 
anti-inflammatory effects [6]. Additionally, TNF-α concentration is linked to the extent of IRS-1 inactivation in 
obese patients, which inhibits insulin receptor kinase activity, impairs GLUT-4 translocation, and ultimately 
reduces glucose uptake [7]. Examining the metabolic alterations in eWAT linked to T2D can aid in identifying 
potential diagnostic biomarkers, uncover the mechanisms driving insulin resistance, and support the development 
of targeted therapies to mitigate disease progression [8]. 



Health Metab. 2025, 2(3), 1 https://doi.org/10.53941/hm.2025.100016  

2 of 13 

High-performance liquid chromatography-mass spectrometry (HPLC-MS) based metabolomics technology 
has been extensively employed to analyze small molecules across various biological matrices, providing 
comprehensive insights into intracellular metabolic phenotypes [9]. Non-targeted metabolomics endeavors to 
comprehensively profile a wide spectrum of metabolites within a biological system, enabling the discovery of 
novel pathophysiological pathways and potential biomarkers [10]. In contrast, targeted metabolomics emphasizes 
the quantitative analysis of predefined metabolites within specific metabolic pathways or structurally related 
groups, offering higher sensitivity and accuracy [11]. Previous studies have utilized untargeted metabolomics or 
lipidomics analysis to investigate the metabolic profiles of serum, urine, and major metabolic organs in various 
mouse models, including ob/ob, db/db, and high-fat diet and streptozotocin (HFD-STZ)-induced diabetic mice. 
These studies have identified notable alterations in key metabolites, including lysine, branched-chain amino acids, 
fatty acids, acylcarnitines, and acylglycines [12–15]. However, comprehensive analyses of the metabolic landscape 
in eWAT under diabetic conditions are still scarce. Moreover, the integration of untargeted and targeted 
metabolomics analysis combines sensitivity and specificity, facilitating the identification of a broader range of 
metabolites or metabolic networks [16]. For instance, Zhang et al. detected 16 distinct serum biomarkers for lung 
cancer using untargeted methods and 9 additional biomarkers through targeted approaches, significantly enhancing 
the overall identification of biomarkers [17]. Furthermore, Wang et al. and Chen et al. emphasized that relying solely 
on either metabolomics or lipidomics is inadequate to fully capture the complexity of metabolic disturbances [18,19]. 
Thus, the integration of metabolomics and lipidomics is essential for a holistic understanding of metabolic 
alterations in eWAT under T2D conditions and for identifying potential therapeutic targets. 

In this study, we utilized db/db mice as a model for T2D and employed an integrated approach that combined 
untargeted metabolomics, targeted metabolomics, and lipidomics to systematically characterize the metabolic 
landscape of eWAT. This study aims to identify key metabolic pathways disrupted under diabetic conditions, 
providing a deeper understanding of eWAT metabolism in T2D. These results could aid in identifying new 
biomarkers or therapeutic targets for diabetes regulation. 

2. Materials and Methods 

2.1. Materials 

3-Nitrophenylhydrazine hydrochloride (3-NPH), pyridine, and various certified standard compounds were 
procured from reputable suppliers such as Sigma-Aldrich (St. Louis, MO, USA) and Cambridge Isotope Laboratories 
(CIL, Andover, MA, USA). 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI, purity ≥ 98%) 
was sourced from Tokyo Chemical Industry (TCI, Japan). High-performance liquid chromatography (HPLC)-grade 
methanol, acetonitrile and methyl tert-butyl ether (MTBE) were purchased from RIC Labscan Ltd. (Bangkok, 
Thailand). Unless otherwise indicated, all additional chemicals and solutions used were of analytical grade. 

2.2. Animal Experiments 

Male C57BL/KsJ db/db mice and their db/m+ littermates, aged 12 weeks, were selected for experiments. The 
mice were sourced from the Animal Facility of The Chinese University of Hong Kong (CUHK). All animal 
experimental procedures were approved by the Hong Kong Government and Department of Health. The mice were 
kept in the environment with maintained humidity and temperature, under a 12-h light/dark cycle. They were given 
standard laboratory food ad libitum and had free access to water. 

