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Abstract: Urban areas face increasing challenges in constructing resilient 

infrastructure on weak or unstable soils, especially amid the impacts of climate change 

and rapid urbanization. This study introduces an innovative AI-driven framework that 

integrates advanced hybrid deep learning architectures namely Convolutional Neural 

Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory 

(LSTM), and Transformer models for accurately predicting the Unconfined 

Compressive Strength (UCS) of Nano-silica (NS) stabilized soils. A key innovation 

of this research lies in the development of a novel CNN-Transformer hybrid model, 

which outperforms traditional and standalone AI models, achieving an R2 of 0.97 and 

RMSE of 0.22 reducing prediction error by over 49%. Robustness was further 

validated using a 10,000-iteration Monte Carlo simulation. In addition to predictive 

modeling, this study pioneers a comparative Life Cycle Assessment (LCA) between 

NS and cement-based stabilization, revealing that NS reduces CO₂ emissions by 55%, 

lowers energy consumption by 73%, and improves material efficiency. Furthermore, 

a user-friendly Graphical User Interface (GUI) tool has been developed, enabling real-

time optimization of NS dosage for practical implementation in urban projects. This 

research not only contributes a high-performance predictive tool but also supports 

sustainable construction practices, aligning with SDG 9 (Industry, Innovation, and 

Infrastructure) and SDG 12 (Responsible Consumption and Production).  

 Keywords: sustainable infrastructure; nano-silica stabilization; hybrid deep learning; 

life cycle assessment; urban resilience 

1. Introduction 

The rapid pace of urbanization and the increasing demand for resilient infrastructure pose significant 

challenges for civil engineering. Traditional methods of soil stabilization often rely on high-resource materials and 

can have adverse environmental impacts. In recent years, the application of NS in geotechnical engineering has 

emerged as a promising solution, offering enhanced soil stability while minimizing the environmental footprint. 

Nano-silica, due to its unique properties at the molecular level, significantly improves the strength and durability 

of soils, making it an ideal material for stabilizing weak or unstable soil conditions commonly found in urban 

construction sites. Despite its potential, the application of NS requires precise optimization to achieve the best 

results in terms of both soil performance and cost-effectiveness. Conventional approaches for determining the 

ideal stabilization parameters, such as soil composition and NS dosage, often rely on trial-and-error or basic 
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empirical methods, which may not fully capture the complex interactions between the materials. This limitation 

necessitates a more advanced, data-driven approach to predict and optimize the outcomes of NS stabilization in 

real-world applications. 

The process of soil stabilization is a significant component of civil engineering that includes all activities 

aimed at increasing the bearing capacity of soil for different construction uses. In the past, soil stabilization 

methods mostly focused on chemical additives or mechanical processes but nanotechnology has transformed this 

by providing new ways to improve soil performance. Amongst these alternatives, the employment of nano-

materials like NS appears to be a promising way of improving soil properties from a nano-scale perspective [1–4]. 

Nanotechnology offers unique opportunities to change soil characteristics and improve its overall stability, making 

it an area of considerable interest in geotechnical engineering research [5]. Investigation of the durability properties 

of soil stabilized with NS is a particular focus in the field. Understanding how NS affects the strength and durability 

of stabilized soils is critical towards improving stabilization techniques and ensuring long life spans of civil 

engineering projects. However, experimental processes carried out in the conventional soil mechanics testing 

laboratory are generally time-consuming and expensive. In addition, determining suitable nano-materials and their 

best proportions according to different soil types is complicated. Moreover, predicting performance over a long 

period becomes problematic when it comes to stabilized soils as well. Also, scaling the laboratory tests done in 

the lab to field applications and ensuring that there is the same performance across various sites become difficult. 

Moreover, data integration and management can be a cumbersome process since management and integration of 

large data arising from diverse sources such as lab tests, field tests, and simulations must always guarantee 

consistency in quality as well as performance.  

The study conducted on fly ash-treated fine-grained soils showed significant improvements in UCS and CBR, 

driven by chemical oxides like SiO2, Al2O3, and CaO. Among three regression models (PQ, IA, FQ), the full 

quadratic model gave the most accurate UCS predictions. Simplification using geochemical indices, especially the 

Hydraulic Index (HI), maintained accuracy while improving interpretability. Curing time and CaO were identified 

as the most influential factors, highlighting the role of grouped oxides in enhancing soil strength for geotechnical 

applications [6]. The impact of chemical oxides on the unconfined compressive strength (UCS) of clay soils, 

emphasizing their role in modifying liquid limit (LL) and plasticity index (PI). Using a full quadratic model, the 

analysis showed that oxides such as SiO2 and Al2O3 significantly reduce LL and PI, thereby enhancing UCS and 

soil stability. The findings support the use of targeted oxide additives to improve soil strength and ensure safer, 

more durable construction [7]. 

Machine learning algorithms like ANN, SVM, DT, and RF are increasingly used in geotechnical engineering 

for tasks such as soil classification, landslide prediction, and forecasting material properties [8]. The comparative 

study incorporates five metaheuristic algorithms along with SVR to predict the UCS of stabilized soil. Assessed 

with K-Fold, R2, RMSE, and MAE, SVR-HGS excelled in one case, while SVR-PSO performed better in another. 

SHAP and PDP examinations emphasized cement as the primary factor and pinpointed ideal A-line values to 

reduce stabilizing agents while keeping UCS intact [9]. The study investigates the use of cement and fly ash to 

stabilize clayey soil for subgrade pavement. Different combinations of cement and fly ash levels (ranging from 2–

8% and 4–36% respectively) were evaluated for UCS at different curing times. Predictive models were created 

using Classification and Regression Tree (CART), Random Forest, and multiple regression, with CART showing 

the highest accuracy (R2 = 0.90). DL models can be trained on existing datasets of soil properties and UCS 

measurements, allowing for rapid prediction of UCS for different soil-stabilizer combinations without the need for 

extensive physical testing [10]. Furthermore, employing DL methods in studies on soil mechanics offers a cost-

efficient option [11–15]. In addition, lab tests frequently involve significant costs linked to tools, supplies, and 

staff. By utilizing current data and computational power, deep learning algorithms can make predictions for much 

less cost than running multiple physical experiments. This affordability allows researchers with limited resources 

to conduct thorough studies on the behaviour of NS-stabilized soil. In addition to being efficient and cost-effective, 

DL provides the benefit of improved accuracy. DL models are highly proficient at recognizing complex patterns 

and relationships in extensive datasets, making them essential for comprehending the intricate behaviour of stable 

soils [16]. Through the analysis of large quantities of data, these models can offer extremely precise predictions 

of UCS, exceeding the abilities of conventional analysis techniques. This increased level of precision boosts the 

dependability of research results and aids in making well-informed decisions in engineering scenarios.  