We monitored body weight, fasting blood glucose, and insulin levels. Following euthanasia by CO2 
inhalation, blood samples were obtained from the inferior vena cava and transferred into centrifuge tubes 
containing pre-wetted sodium heparin. eWAT was collected and kept under −80 °C until further analysis. 

2.3. Sample Preparation 

For metabolomics analysis, 30 mg of eWAT was weighed into a centrifuge tube. Thereafter, 800 μL of ice-
cold 80% methanol/water solution (80/20, v/v) containing internal standards (IS) was added for homogenization 
using a homogenizer (Wuhan Servicebio Technology Co., Ltd., Wuhan, China). The samples were then sonicated 
for 10 min and incubated at 4 °C for 15 min. Then the samples were centrifuged at 14,200× g for 15 min. The 
supernatant was dried and reconstituted in 50% methanol/water for analysis. 

For lipidomics analysis, 20 mg of eWAT was combined with 170 μL of water and 480 μL of MTBE/methanol 
mixture (5:1, v/v). The mixture was homogenized for 10 min at 4 °C and then centrifuged at 3000 rpm for 10 min 
at 4 °C. A 300 μL aliquot of the supernatant was evaporated to dryness under vacuum at 4 °C. The dried samples 



Health Metab. 2025, 2(3), 1 https://doi.org/10.53941/hm.2025.100016  

3 of 13 

were reconstituted in 60 μL of dichloromethane/methanol mixture (1:1, v/v) containing internal standards for 
lipidomics analysis. 

For both non-targeted metabolomics and lipidomics analyses, quality control (QC) samples were generated 
by mixing supernatant extracts from individual samples. These QC samples were injected throughout the 
experiment to evaluate instrument stability and reliability. Authentic standards were used for all targeted 
compounds, with stock solutions prepared in 50% methanol and subsequently diluted to appropriate concentrations 
for method development and validation. 

2.4. H&E Staining 

The experimental procedure was adapted with minor adjustments from the protocol described by Jin et al. [20]. 
The eWAT samples were fixed in 10% formalin for 72 h. After fixation, the tissues were dehydrated, embedded 
in paraffin, and sectioned. The sections were incubated at 65 °C for 20 min, followed by deparaffinization and 
rehydration. Thereafter, the sections were stained according to the standard hematoxylin and eosin (H&E) protocol. 

2.5. UHPLC-MS/MS Analysis 

Untargeted metabolomics, lipidomics, and acylcarnitine analyses were performed using an ultra-high-
performance liquid chromatography system coupled with a Q Exactive Focus Orbitrap mass spectrometer 
(Thermo Fisher Scientific, Waltham, MA, USA). This procedure was partially modified from the method 
reported by Xiang et al. [9]. For the relative quantification of fatty acids and intermediates of the tricarboxylic 
acid (TCA) cycle, a 3NPH-based derivatization method was employed using the UltiMate 3000 liquid 
chromatography tandem triple quadrupole mass spectrometer system (Thermo Fisher Scientific, Waltham, MA, 
USA), with modifications according to the methods described by Xiang et al. [13,21] and Jia et al. [22]. The 
specific chromatographic conditions and mass spectrometer parameters are presented in Tables S1–S4. 