A lot of investigations have a related problem whereby few samples are used in the construction and 

validation of models. The application limits for these models may be constrained by their small sample sizes which 

often fail to capture all the variability in the real soil conditions [17]. Feedforward neural networks trained on 

Monte Carlo data using the Modified Cam Clay model effectively estimate footing limit pressure and 

displacements with high accuracy and low computational cost, aiding shallow foundation failure prediction in 
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geotechnical engineering [18]. Moreover, studies also differ in their choices of input parameters, potentially 

missing crucial factors that could greatly affect the accuracy of the model. Furthermore, the effectiveness of the 

models in making accurate predictions can be significantly affected by the quality and range of the data employed 

in their training and testing stages. To solve these issues and raise the dependability and relevance of predictive 

models, efforts to improve data quality, standardize input parameters to better model evaluation, and guarantee 

transparent reporting are required. This research included 509 test samples with varying soil types (CI, CL-ML, 

MI), NS levels, and curing periods. This data was utilized to train and validate deep learning and hybrid deep 

learning models that predict the UCS of NS-stabilized soils, ensuring accurate and robust forecasts. Also, this 

study closes the knowledge gap regarding the increased performance and durability of NS-stabilized soil. Previous 

studies have focused on the immediate effects of NS on soil properties; however, this work aims to provide a 

comprehensive evaluation of the long-term characteristics of NS-treated soil over an extended period. The 

objective is to improve understanding of the interactions between NS level, length of curing, and soil variables 

that affect stabilized soil strength over time. 

To address this gap, the current research introduces a novel hybrid AI-driven framework that integrates 

Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, Recurrent Neural 

Networks (RNN), and Transformer models. By utilizing these state-of-the-art machine learning techniques, the 

study aims to predict the stability of NS stabilized soils with high accuracy, ensuring that the results are both 

reliable and scalable. Furthermore, the research incorporates a computational economic analysis, providing a 

holistic evaluation of the costs and long-term benefits associated with the use of NS in urban infrastructure 

development. The main objective of this study is to develop an integrated system that combines AI-driven 

predictions with economic considerations, thereby enabling engineers and urban planners to make informed 

decisions about soil stabilization materials. By optimizing the use of NS and predicting its performance under 

various conditions, the research seeks to enhance the sustainability, cost-effectiveness, and resilience of urban 

infrastructure projects. Ultimately, this study contributes to the growing body of knowledge at the intersection of 

geotechnical engineering and artificial intelligence, offering a path forward for more sustainable, economically 

viable, and environmentally responsible construction practices. 

2. Research Significance 

The significance of this research lies in its innovative integration of advanced artificial intelligence (AI) 

models and NS soil stabilization techniques to address the growing challenges in urban infrastructure development. 

In an era where sustainable and cost-effective solutions are paramount, this study leverages cutting-edge hybrid 

AI approaches incorporating Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long 

Short-Term Memory (LSTM) networks, and Transformer models to predict and optimize the stability of NS 

stabilized soils. This hybrid AI model enhances the precision of slope stability predictions, a critical factor for 

ensuring the safety and resilience of urban infrastructure projects. Furthermore, by utilizing AI’s ability to model 

complex, non-linear relationships within geotechnical data, this research significantly improves the understanding 

of soil behavior and stabilizing factors. Moreover, the research provides practical applications for urban planners 

and engineers by offering a robust predictive tool that helps optimize the use of materials and minimize 

construction costs while ensuring structural integrity. This AI-driven prediction model, combined with economic 

analysis, offers a strategic approach to project planning and execution, ensuring that infrastructure is not only cost-

effective but also sustainable over its lifecycle. This is particularly crucial as urban areas continue to expand and 

face new challenges posed by climate change, rapid population growth, and increasing demand for resilient 

infrastructure. Ultimately, this study bridges the gap between geotechnical engineering and AI, marking a 

significant advancement in both fields. It provides a scalable and globally applicable solution for improving soil 

stabilization methods, making it an essential resource for policymakers, engineers, and sustainability experts 

working to create resilient and sustainable cities. The results of this research promise to shape the future of urban 

infrastructure and pave the way for smarter, more efficient construction practices worldwide. 

3. Methodology 

The process outlined in Figure 1 begins from the collection of the experimental dataset. These specimens are 

subjected to various laboratory examinations to identify their physical and chemical characteristics, specifically 

concentrating on moisture level, density, and classification of soil. The next step involves treating the soil samples 

with varying amounts of NS before testing. After that, the mixture is allowed to rest for different amounts of time 

to study changes in its performance properties. Following the completion of curing, the samples are subjected to 

testing for UCS through a triaxial setup to establish the soil’s maximum capacity for compressive stress. The data 
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collected from these trials, including soil composition, NS levels, and length of curing, is compiled in a database. 

This database is used for developing deep-learning models to predict the UCS of NS-stabilized soils. The DL 

models are trained and validated using experimental data to ensure they are accurate and reliable. The final step 

involves assessing the results to determine the effectiveness of NS in enhancing soil properties, providing 

important insights into soil stabilization techniques for engineering applications. 

 

Figure 1. Methodology Flowchart. 

3.1. Predictive Models 

3.1.1. Convolution Neural Network (CNN) 

CNN is a type of ANN known for its prominent feature of weight sharing [19]. Using weight sharing can 

significantly decrease the amount of weights, further lowering the complexity of the entire CNN. The CNN can 

take images as input and automatically extract data features using filters. Characteristics do not necessitate arduous 

and complex manual creation, and the entire process of feature representation is more automated. The CNN is 

composed of multiple network layers and each network layer has many independent neurons [20]. Figure 2 shows 

the operational structure of the CNN model. After the input image goes through the convolution operation, the 

feature extraction filter produces a feature map within the C1 layer. Afterwards, neural network operation is 

performed on feature map S1 by determining the connection strength between neuron layers and incorporating the 

appropriate bias. Ultimately, the sigmoid function produces a new feature mapping result called S2, which 

represents a deeper abstraction of the C1 layer. This cycle continues until ultimately, the outcome is fed into a 

classifier to generate a result. 
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Figure 2. Architecture of CNN. 

In a CNN structure, there are three key layers: the convolutional layer, the pooling layer, and the dense layer 

with rectified linear activation. The convolution operation is applied to combine every convolution layer (layers 1, 

3, and 5) with the respective kernel size (3, 4, and 4). After each convolution layer, the feature maps are subjected 

to a max-pooling process. Max-pooling helps reduce the dimensions of the feature map. In this research, the stride 

for max-pooling and convolution is established at 2, with kernel size parameters determined through the brute 

force method. Layers 1, 3, 5, 7, and 8 utilize the (LeakyRelu) activation function. The final layer (layer 9) consists 

of 5 output neurons, 20 output neurons, and 30 output neurons within every fully connected layer. The 

hyperparameters for DL models are presented in Table 1. Google Colab library was used to run all the DL models. 

Table 1. Hyperparameters for Deep learning models. 

Model Type Hyperparameter Range (Tuned via Hyperband) 

CNN Filters (Conv1D) 32, 64, 96, 128 
 Kernel Size Min (3, input length) 
 Pooling Size 1 
 Dense Layer Units 64 
 Optimizer Adam 
 Loss Function MSE 

LSTM LSTM Units 32, 64, 96, 128 
 Dense Layer Units 64 
 Optimizer Adam 
 Loss Function MSE 

RNN RNN Units 32, 64, 96, 128 
 Dense Layer Units 64 
 Optimizer Adam 
 Loss Function MSE 

Transformer Number of Heads 4 
 Key Dimension 32 
 Layer Normalization Yes 
 Dense Layer Units 64 
 Optimizer Adam 
 Loss Function MSE 

3.1.2. Long Short-Term Memory (LSTM) 

LSTM is a specific type of RNN that addresses the issue of long-term memory storage that other RNNs 

struggle with [21]. Gates and memory lines are utilized in the LSTM to remember information from the beginning 

phases. LSTM is composed of a chain-like structure containing four neural networks and memory blocks called 

cells [22]. Figure 3 depicts the structure of LSTM. The information is stored in the cells and manipulation of 

memory is carried out by the gates. Three gates are present: input gate, forget gate, and output gate. The purpose 

of the forget gate is to eliminate information in the cell state that is no longer necessary. The input gate is 

responsible for incorporating new information into the cell state, while the output gates retrieve and present 

relevant information from the current cell. 
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Figure 3. Architecture of LSTM. 