2.6. Data Processing and Statistical Analysis 

The data processing for targeted analysis was carried out using Xcalibur Software v.4.1 (Thermo). For non-
targeted metabolomics and lipidomics analysis, chromatographic peak extraction and alignment were performed 
using R v4.3.0 and LipidSearch™ 5.0 Software.. To mitigate systematic errors, features with a coefficient of 
variation (CV) exceeding 30% in QC samples were removed. After normalization and Pareto scaling, multivariate 
analyses such as unsupervised Principal Component Analysis (PCA) was performed. Differential metabolites 
between two groups were identified based on p values (p < 0.05) and fold changes (FC > 1.2 or FC < 0.8). 
Metabolites were identified by matching MS/MS fragments with publicly available databases, including the 
Human Metabolome Database (HMDB) and METLIN. Lipid identification was performed using LipidSearch 
software. LipidSearch incorporated retention time filtering (±0.5 min) to exclude lipids with retention times outside 
the expected ranges. Only lipids identified with confidence levels A and B, as defined by MS/MS fragment ion 
matching criteria, were included in the final analysis. The pathway enrichment analysis was performed utilizing 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Data are shown as mean ± standard error (SE), 
with p values < 0.05 considered statistically significant. 

3. Results 

3.1. Phenotypic Characterization of eWAT in db/m+ and db/db Mice 

In this study, db/db mice were employed as a model for type 2 diabetes. Compared to the control group, 
db/db mice exhibited significantly increased blood glucose and insulin levels (Figure S1A,B), indicating severe 
systemic glucose metabolism dysregulation. Additionally, Figure S1C–E demonstrate that db/db mice had 
significantly higher body weight, eWAT weight, and eWAT-to-body-weight (EW/BW) ratio than the control 
group. These findings reflect not only substantial weight gain but also abnormal changes in eWAT under 
conditions of metabolic disorder. Histological analysis further revealed a marked increase in lipid droplet size 
within the eWAT of db/db mice (Figure S1F,G). These alterations suggest substantial pathological changes in the 
eWAT of db/db mice under diabetic conditions, potentially closely associated with metabolic dysregulation. 

3.2. Metabolic Profiles of eWAT in db/db Mice 

Non-targeted metabolomics was employed to characterize the metabolic differences between the eWAT of 
db/m+ and db/db mice. To assess the performance of the analytical method, we first performed PCA on both 
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experimental and QC samples. As shown in Figure S2A, the QC samples clustered closely together, demonstrating 
the stability and repeatability of the analytical method and instrument. Additionally, the PCA results, presented in 
Figure 1A, revealed a clear separation between the metabolic profiles of the db/db group and the db/m+ group, 
highlighting distinct metabolic differences between these two groups. 

 

Figure 1. Non-targeted metabolomics analysis of eWAT in db/db mice. (A) PCA score plot. The enclosed area 
represents samples within the 95% confidence interval. (B) Volcano plot of detected features. (C) Classification 
summary of differential metabolites. (D) Heatmap visualization of all differential metabolites. (E) Bubble chart 
showing KEGG pathway enrichment analysis results based on differential metabolites. (F,G) Changes in metabolites 
related to purine metabolism (F) and histidine metabolism (G) in the eWAT of db/db mice. Data are presented as 
means ± SEM (n = 10). The p value was calculated by t-student. * p < 0.05, *** p < 0.005, **** p < 0.001. 

3.3. Differential Metabolites Identification and Metabolic Pathway Enrichment 

In this study, features with fold changes greater than 1.2 or less than 0.8 and p values less than 0.05 were 
identified as differential metabolites. The volcano plot results revealed a total of 1492 differential features, 
including 798 significantly upregulated and 694 significantly downregulated (Figure 1B). Among these, 70 
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differential features were further identified as endogenous metabolites, which are summarized in Table S5 and 
displayed in Figure 1C. The composition of these metabolites is shown in Figure 1D, where phospholipids, amino 
acids and their derivatives, and fatty acids and their derivatives represent the largest proportions, accounting for 
25.70%, 20.00%, and 17.10%, respectively. This suggests that metabolic abnormalities in eWAT under diabetic 
conditions are predominantly reflected in lipid metabolism and certain amino acid metabolic pathways, which may 
potentially lead to adipose tissue dysfunction. 