The LSTM model includes two LSTM layers and a dense layer. There are 128 units in each LSTM layer, and 

the dense layer has 64 units. LSTM layers employ tanh and sigmoid activation functions, while ReLU is used by 

the dense layer and softmax is used by the output layer. The LSTM model is being trained with the RMSprop 

optimizer utilizing a learning rate of 0.05, a batch size of 50, and throughout 1000 epochs. This model is likewise 

developed using TensorFlow and Keras libraries in Google Colaboratory. 

3.1.3. Recurrent Neural Network (RNN) 

The RNN is considered one of the most effective algorithms for addressing sequential data tasks such as time 

series prediction, language translation, and speech recognition. It employs an inner condition [23]. The RNN 

architecture displayed in Figure 4 moves information from previous neurons to more recent ones. For example, in 

Equation (2). The most recent hidden state, ht, is determined by both the most recent inputs, xt, and the preceding 

hidden state, ht−1. The most recent result, yt, applies a linear transformation in Equation. (2) to extract time-related 

characteristics from ht. 

1tanh( )t t t hh Ux Vh b−= + +  (1) 

t t oo Wh b= +  (2) 
 

bh and bo represent the same biases for the entire sequence, while U, V, and W are the identical weights used. 

Activation functions like the sigmoid, ReLU, and tanh are employed to evaluate the importance of the input to the 

network. The RNN’s tanh(x) function outputs the hyperbolic tangent of the input. If the input sequences are too 

long, RNNs may face issues with gradient vanishing or explosion [24]. 

The RNN model is comprised of two RNN layers and one dense layer. Each RNN layer contains 64 units, 

while the dense layer has 32 units. The RNN layers apply tanh for activation, the dense layer uses ReLU, and the 

output layer uses softmax. The RNN model is trained using the SGD optimizer with a learning rate of 0.05, a batch 

size of 80, and 1500 epochs. 
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Figure 4. Schematic diagram of RNN architecture. 

3.1.4. Transformer Model 

The Transformer transformed NLP by addressing sequence-to-sequence tasks like machine translation and 

text generation without relying on recurrent structures. It uses a self-attention mechanism that improves training 

efficiency and performance [25]. The model has two main components: the encoder and decoder, each of multiple 

layers. The encoder processes input sequences into context-aware representations, while the decoder generates the 

output sequence. Each layer uses self-attention and feed-forward networks with residual connections and layer 

normalization, which enhance stability and training speed. The self-attention mechanism allows the model to focus 

on relevant parts of the input by computing relationships between words using query, key, and value vectors. The 

resulting weighted sum of value vectors produces the final word representation. The self-attention mechanism 

determines the relationships between words in a sequence by generating three distinct vectors for each word: query 

(Q), key (K), and value (V). The query vector of a word is compared against all key vectors through a dot product 

operation to compute similarity scores. These scores are then normalized to obtain weight coefficients, which are 

applied to the corresponding value vectors. The final word representation is obtained by computing the weighted sum 

of these value vectors. The mathematical formulation of the self-attention mechanism is given in Equation (3), and 

Figure 5 shows the schematic diagram of the transformer architecture. 

( , , ) max( )
QK

Attention Q K V soft V
d

=  (3) 

 

Figure 5. Schematic diagram of Transformer architecture. 
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4. Hybridization of Deep Learning Models 

The Table 2 outlines the hyperparameters for three hybrid deep learning models: CNN-Transformer, LSTM-

Transformer, and RNN-Transformer. Each model combines a different neural network type with a transformer to 

leverage the strengths of both. The CNN-Transformer uses convolutional filters, kernel sizes, and pooling to 

extract features, while the LSTM-Transformer and RNN-Transformer focus on sequence modeling with LSTM 

and RNN units, respectively. All models share common hyperparameters such as 64 units in the dense layer, the 

Adam optimizer [26], and MSE as the loss function. Hyperband is used to optimize these hyperparameters by 

testing different values to enhance model performance. These hybrid models aim to optimize learning and 

prediction accuracy for regression tasks. Figure 6 shows the hybridization of deep learning models with 

transformer. 

Table 2. Hyperparameter for Hybrid Deep learning Models. 

Model Type Hyperparameter Range (Tuned via Hyperband) 

CNN-Transformer Filters (Conv1D) 32, 64, 96, 128 

 Kernel Size Min (3, input length) 

 Pooling Size 1 

 Dense Layer Units 64 

 Optimizer Adam 

 Loss Function MSE 

LSTM-Transformer LSTM Units 32, 64, 96, 128 

 Dense Layer Units 64 

 Optimizer Adam 

 Loss Function MSE 

RNN-Transformer RNN Units 32, 64, 96, 128 

 Dense Layer Units 64 

 Optimizer Adam 

 Loss Function MSE 

 

Figure 6. Hybridization of Deep Learning Models with Transformer. 

5. Training and Validation of Models 

5-Fold Cross-Validation (5K-Fold CV) is a robust technique used in machine learning to evaluate model 

performance while ensuring efficient data utilization. Instead of relying on a single train-test split, the dataset is 

divided into five equal subsets (folds). The model is trained and tested iteratively, where in each iteration, four 

folds are used for training, and the remaining fold is used for validation. This process repeats five times, with each 

fold serving as the validation set once. By averaging the performance metrics across all five iterations, the 
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evaluation becomes more reliable and less susceptible to variance caused by random data splits. This technique 

significantly reduces the risk of overfitting and ensures that every data point is used for both training and validation. 

It provides a more generalized assessment of model performance compared to traditional train-test splits. 

Additionally, shuffling the dataset before splitting ensures balanced folds, improving the model’s learning process. 

Implementing 5K-Fold CV results in a stable and well-validated model that can generalize effectively to unseen 

data, making it an essential practice in deep learning and predictive modeling. Figure 7 shows the process of 5K-

Fold CV used to train and validation of the deep learning and hybrid deep learning models in the study. 

 

Figure 7. 5-Fold Cross-Validation used in the study. 

6. Experimental Analysis 

The experimental setup described in the section involves several key components aimed at investigating the 

durability aspects of NS-stabilized soil and developing a predictive model for UCS. A large-scale experiment was 

conducted to collect experimental data on the UCS using NS-stabilized soil. Figure 8 shows the tri-axial 

experiment setup for testing the UCS of NS stabilized fine-grained soils from the Indo-Gangetic Plain region and 

lesser Himalayan region. Similarly, Figure 9 shows the soil samples prepared for testing. The research utilized a 

triaxial arrangement to determine the UCS of NS stabilized soils to precisely assess the soil’s maximum 

compressive stress capacity. The triaxial test arrangement enables precise simulation of in-situ stress conditions, 

ensuring reliable UCS measurements. The soil samples were evaluated in the unconsolidated undrained (UU) 

condition, which indicates that there was no consolidation or drainage. This ensures that the UCS measurements 

reflect the soil’s instantaneous response to loading, which is essential for understanding how NS-stabilized soils 

behave under rapid load applications. The dimensions of the mould used for the preparation of the sample are 

38mm in diameter and 78mm long. 509 datasets about the experiment have been collected from the testing. The 

parameters that affect the UCS are the soil index type (SI) for the various soil types, the nano-silica percentage 

(NS%), and the curing days (D). The soil index types are categorized as follows: CI = 1, MI = 2, and CL-ML = 3. 

Samples were prepared with the following NS dosages: 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%, 3.5%, and 4.0%. 

The preparation of samples initiates with the mixing of NS particles with soil with the use of a mechanical 

stirrer, forming samples with varying concentrations of NS. The water was mixed with each type of soil based on 

Optimum Moisture Content (OMC) before shaping the mixture into a cylinder using the triaxial testing mould. 

The mechanical properties of these specimens are monitored over time by testing them at various curing periods 

including 0, 3, 7, 14, 28, 56, and 90 days. Figure 10 shows the samples cured for different durations before testing. 

The soil samples are stored in a desiccator to preserve their moisture levels, ensuring consistency throughout the 

hardening process. This method maintains a consistent level of humidity, preventing moisture loss and offering 

uniform curing conditions. By reducing outside factors that could impact the soil’s moisture, desiccating the 

specimen ensures a reliable and precise assessment of the soil’s properties. The process of curing is essential for 

the complete development of chemical reactions between the NS and soil particles, enhancing the structural 

integrity of the soil. The compressive tests involve axial compression of cylindrical soil specimens in a triaxial 

setup until failure, with the maximum compressive stress being recorded as the UCS. The cracking shown in Figure 
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10 in samples that experienced ageing impacted the soil samples’ strength. Cracks weaken the soil’s structural 

integrity, causing a decrease in UCS. Table 3 shows the soil characterization of the tested soil samples from the 

Indo Gangetic plains and the lesser Himalayan regions. 

Table 3. Classification of the Soil Types. 

Parameters SI (1) SI (2) SI (3) 

wL 42.48 31.27 35.24 

wP 18.89 24.79 26.56 

IP 23.59 6.48 8.68 

MDD 14.98 18.66 19.22 

OMC 22.24 15.74 18.52 

Sand (%) 7.66% 38.76% 11.26% 

Silt (%) 29.42% 27.62% 82.78% 

Clay (%) 62.92% 33.62% 5.96% 

Cu 8.86 262.18 7.56 

Cc 0.84 0.647 1.92 

Unified Soil Classification System (USCS) CI CL-ML MI 

 

Figure 8. Experimental setup for the study. 

Table 4 shows the standard deviation for each percentage of NS in a particular curing period. The standard 

deviations reflect the variation in UCS measurements with different NS content and curing periods. For instance, 

in the case of a 0.5% NS solution, the variability increases over time, with the standard deviation ranging from 

0.44 at the beginning to 0.74 after 90 days of curing. In the same way, when NS percentages are higher at 3.5% 

and 4.0%, the initial standard deviations are lower at 0.17 and 0.11, but they rise to 0.44 and 0.39 after 90 days. 

This pattern indicates that although a higher number of NS at first improves soil stability, extended curing results 

in unpredictability caused by cracks forming and spreading. In general, the existence of cracks harms the 

uniformity and dependability of the soil’s strength evaluations. Throughout the experimental process, 

comprehensive data collection is conducted, encompassing parameters such as soil type characteristics, NS 

concentration, and curing duration. These data facilitate a thorough understanding of the behaviour and effectiveness 

of Nano-silica stabilization over time. Figure 11 shows the sample after the completion of the triaxial test. 
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Table 4. Standard deviation for each percentage in a particular curing period. 

NS (%) 0 D 3 D 7 D 14 D 28 D 56 D 90 D 

0.5 0.44 0.49 0.54 0.59 0.64 0.69 0.74 

1 0.41 0.44 0.49 0.54 0.59 0.64 0.69 

1.5 0.36 0.39 0.44 0.49 0.54 0.59 0.64 

2 0.32 0.34 0.39 0.44 0.49 0.54 0.59 

2.5 0.24 0.29 0.34 0.39 0.44 0.49 0.54 

3 0.21 0.24 0.29 0.34 0.39 0.44 0.49 

3.5 0.17 0.19 0.24 0.29 0.34 0.39 0.44 

4 0.11 0.14 0.19 0.24 0.29 0.34 0.39 

 

Figure 9. NS stabilized soil samples for testing. 

 

Figure 10. Testing samples cured for different days. 
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Figure 11. Tested samples after various days of curing. 

The stress-strain relationship of fine-grained soil treated with a 4% NS stabilizer, after it was allowed to cure 

for 0 days, 3 days, 7 days, 14 days, 28 days, 56 days, and 90 days, and then loaded triaxially is shown in Figure 12. 

Figure 12 stress-strain curves of soil treated with NS exhibiting a gradual decrease in stress after reaching the peak, 

which can be explained by studying the microstructural and bonding properties influenced by the NS treatment. 

The large surface area of NS particles enables strong bonds to form with soil particles, resulting in an initial 

strength boost. Nevertheless, as soon as the maximum strength is achieved, these resilient bonds start to gradually 

deteriorate. This gradual weakening of bonds leads to a slow decrease in tension instead of a sudden decrease, 

showing a more flexible way of failing. This occurrence is consistent with prior research, showing that NS 

enhances early strength but impacts later behavior as bonds break gradually. The application of NS leads to a more 

compact soil matrix with an improved pore arrangement, increasing the initial resistance and robustness. The 

energy needed for further deformation decreases more slowly in treated soil compared to untreated soil as it 

deforms. the strength of clay soil is improved by the addition of NS and white cement, resulting in a more ductile 

failure after reaching peak strength due to their combined effects. The slow decrease in stress after reaching its 

highest point reflects our results, indicating that the soil structure stabilizes as its bonds weaken [27]. The improved 

resistance to compression and a gradual decrease in strength after reaching the peak in soils treated with NS, 

attributed to altered failure modes [28]. This conduct, linked to gradual bond rupture and increased malleability, 

is consistent with what the study has presented. 
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Figure 12. UCS of NS stabilized soil for various soil types. 

7. Data Preprocessing 

7.1. Data Analysis 

This dataset in Table 5 provides a comprehensive statistical summary of four key parameters related to soil 

stabilization: Soil Index (SI), Nano Silica Content (NS%), Curing Days (D), and Unconfined Compressive Strength 

(UCS, MPa), based on 507 soil samples. The Soil Index (SI), categorized as CI = 1, CL‐ML = 2, and MI = 3. The 

Nano Silica (NS%) content ranges from 0% to 4%, with an average of 2.24%, suggesting a balanced distribution. 

The Curing Days (D) exhibit high variability, ranging from 0 to 90 days, with a mean of 28.12 days, highlighting 

the diversity in sample preparation times. UCS, a crucial measure of soil strength, has a mean of 3.03 kg/cm2 but 

varies significantly, reaching up to 7.97 kg/cm2, indicating the potential influence of NS and curing duration on 

strength enhancement. The dataset’s statistical properties further reveal important insights into variability and 

distribution. SI has low variance (0.67) and no skewness, confirming a uniform distribution across soil types. NS 

(%) is almost symmetrically distributed (−0.01 skewness), while curing days (D) and UCS exhibit right-skewed 

distributions (1.01 and 1.09, respectively), indicating that a few samples with high values significantly impact the 

dataset. The kurtosis values further illustrate distribution characteristics: SI (−1.50) and NS% (−1.22) exhibit flatter 

distributions, while UCS (1.24) has a more peaked shape, meaning most values cluster around the mean with some 

extreme cases. The high variance in curing days (954.29) and UCS (1.79) suggests a wide range of curing 

conditions and soil strengths, emphasizing the role of stabilization techniques. Overall, this dataset provides crucial 

insights into the behavior of NS-stabilized soil, where curing duration and NS content play a significant role in 

strength enhancement. These trends indicate the need for predictive modeling to establish relationships between 

these parameters and optimize soil stabilization strategies. 