To further explore the metabolic pathways underlying eWAT metabolic dysregulation in db/db mice, pathway 
enrichment analysis was conducted based on the KEGG database. The results (Figure 1E) showed that histidine 
metabolism, alanine metabolism, and purine metabolism pathways were the most significantly altered (p < 0.05). 
Specifically, adenosine monophosphate (AMP), xanthine, hypoxanthine, adenosine, and inosine in the purine 
metabolism pathway were markedly reduced in the eWAT of db/db mice (Figure 1F). Additionally, 1-
methylhistamine, carnosine, and anserine, involved in histidine metabolism, exhibited a significant decrease 
compared to the control group (Figure 1G). The abnormal expression of these metabolic pathways may be closely 
associated with the metabolic dysfunction in the eWAT of db/db mice.  

3.4. Targeted Metabolomics Analysis of eWAT in db/db Mice 

Untargeted metabolomics revealed that fatty acids and their derivatives accounted for approximately 20% of 
the total differential metabolites, suggesting significant abnormalities in fatty acid metabolic pathways. To gain 
deeper insights, we conducted targeted measurements of fatty acid metabolism-related compounds in the eWAT 
of db/db mice, including various fatty acids, acylcarnitines, and TCA cycle intermediates (Tables S6 and S7).  

The PCA score plot (Figure 2A) demonstrated a clear separation of the targeted metabolic profiles between 
the two groups, indicating significant disruption of fatty acid metabolism in the eWAT of diabetic mice. The 
volcano plot (Figure 2B) demonstrated that 17 metabolites were significantly upregulated, while 6 were 
significantly downregulated.  

Interestingly, acylcarnitines with different carbon chain lengths showed distinct changes. Several 
butyrylcarnitine derivatives (e.g., crotonyl-carnitine (C4:1-CN), hydroxybutyrylcarnitine (C4-OH-CN), 2-
methylbutyroylcarnitine (2-Me-C4-CN)), valerylcarnitine derivatives (e.g., valeryl-carnitine (C5-CN), 
tiglylcarnitine (C5:1-CN), hydroxyl valeryl-carnitine (C5-OH-CN), and hydroxyisovaleroyl carnitine (isoC5-OH-
CN)) were markedly elevated in the eWAT of db/db mice (Figure 2C). Additionally, several medium-chain 
acylcarnitines, including hydroxyl hexanoyl-carnitine (C6-OH-CN), octenoyl-carnitine (C8:1-CN), hydroxyl 
octanoyl-carnitine (C8-OH-CN), and decenoyl-carnitine (C10:1-CN), were significantly elevated in the db/db 
group (Figure 2D). In contrast, long-chain acylcarnitines showed no significant overall changes except for the 
notable increases in linoleoyl-carnitine (C18:2-CN) and hydroxyl linoleoyl-carnitine (C18:2-OH-CN) (Figure S3A). 
Additionally, alterations in short-chain fatty acids are depicted in Figure 2E, with 2-hydroxybutyric acid (2-OH-
C4), 3-hydroxyisobutyric acid (3-OH-isoC4), and 5-hydroxyvaleric acid (5-OH-C5) significantly increased in the 
disease group, while propanoic acid (C3) showed a significant decrease. For the majority of medium-chain and 
long-chain fatty acids (Figure S3B), no significant trends were observed in the model group, except for myristic 
acid (C14), palmitic acid (C16), and arachidic acid (C20), which were significantly decreased in the eWAT of 
db/db mice. The TCA cycle, essential for cellular energy metabolism, was also analyzed. Targeted measurements 
indicated that succinate, fumarate, citrate, isocitrate, and α-ketoglutarate were significantly elevated in the eWAT 
of diabetic mice. The above findings highlight significant disruptions in fatty acid and energy metabolism 
pathways in the eWAT of diabetic mice. 