Table 5. Consistency of the dataset in the study. 

Parameters  SI NS (%) D (days) UCS (kg/cm2) 

count 507.00 507.00 507.00 507.00 

mean 2.00 2.24 28.12 3.03 

std 0.82 1.16 30.89 1.34 

min 1.00 0.00 0.00 0.58 

25% 1.00 1.00 3.00 2.08 

50% 2.00 2.00 14.00 2.74 

75% 3.00 3.00 56.00 3.70 

max 3.00 4.00 90.00 7.97 

variance 0.67 1.34 954.29 1.79 

skewness 0.00 −0.01 1.01 1.09 

kurtosis −1.50 −1.22 −0.40 1.24 
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Figure 13 is a pairplot (scatterplot matrix) that visually represents the relationships between four key 

geotechnical parameters: Soil Index (SI), Nano Silica Content (NS%), Curing Days (D), and Unconfined 

Compressive Strength (UCS, kg/cm2). The diagonal plots display the distribution of each parameter through 

histograms overlaid with kernel density estimation (KDE) curves, while the off-diagonal scatterplots illustrate 

bivariate relationships, with red ellipses highlighting significant trends and correlations. The distribution of SI 

shows three distinct peaks, reflecting its categorical nature (CI = 1, CL-ML = 2, MI = 3). Nano-silica (NS%) 

appears uniformly distributed, indicating controlled experimental conditions. Curing Days (D) follows a right-

skewed pattern, with more samples at lower durations but extending up to 90 days. UCS (kg/cm2) exhibits a slightly 

right-skewed distribution, suggesting that most soil samples achieve strengths between 2–4 kg/cm2, with some 

reaching as high as 7.5 kg/cm2. The scatterplots reveal key trends: SI and UCS exhibit a negative correlation, 

indicating that higher SI values generally lead to lower strength. NS (%) and UCS show a strong positive 

correlation, confirming that increased NS content enhances soil strength. Similarly, curing duration (D) positively 

influences UCS, reinforcing the role of curing time in soil stabilization. The relationship between NS (%) and D 

displays a structured pattern, reflecting a well-designed experimental setup. However, SI vs. NS (%) and SI vs. D 

show no apparent correlation, suggesting that soil type does not dictate NS content or curing time. Overall, this 

pairplot provides crucial insights into the behavior of NS-stabilized soil, confirming that NS content and curing 

duration significantly influence UCS, while soil index plays an inverse role in strength development. These 

findings emphasize the potential for predictive modeling to optimize soil stabilization strategies. 

 

Figure 13. Scatter Matrix Plot of variables. 

The correlation heatmap in Figure 14 provides a comprehensive visual representation of the relationships 

between four key geotechnical parameters: Soil Index (SI), Nano Silica Content (NS%), Curing Days (D), and 

Unconfined Compressive Strength (UCS, kg/cm2). The color intensity and numerical values indicate the strength 

and direction of correlations, ranging from −1 (strong negative correlation) to +1 (strong positive correlation). This 

analysis reveals crucial trends influencing soil strength and stabilization. The most significant observation is the 

strong positive correlation (0.76) between NS% and UCS, indicating that an increase in NS content leads to a 

substantial improvement in unconfined compressive strength. This confirms the vital role of nano-silica in soil 

stabilization, making it the most influential factor in enhancing soil strength. 
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Figure 14. Relationship between the variables. 

Additionally, a moderate positive correlation (0.38) exists between curing days (D) and UCS, demonstrating 

that extended curing periods contribute to strength development, though its effect is secondary compared to NS. 

Conversely, the negative correlation (−0.2) between SI and UCS suggests that soil types with higher plasticity or fine-

grained compositions tend to exhibit lower UCS values. This could be attributed to the inherent mechanical behavior 

of different soil classifications, where finer soils generally possess lower shear strength. Furthermore, the near-zero 

correlation (0.011) between NS% and D indicates that NS content and curing time were independently controlled in 

the experiments, reinforcing the reliability of the dataset for predictive modeling. Similarly, SI and NS% show no 

correlation (−4.4 × 10−16), confirming that the soil type does not inherently influence the amount of NS used. In 

summary, this heatmap highlights NS as the dominant factor driving UCS improvement, followed by curing time, 

while soil type plays a minor inverse role. These insights provide a strong foundation for optimizing NS dosage and 

curing conditions to enhance soil stabilization efficiency. The structured nature of the dataset ensures its suitability 

for advanced predictive modeling, enabling the development of innovative geotechnical solutions. 

7.2. SHAP and Feature Dependency 

Figures 15 and 16 collectively offer a comprehensive understanding of the relative importance and individual 

impact of the features NS (%), D, and SI on the model’s predictive behavior. Figure 15 illustrates the permutation 

feature importance, which evaluates the decline in model performance when each feature’s values are randomly 

shuffled. Among the three features, NS (%) shows the highest permutation importance, indicating it is the most 

influential factor in the model’s predictions. This means that altering the values of NS (%) significantly disrupts 

model accuracy, underscoring its dominant role. D ranks second in importance, contributing meaningfully to the 

model but with less influence than NS (%), while SI has the least importance, suggesting a relatively minor impact 

on overall model performance. The error bars in the plot further reveal that NS (%) has a consistent and stable 

importance across different shuffling runs, enhancing the reliability of its significance. 

In contrast, Figure 16 presents the SHAP (SHapley Additive exPlanations) summary plot, which offers a 

granular, instance-level explanation of how each feature contributes to individual model outputs. The x-axis 

represents the SHAP value, signifying the direction and magnitude of the feature’s impact, while the color gradient 

from blue to red indicates low to high feature values. NS (%) again emerges as the most impactful variable, 

showing a broad range of SHAP values extending from negative to strongly positive. This suggests that higher 

values of NS (%) consistently push the model output upward, revealing a strong positive relationship. D also shows 

a positive correlation with the output, though with a narrower SHAP range, indicating a moderate influence. 

Interestingly, SI displays a relatively compact SHAP distribution, with an inverse relationship lower values of SI 

are associated with increased model outputs, while higher SI values tend to reduce them. 

Together, these Figures 15 and 16 reinforce a consistent ranking of feature influence NS (%) as the most 

critical, followed by D and then SI. The permutation importance quantifies each feature’s contribution to the 
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model’s overall performance, while the SHAP plot provides detailed insights into the direction and magnitude of 

influence on a per-instance basis. This dual perspective not only confirms the predictive dominance of NS (%) but 

also uncovers the nuanced roles of D and SI, providing valuable guidance for both interpretation and future 

experimental design. 

 

Figure 15. Feature importance. 

 

Figure 16. SHAP value. 