3.5. Diverse Lipid Alterations in eWAT of db/db Mice 

Furthermore, the results showed that phospholipids constituted 25.7% of the differential metabolites, 
highlighting notable disruptions in lipid metabolism. Considering the pivotal role of lipids in various metabolic 
pathways and the substantial alterations observed in this study, we performed lipidomics analysis on eWAT to 
gain a deeper understanding of these lipid metabolic disturbances. The PCA plot (Figure S2B) demonstrated tight 
clustering of QC samples, highlighting the robustness, stability, and reproducibility of the analytical method and 
instrumentation. Furthermore, the PCA results (Figure 3A) revealed significant differences in eWAT lipid profiles 
between the two groups, indicating clear metabolic distinctions. Differential analysis identified 210 lipid species 
with substantial changes, including triglycerides (TG, 7.4%), diglycerides (DG, 6.0%), phosphatidylcholines (PC, 
24.7%), phosphatidylethanolamines (PE, 18.6%), ceramides (Cer, 10.2%), sphingomyelins (SM, 14.0%), and 
hexosylceramides (Hex1Cer, 8.8%). Lipids with no significant change were excluded from further analysis 
(Figure 3B and Table S8).  
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Figure 2. Targeted metabolomics analysis of eWAT in db/db mice. (A) PCA score plot. The enclosed area 
represents samples within the 95% confidence interval. (B) Volcano plot of differential metabolites. (C,D) Changes 
in short-chain (C) and medium-chain acylcarnitines. (D) based on integrated non-targeted and targeted 
metabolomics analysis. (E,F) Changes in short-chain fatty acids (E) and TCA cycle products (F) in the eWAT of 
db/db mice. Data are presented as means ± SEM (n = 10). The p value was calculated by t-student. * p < 0.05, ** 
p < 0.01, *** p < 0.005, **** p < 0.001. 

To further investigate the alterations of individual lipid species under diabetic conditions, we visualized all 
significantly altered lipids using the bubble chart and bar graphs. Within the glycerophospholipids (Figure 3C,F), 
phosphatidylinositol (PI), phosphatidylserine (PS), and phosphatidylglycerol (PG) were significantly increased, 
while PE levels were significantly reduced in the diabetic group. Among the sphingolipids (Figure 3D,F), SM 
were elevated, while Hex1Cer levels were significantly decreased. Cer species showed a mixed pattern, with some 
species significantly increased and others significantly decreased (Figure 3F). Compared to the db/m+ group, 
glycerolipids, specifically TG and DG, were significantly elevated in the diabetic group (Figure 3E,F). These 
findings reveal that lipid metabolism disturbances in the eWAT of db/db mice are widespread, affecting not only 
phospholipids but also glycerolipids and sphingolipids. This comprehensive analysis highlights the complex nature 
of diabetic lipid dysregulation and pinpoints specific lipid species that may be critical to diabetes pathophysiology. 
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Figure 3. Lipidomics analysis of eWAT in db/db mice. (A) PCA score plot. The enclosed area represents samples 
within the 95% confidence interval. (B) Summary of classifications for differential lipids. (C,E) Fold changes in 
the intensities of (C) glycerophospholipids, (D) sphingolipids, and (E) glycerolipids. (F) Log2 fold changes and 
significance of lipid species from different lipid categories. Each dot represents a lipid species, with the size of the 
dot indicating the magnitude of significance. Only lipids with p < 0.05 are shown. Data are presented as means ± 
SEM (n = 10). The p value was calculated by t-student. **** p < 0.001. 

3.6. Structural Alterations of Lipids in eWAT of diabetic Mice  

To elucidate the structural alterations of differential lipids in eWAT under diabetic conditions, we analyzed 
variations in carbon chain length, degree of unsaturation, and acyl side chains of different lipid molecules. TG 
with carbon chain length ranging from 42 to 50 and double bond counts between 0 and 3 exhibited a notable 
increase in eWAT of db/db mice (Figure 4A). Similarly, DG with total carbon numbers ranging from 26 to 36 and 
double bond numbers between 1 and 4 exhibited substantial changes, whereas DGs with carbon numbers greater 
than 39 exhibited minor alterations (Figure 4B). 
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Figure 4. Bubble plot analysis of different categories of lipid molecular structures in the eWAT of db/db mice (A–G). 
Structural information of (A) triglycerides, (B) diglycerides, (C) ceramides, (D) hexosylceramides, (E) 
sphingomyelins, (F) phosphatidylcholines, and (G) phosphatidylethanolamines. The size of each bubble represents 
the magnitude of significance, while different colors indicate varying fold changes. The p value was calculated by 
t-student. 

In the sphingolipid category, the most significantly altered ceramides had unsaturation levels below 2. Cer 
molecules with carbon numbers between 31 and 38 showed a significant increase, while those between 39 and 43 
showed a significant decrease in the disease group (Figure 4C). Moreover, most of Cer molecules containing C18:1 
acyl side chain was markedly reduced (Figure S4A). Hex1Cer levels overall decreased, with notable changes in 
molecules with carbon numbers between 40–42 (Figure 4D). Sphingomyelins (SM) exhibited a significant upward 
trend, particularly those with total carbon numbers between 34 and 38 and double bond counts greater than 2 
(Figure 4E). 

Phospholipids in eWAT also showed distinct alteration patterns. Phosphatidylcholines (PC) with carbon 
numbers between 36 and 40 and double bond counts between 3 and 7 were significantly elevated, while PCs with 
fewer than 36 carbons decreased significantly (Figure 4F). Most phosphatidylethanolamine (PE) molecules were 
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significantly reduced in eWAT of diabetic mice (Figure 4G), although PE molecules with acyl side chains 
containing 20:4 and 20:3 accumulated substantially in eWAT of diabetic mice (Figure S4B). 

These findings suggest that lipid metabolism in eWAT undergoes extensive reprogramming under T2D 
conditions, characterized by significant alterations in the carbon chain length, degree of unsaturation, and acyl side 
chains of various lipid species. 

4. Discussion 

Type 2 diabetes is a globally prevalent metabolic disorder, yet the comprehensive metabolic profile of eWAT 
under diabetic conditions remains incompletely understood. To address this knowledge gap, we employed a 
complementary strategy integrating untargeted metabolomics, targeted metabolomics, and lipidomics to analyze 
the eWAT of db/db diabetic mice. This integrative approach significantly enhanced the detection coverage, 
sensitivity, and accuracy of metabolite profiling. The Figure 5 presents a proposed metabolic overview of the 
eWAT in db/db mice, highlighting disrupted metabolic pathways and altered metabolites. Specifically, disruptions 
in the TCA cycle, purine metabolism, histidine metabolism, and lipid metabolism, including changes in 
glycerolipids, glycerophospholipids, sphingolipids, short- and medium-chain acylcarnitines, and short-chain fatty 
acids, shed light on the complex mechanisms underlying T2D.  

 

Figure 5. An overview of disrupted metabolic pathways in the eWAT of db/db mice. Red, green, and gray colors 
indicate increased, decreased, and unchanged levels in db/db mice, respectively. 