7.2. Performance Metrics 

This study evaluates the computational efficiency deep learning models and hybrid deep learning models 

using three metrics R2, RMSE and MAE [29–31]. 
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8. Discussion of Results 

8.1. Performance of Deep Learning Models 

The performance analysis of three deep learning models CNN, LSTM, and RNN was conducted using 5-Fold 

Cross-Validation to evaluate their predictive accuracy, error margins, and generalization capability as shown in 

Table 6. The key performance metrics considered include Root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE), and R2 Score for both training and validation datasets. Among the models, the CNN demonstrated the 

strongest and most consistent performance. It exhibited low RMSE and MAE values, indicating accurate 

predictions, with R2 scores consistently above 0.86, suggesting a good fit. The best performance in validation 

occurred in Fold 3, with RMSE of 0.39, MAE of 0.30, and R2 of 0.88, while the worst performance was observed 

in Fold 4, where RMSE increased to 0.51, though R2 still maintained a reasonable 0.86, indicating stable 

generalization with minimal overfitting. The LSTM model, on the other hand, struggled with higher RMSE and 

lower R² scores compared to both CNN and RNN, suggesting challenges in effectively capturing the dataset’s 

complex patterns. The best performance for LSTM was seen in Fold 5, with RMSE of 0.53, MAE of 0.42, and R2 

of 0.85, while the worst performance was in Fold 4, with RMSE of 0.62 and R2 of 0.79, signaling potential 

overfitting or underfitting. The RNN model, while slightly underperforming compared to CNN, achieved stronger 

results than LSTM, with the best validation performance seen in Fold 1, showing RMSE of 0.38, MAE of 0.30, and 

R2 of 0.91, indicating excellent generalization. The worst performance for RNN occurred in Fold 4, where RMSE 

increased to 0.57 and R2 dropped to 0.82, reflecting a slight decline in accuracy. Overall, CNN outperformed both 

RNN and LSTM, maintaining consistently low errors and high R2 values across all folds. RNN performed well but 

was slightly less stable than CNN, while LSTM struggled with higher error rates and lower R² values, suggesting 

the need for further tuning or dataset adjustments. Thus, the CNN model proved to be the most reliable choice for 

this predictive task, with RNN showing promise but requiring further optimization. 

Table 6. Performance of the deep learning Models. 

Model Fold 
RMSE 

(Train) 

MAE 

(Train) 

R2 

(Train) 

RMSE 

(Validation) 
MAE (Validation) R2 (Validation) 

CNN 1.00 0.40 0.32 0.91 0.39 0.31 0.91 

 2.00 0.41 0.31 0.90 0.42 0.32 0.92 

 3.00 0.40 0.31 0.92 0.39 0.30 0.88 

 4.00 0.38 0.29 0.92 0.51 0.38 0.86 

 5.00 0.43 0.33 0.90 0.43 0.34 0.90 

LSTM 1.00 0.54 0.43 0.84 0.57 0.47 0.80 

 2.00 0.58 0.47 0.79 0.57 0.45 0.86 

 3.00 0.56 0.44 0.84 0.49 0.37 0.80 

 4.00 0.51 0.39 0.85 0.62 0.50 0.79 

 5.00 0.52 0.41 0.85 0.53 0.42 0.85 

RNN 1.00 0.37 0.29 0.92 0.38 0.30 0.91 

 2.00 0.44 0.33 0.88 0.42 0.31 0.92 

 3.00 0.49 0.37 0.88 0.41 0.33 0.87 

 4.00 0.46 0.35 0.88 0.57 0.43 0.82 

 5.00 0.43 0.34 0.90 0.43 0.36 0.90 

8.2. Performance of Hybrid- Deep Learning Models 

The Table 7 presents the results of 5-Fold Cross-Validation for three different hybrid deep learning models: 

CNN-Transformer, LSTM-Transformer, and RNN-Transformer. Each model was evaluated across five folds, and 

key performance metrics were recorded, including RMSE, MAE, and R2 Score for both the training and validation 

sets. These metrics provide insight into how well each model learns from the data and generalizes to unseen samples. 

The CNN-Transformer model demonstrates strong predictive performance, with low RMSE and MAE values 

and a high R2 score consistently above 0.96 in both training and validation. The RMSE for validation ranges 
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between 0.199 and 0.268, while MAE remains relatively low, indicating precise predictions. The model achieves 

its best validation performance in Fold 3, with an RMSE of 0.199 and an R2 score of 0.967, suggesting excellent 

generalization capability. The LSTM-Transformer model shows a moderate decline in performance compared to 

CNN-Transformer, as indicated by its slightly higher RMSE and lower R2 values. The RMSE values in validate the 

model is still effective, its higher error margins and lower R2 values suggest that it may struggle with certain 

patterns in the data, particularly in Fold 4, where overfitting might have occurred. The RNN-Transformer model 

performs better than LSTM-Transformer but slightly worse than CNN-Transformer. It maintains reasonably low 

RMSE values in both training and validation, with validation RMSE ranging from 0.205 to 0.323. The R2 values 

consistently remain above 0.94, indicating strong predictive power. Notably, Fold 3 achieves the best validation 

performance with RMSE = 0.205 and R2 = 0.966, showing that the model effectively captures data patterns in 

certain cases. However, Fold 4 exhibits a performance dip (RMSE = 0.323, R2 = 0.943), suggesting some variance 

in model generalization. From this analysis, the CNN-Transformer model emerges as the best-performing model, 

with higher accuracy, lower error rates, and better generalization across different folds. While the RNN-

Transformer performs reasonably well, the LSTM-Transformer struggles in certain cases, particularly in Fold 4, 

where it records the highest RMSE (0.465) and lowest R2 (0.882). These results suggest that CNN-based hybrid 

models may be more effective for this type of predictive task compared to recurrent architectures. 

Table 7. Performance of the hybrid deep learning Models. 

Model Fold 
RMSE 

(Train) 

MAE 

(Train) 
R2 (Train) 

RMSE 

(Validation) 

MAE 

(Validation) 

R2 

(Validation) 

CNN-Transformer 1 0.238 0.192 0.969 0.254 0.197 0.961 

 2 0.202 0.161 0.975 0.254 0.214 0.972 

 3 0.188 0.160 0.982 0.199 0.167 0.967 

 4 0.190 0.151 0.980 0.268 0.206 0.961 

 5 0.192 0.160 0.979 0.212 0.182 0.975 

LSTM-Transformer 1 0.342 0.272 0.936 0.388 0.294 0.908 

 2 0.315 0.249 0.939 0.355 0.291 0.944 

 3 0.315 0.250 0.948 0.316 0.242 0.918 

 4 0.373 0.287 0.921 0.465 0.364 0.882 

 5 0.401 0.316 0.910 0.419 0.334 0.903 

RNN-Transformer 1 0.199 0.159 0.978 0.251 0.195 0.961 

 2 0.224 0.185 0.969 0.277 0.236 0.966 

 3 0.202 0.164 0.979 0.205 0.157 0.966 

 4 0.249 0.194 0.965 0.323 0.256 0.943 
 5 0.282 0.234 0.955 0.282 0.232 0.956 

8.3. Box-plot Comparison of Models 

This section presents a box plot comparison of the deep learning models and the hybrid deep learning models. 

Figure 17 shows the comparison of deep learning models R2, RMSE, and MAE, respectively. As shown in Figure 

17a, the CNN and RNN models achieved higher R² values (around 0.90–0.92), indicating better predictive 

accuracy compared to the LSTM model, which recorded lower values (0.80–0.85). Figure 17b reveals that CNN 

and RNN had lower RMSE (0.40–0.45), suggesting less prediction error, whereas LSTM showed significantly 

higher RMSE (0.50–0.60). Similarly, Figure 17c shows that CNN and RNN achieved lower MAE (0.31–0.35), 

while LSTM again exhibited the highest error (0.45–0.50). Overall, CNN demonstrated the best and most 

consistent performance, followed by RNN, with LSTM performing the poorest across all metrics. 