Several studies have demonstrated a close association between the purine metabolism and T2D [23,24]. 
Elevated levels of purine metabolism intermediates, such as adenosine, xanthine, hypoxanthine, and AMP, have 
been reported in the serum of T2D patients and animal models [25,26]. However, our findings revealed a 
significant reduction in intermediates such as adenosine, AMP, inosine, hypoxanthine, and xanthine in the eWAT 
of diabetic mice. This observation partially aligns with prior studies reporting decreased adenosine and inosine 
levels in the eWAT of db/db and ob/ob mice [12]. These tissue-specific alterations may reflect distinct metabolic 
adaptations in eWAT under diabetic conditions. Adenosine holds a critical role in adipose tissue by inhibiting 
lipolysis and enhancing insulin-stimulated glucose uptake. Therefore, its reduction may exacerbate fat 
accumulation and insulin resistance, further disrupting glucose metabolism [27]. Similarly, reductions in xanthine 
and hypoxanthine, which are involved in oxidative stress responses, may impair antioxidant defenses, leading to 
increased oxidative damage and contributing to the progression of T2D [28,29]. Additionally, inosine, which is 
essential for anti-inflammatory and antioxidant responses, may also have significant implications. Its reduction 
could amplify inflammatory responses and metabolic dysfunction, potentially contributing to the chronic 
inflammation commonly observed in diabetic conditions [30]. These findings suggest that purine metabolism 
disturbances in eWAT are tightly linked to T2D pathology. 
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Furthermore, we observed notable disruptions in histidine metabolism, evidenced by the notable reduction in 
1-methylhistidine, carnosine, and anserine levels in eWAT. Previous studies also reported reduced muscle 
carnosine or anserine content in T2D patients [31] and the kidney of db/db mice [32], suggesting that these changes 
are common across multiple tissues. The decreased levels of 1-methylhistamine indicate abnormalities in histidine 
metabolism and potential histamine accumulation, both of which are associated with increased fasting blood 
glucose (FBG) [33], insulin resistance, and reduced insulin sensitivity [34]. As antioxidants and antiglycation 
agents, carnosine and anserine play a protective role against oxidative stress and cellular damage [35]. Their 
reduction in eWAT could exacerbate diabetic complications by increasing oxidative stress and inflammation [36]. 
While the precise role of these disruptions remains unclear, they may represent adaptive or pathological responses 
to the diabetic state. Further functional studies are needed to explore the mechanistic implications of these 
alterations, which could provide insights into the metabolic dysregulation in eWAT and identify potential 
therapeutic targets for type 2 diabetes. 

In our study, a notable increase in 3-hydroxyisobutyrate (3HIB), a catabolic intermediate of valine, was 
observed in diabetic mice. This finding aligns with previous studies that reported elevated circulating 3-HIB levels 
in large-scale cohorts of T2D patients [37]. In addition, treatment with 3-HIB has been shown to enhance fatty 
acid uptake, modulate glucose uptake in response to insulin, and reduce mitochondrial oxygen consumption and 
reactive oxygen species in white adipocytes [38]. Moreover, most short- and medium-chain acylcarnitines were 
significantly elevated in the eWAT of diabetic mice, whereas long-chain acylcarnitines showed no substantial 
changes. This pattern suggests an impairment of the fatty acid β-oxidation process, resulting in the accumulation 
of these intermediates and preventing their further metabolism [39]. Similar elevations in acylcarnitines have been 
observed in the adipose tissue of NZO mice, an obese diabetic mouse model [40]. Additionally, increasing levels 
of medium-chain acylcarnitines are linked to gestational diabetes, potentially impeding insulin production in 
response to glucose stimulation [41]. These observations indicate that disruptions in fatty acid metabolism within 
adipose tissues may result in the accumulation of short- and medium-chain acylcarnitines, subsequently raising 
their circulating levels and exacerbating diabetes and its complications.  

Moreover, most TCA cycle intermediates were markedly elevated in the eWAT of diabetic mice. This 
observation aligns with previous findings reporting increased levels of these metabolites in subcutaneous white 
adipose tissue of T2D patients [8] and the urine of db/db mice [42]. The elevation of TCA cycle intermediates may 
reflect a compensatory increase in TCA cycle activity due to disturbances in energy metabolism, yet it might also 
lead to mitochondrial dysfunction and tissue insulin resistance [43]. The hyperactivation of the TCA cycle May 
result in the accumulation of its intermediates, obstructing the entry of fatty acid β-oxidation intermediates into 
the TCA cycle, thereby worsening the accumulation of short- and medium-chain acylcarnitines and causing an 
imbalance in energy metabolism [44]. 

Lipidomics analysis exhibited a significant increase in TG and DG in eWAT of db/db mice. Notably, TG 
species with total carbon numbers ranging from 42 to 50 and containing 0 to 3 double bonds were markedly 
elevated. This pattern reflects a shift toward the synthesis and storage of longer-chain fatty acids with lower 
degrees of unsaturation under diabetic conditions. Our findings are consistent with previous studies that identified 
a strong association between TG species with 48–50 carbon atoms and 2–3 double bonds and the development of 
T2D [45]. These results indicate that TG molecules with specific structural characteristics may contribute to the 
pathogenesis of T2D. Furthermore, ceramide accumulation in major metabolic tissues is a well-established 
contributor to decreased insulin sensitivity during diabetes [46]. In the eWAT of db/db mice, we observed a 
significant increase in ceramides with total carbon numbers ranging from 31 to 38, primarily containing C16 and C18 
acyl chains, while ceramides with total carbon numbers between 39 and 43, containing C20 to C24 acyl chains, were 
significantly reduced. This shift in ceramide profiles likely reflects alterations in ceramide synthesis pathways under 
diabetic conditions. Ceramides with C16 and C18 acyl chains are synthesized by CerS1, CerS5, and CerS6, whereas 
CerS2 mediates the synthesis of ceramides containing very long-chain acyl groups [46]. Modulating CerS6 
expression has been reported to reduce C16:0 ceramide levels and improve insulin resistance [47], while 
overexpressing CerS2 in the liver increases very long-chain ceramides and enhances insulin sensitivity [48]. These 
findings suggest that different ceramide species may have distinct impacts on glucose homeostasis, and the 
protective role of specific long-chain ceramides in diabetes warrants further investigation. Hexosylceramides, 
which consist of a hydrophilic hexose (glucose or galactose) linked to a hydrophobic ceramide backbone, were 
found to be reduced in the eWAT of db/db mice. Notably, lower levels of lactosylceramide and hexosylceramide 
have been positively associated with a higher risk of diabetic nephropathy [49] and the development of CVD in 
diabetic patients [50]. These findings suggest that reductions in these glycosphingolipids may contribute to the 
progression of diabetes-related complications. In contrast, SM levels were markedly elevated in the eWAT of 
diabetic mice, consistent with previous findings reporting elevated SM levels in diabetes [51]. Elevated circulating 



Health Metab. 2025, 2(3), 1 https://doi.org/10.53941/hm.2025.100016  

11 of 13 

levels of palmitoyl-sphingomyelin (PSM) are linked to a higher risk of CVD in patients with diabetes [52]. 
However, the precise mechanisms by which these changes in glycosphingolipid and sphingomyelin metabolism 
contribute to diabetes-associated pathologies remain unclear and require further investigation. 

Under diabetic conditions, phospholipids in the eWAT exhibit distinct alterations. Specifically, PC with total 
carbon numbers ranging from 36 to 40 and containing 3 to 7 double bonds are significantly elevated, while PC 
species with shorter or longer carbon chains tend to decrease. This pattern of discordant changes aligns with 
findings from Shao et al. [53] and Yang et al. [54], who found similar changes in patients with T2D. Despite these 
observations, the precise role of specific PC species in the pathogenesis of T2D remains to be elucidated through 
further functional studies. Moreover, PE in the adipose tissue of diabetic mice is significantly reduced, mirroring 
similar reductions observed in the livers of type 2 diabetic mice. This decrease in PE levels may be linked to the 
downregulation of phosphoethanolamine cytidylyltransferase (Pcyt2), a crucial enzyme involved in the de novo 
synthesis of PE [55]. The downregulation of Pcyt2 and the consequent decline in PE levels could contribute to the 
metabolic disturbances associated with diabetes. 

5. Conclusions 

In this study, we employed an integrative metabolomics and lipidomics approach to elucidate the metabolic 
alterations in eWAT of db/db mice. Our comprehensive analysis revealed significant and distinctive changes in 
acylglycerides, sphingolipids, and phospholipids, as well as disruptions in histidine and purine metabolism. 
Furthermore, targeted metabolomics demonstrated pronounced disturbances in fatty acid oxidation and energy 
metabolism, as evidenced by the upregulation of various acylcarnitine derivatives and TCA cycle intermediates. 
These findings underscore the profound metabolic changes in eWAT associated with T2D, offering potential 
insights into its pathogenesis and therapeutic strategies.  
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