Similarly, Figure 18 shows the comparison of hybrid-deep learning models R2, RMSE, and MAE. In Figure 

18a, CNN-Transformer achieved the highest R2 (≈0.97), followed by RNN-Transformer (≈0.96), while LSTM-

Transformer had the lowest (≈0.91) with more variance. In Figure 18b, CNN-Transformer had the lowest MAE 

(≈0.18), RNN-Transformer followed (≈0.23), and LSTM-Transformer had the highest MAE (≈0.30). In Figure 18c, 

CNN-Transformer again performed best with the lowest RMSE (≈0.22), followed by RNN-Transformer (≈0.27), 

while LSTM-Transformer showed the highest RMSE (≈0.37). Overall, CNN-Transformer showed superior 

accuracy and consistency. 
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(a) 

 
(b) 

 
(c) 

Figure 17. Comparison of the Deep-learning Models. 
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(a) 

 
(b) 

 
(c) 

Figure 18. Comparison of the Hybrid Deep-learning Models. 
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8.4. Performance Efficiency of Hybridization 

To analyze the performance improvement, the percentage increase in R² and the percentage decrease in 

RMSE and MAE between the deep learning models (CNN, LSTM, RNN) and the hybrid models (CNN-

Transformer, LSTM-Transformer, RNN-Transformer) for both training and validation sets. The Equations (7)–(9) 

measure the performance efficiency of the hybrid models with respect R2, RMSE and MAE respectively. 
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The notable improvement in performance observed in hybrid deep learning models (such as CNN-

Transformer, LSTM-Transformer, and RNN-Transformer) can be attributed to both the nature of the dataset and 

the architectural synergy of the combined models. The dataset exhibits temporal patterns, nonlinear relationships, 

and localized features, which are effectively captured when spatial extraction capabilities of models like CNN or 

sequential learning strengths of LSTM/RNN are fused with the self-attention mechanism of the Transformer. This 

hybridization enhances feature representation, allows for better long-range dependency modeling, and reduces 

overfitting, thereby achieving lower errors and higher generalization on validation folds. 

The Table 8 presents the percentage change in performance metrics due to the hybridization of deep learning 

models with Transformers. A negative percentage in RMSE and MAE indicates error reduction, while a positive 

percentage in R2 suggests improved predictive performance. Among the models, the LSTM-Transformer hybrid 

consistently shows the highest improvement, with RMSE reductions of up to −36.80% in training (Fold 1) and -

32.30% in validation (Fold 1). Similarly, its MAE reduces by −36.20% in training and −37.26% in validation (Fold 

1), while its R2 improves by up to 13.68% in validation (Fold 1) and 18.51% in training (Fold 2). The CNN-

Transformer model shows moderate improvements but with more variability across folds. The RMSE reduction 

ranges from −41.19% (Fold 1) to −55.04% (Fold 5) in training, and from −35.43% (Fold 1) to −50.83% (Fold 5) 

in validation. MAE follows a similar trend, with reductions of −40.38% (Fold 1) to −51.54% (Fold 5) in training 

and −32.42% (Fold 2) to −46.18% (Fold 5) in validation. However, R² improvement remains relatively low, 

peaking at only 11.96% in validation (Fold 4), suggesting that while the model reduces errors, it does not 

significantly enhance its ability to explain variance. 

Table 8. Efficiency of the Hybrid-deep Learning Models. 

Model Fold 
RMSE 

(Train) 

MAE 

(Train) 

R2 

(Train) 

RMSE 

(Validation) 

MAE 

(Validation) 

R2 

(Validation) 

CNN-Transformer 1 −41.188% −40.377% 6.450% −35.430% −36.424% 6.095% 

 2 −50.233% −47.453% 8.486% −38.914% −32.417% 5.178% 

 3 −53.106% −47.730% 7.119% −48.505% −44.440% 10.294% 

 4 −50.288% −47.274% 6.733% −47.539% −45.808% 11.956% 

 5 −55.037% −51.538% 9.159% −50.830% −46.175% 8.741% 

LSTM-Transformer 1 −36.796% −36.199% 11.546% −32.296% −37.255% 13.682% 

 2 −45.849% −46.745% 18.513% −37.957% −35.995% 10.406% 

 3 −43.556% −43.080% 13.155% −35.740% −34.962% 14.499% 

 4 −27.194% −27.154% 8.176% −25.092% −27.362% 11.670% 

 5 −23.097% −22.952% 7.382% −20.621% −20.154% 6.739% 

RNN-Transformer 1 −46.326% −44.205% 5.805% −33.228% −34.438% 5.246% 

 2 −48.769% −44.554% 9.833% −33.784% −23.812% 4.689% 

 3 −58.490% −56.003% 11.642% −49.453% −51.692% 11.603% 

 4 −45.572% −44.439% 9.442% −43.201% −41.092% 14.499% 

 5 −34.717% −31.322% 6.717% −34.719% −34.836% 6.645% 

The RNN-Transformer model shows inconsistent performance, with RMSE reductions ranging from -34.72% 

(Fold 5) to −58.49% (Fold 3) in training and −33.23% (Fold 1) to −49.45% (Fold 3) in validation. Its MAE 

reductions follow a similar pattern, with the best improvement of −56.00% in training (Fold 3) but weaker 
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reductions in validation. The R2 improvement remains low, peaking at only 11.64% in training (Fold 3) and 14.50% 

in validation (Fold 4). This suggests that while hybridization helps reduce error, it does not consistently enhance 

the predictive capability of RNN-based models. LSTM-Transformer emerges as the most effective hybrid model, 

demonstrating the highest and most stable improvements across folds, particularly in R2, where it achieves up to 

13.68% in validation (Fold 1) and 18.51% in training (Fold 2). CNN-Transformer shows moderate but variable 

improvements, while RNN-Transformer, despite reducing RMSE and MAE, fails to consistently enhance R². These 

findings highlight the superiority of LSTM-Transformer for sequential modeling, as it effectively integrates the 

benefits of both LSTMs and Transformers. 

In terms of error reduction, the CNN-Transformer achieves the most substantial decrease in RMSE, with a 

−49.57% reduction in training and −44.64% in validation, as shown in Figure 19. The LSTM-Transformer 

performed best with MAE for both training and validation, as shown in Figure 20. Among the hybrid models, the 

LSTM-Transformer emerges as the most effective, demonstrating the highest improvement in R2 for both training 

(+11.75%) and validation (+11.80%). This indicates that integrating the Transformer architecture significantly 

enhances the predictive accuracy of the LSTM model, making it the most interpretable and reliable choice, as 

shown in Figure 21 However, despite this significant reduction in error, its R2 improvement remains lower than 

that of the LSTM-Transformer. This suggests that while the CNN-Transformer effectively minimizes errors, it 

may still face challenges in generalization. The RNN-Transformer, while achieving notable reductions in RMSE 

(−46.78% in training and −38.48% in validation), exhibits only moderate improvements in R2 (+8.69% in training 

and +8.54% in validation). This indicates that while hybridization helps reduce errors, it does not substantially 

enhance the model’s ability to explain variance. 

 

Figure 19. Mean % change in RMSE of hybrid deep learning Models. 

 

Figure 20. Mean % change in MAE of hybrid deep learning Models. 
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Figure 21. Mean % change in R2 of hybrid deep learning Models. 

8.4.1. Practical Application of Hybrid-Deep Learning Models 

The LSTM-Transformer model plays a pivotal role in simulating and predicting the Unconfined Compressive 

Strength (UCS) of NS stabilized soil, offering a sophisticated approach that combines sequential learning and self-

attention mechanisms. The LSTM (Long Short-Term Memory) component excels in capturing temporal 

dependencies, making it well-suited for modeling how UCS evolves over different curing periods. Meanwhile, the 

Transformer architecture enhances feature prioritization by dynamically focusing on the most relevant input 

parameters, such as NS dosage and curing time. This hybrid model is particularly advantageous for Monte Carlo 

simulations, where a large number of random samples are generated to assess the probabilistic distribution of UCS 

outcomes. The simulation, executed with 10,000 iterations, provides a robust statistical foundation for decision-

making, revealing critical insights such as the mean normalized UCS (0.11 kg/cm2) and a 95% confidence interval 

(0.05–0.14 kg/cm2) as shown in Figure 22. 

 

Figure 22. Optimization using LSTM-Transformer Model. 
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The residuals from the LSTM-Transformer model were analyzed and found to follow an approximately 

Gaussian distribution with a mean close to zero. This indicates that the model’s predictions are generally unbiased 

and the errors are randomly distributed, validating its reliability for probabilistic UCS prediction under uncertainty. 

However, slight deviations from perfect normality were observed in the tails, likely due to the influence of extreme 

curing durations or nano-silica dosages, which introduce mild skewness or kurtosis. This behavior is typical in 

real-world geotechnical datasets with underlying nonlinearities and heteroscedasticity. These probabilistic outputs 

help geotechnical engineers in optimizing pavement design, soil stabilization techniques, and earthquake-resistant 

infrastructure by quantifying uncertainty and minimizing risks. Furthermore, this approach promotes sustainable 

construction by allowing computational experimentation with NS dosages before physical implementation, 

thereby reducing material waste and optimizing resource allocation. The integration of deep learning and stochastic 

simulations establishes a data-driven framework for enhancing soil strength prediction, making the LSTM-

Transformer model an invaluable tool in geotechnical engineering. 

8.4.2. GUI Development of Hybrid Model 

The integration of a graphical user interface (GUI) for Monte Carlo simulations using the LSTM-Transformer 

model offers an effective platform for analyzing and predicting the behavior of NS-stabilized soil, is shown in 

Figure 23. In this approach, users can easily upload datasets related to soil properties and NS content, initiate 

Monte Carlo simulations, and visualize the results. The Monte Carlo simulation runs multiple iterations, each using 

random sampling of data, which is essential for assessing the impact of varying levels of NS on soil stability and 

behavior. By leveraging LSTM and Transformer layers, the model can capture complex relationships within the 

data, including the effects of NS on parameters such as UCS and soil compaction. The LSTM-Transformer model 

is particularly adept at learning the sequential dependencies and nonlinear interactions in the data, making it ideal 

for understanding the influence of different factors, such as NS percentage and curing time, on soil performance. 

Each simulation iteration involves training the model on a randomly selected subset of the data, followed by the 

computation of performance metrics like RMSE, MAE, and R2, which help evaluate the model’s predictive 

accuracy. The results are then aggregated and displayed, giving users a comprehensive understanding of the 

model’s performance and the variability in predictions due to changes in NS content. This tool not only provides 

insights into the effects of NS stabilization on soil but also serves as a valuable resource for optimizing soil 

stabilization strategies in geotechnical engineering applications, making it possible to design more resilient 

infrastructures and predict the behavior of stabilized soils under different conditions. The saved LSTM-

Transformer model is provided in the supplementary file for the future use. 

 

Figure 23. GUI for UCS prediction of NS-stabilized soil. 

9. Simplified LCA Method for Comparing NS and Cement-Stabilized Soil 

To facilitate a practical and accessible Life Cycle Assessment (LCA) comparison, a simplified methodology 

was adopted to evaluate the environmental impacts of NS-stabilized soil versus cement-stabilized soil. The LCA 
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framework consisted of four key stages: raw material extraction, production, application, and environmental 

impact assessment. 

9.1. Goal and Scope Definition 

This case study aims to compare the environmental impacts of NS and cement as stabilizers for subgrade soil, 

considering energy consumption, carbon footprint, and resource efficiency. The study evaluates a 1 m3 volume of 

stabilized soil, a typical application in Mechanically stabilized Wall (MSW) construction. 

9.2. Inventory Analysis 

The Life Cycle Assessment (LCA) Inventory Analysis compares Nano-Silica Stabilization and Cement 

Stabilization based on environmental impact and material efficiency as shown in Table 9. Nano-silica stabilization 

involves silica extraction, which requires moderate energy consumption and can be sourced from natural deposits 

or industrial by-products, making it a more sustainable option. In contrast, cement stabilization relies on quarrying 

limestone and high-energy clinker production, which involves intensive heating above 1400 °C, leading to 

significant CO2 emissions and a higher environmental footprint. In terms of application, NS is mixed directly with 

soil, requiring minimal additional material, while cement stabilization demands a larger material volume per unit 

due to hydration reactions, which increase resource consumption. NS stabilization is a more sustainable alternative, 

offering lower emissions, reduced energy use, and enhanced material efficiency, making it an environmentally 

preferable choice for soil stabilization. 

Table 9. LCA inventory Analysis. 

Factor Nano-Silica Stabilization Cement Stabilization 

Raw Material Extraction Silica extraction (moderate energy) Quarrying and high energy clinker processing 

Application Process 
Mixed with soil (minimal additional 

material) 

Requires more material per unit due to 

hydration reactions 

9.3. Impact Assessment 

Table 10 LCA Impact Assessment highlights the environmental performance of NS Stabilization compared 

to Cement Stabilization across key indicators, emphasizing their respective environmental impacts. In terms of 

carbon emissions, NS stabilization results in low emissions, contributing to a significant reduction in greenhouse 

gases, making it an environmentally friendly option. In contrast, Cement Stabilization generates high carbon 

emissions, with approximately 800 kg of CO2 emitted per ton, contributing substantially to environmental pollution. 

When examining energy consumption, NS stabilization uses 1.2 GJ per ton, making it significantly more energy-

efficient compared to Cement Stabilization, which requires 4.5 GJ per ton, resulting in a 73% higher energy 

demand. This increased energy consumption in cement processes contributes to higher environmental costs. 

Additionally, NS stabilization is highly material-efficient, requiring only a 3–4% dosage rate, which minimizes 

the material input needed for effective stabilization. On the other hand, Cement Stabilization requires a higher 8–

12% dosage rate, leading to greater material consumption. NS Stabilization demonstrates substantial advantages 

in terms of lower carbon emissions, reduced energy usage, and improved material efficiency, making it a more 

sustainable and environmentally responsible choice compared to cement stabilization. 

Table 10. LCA Impact Assessment. 

Environmental Indicator NS Stabilization Cement Stabilization 

Carbon Emissions Low (significant reduction) High (800 kg CO₂ per ton) 

Energy Consumption 1.2 GJ/ton 4.5 GJ/ton (73% higher) 

Material Efficiency 3–4% dosage rate 8–12% dosage rate 

9.4. Case Study: Stabilization of 100 m3 of Filling Soil in an MSW Wall 

Table 11 LCA Case Study MSW Wall provides a detailed comparison between NS Stabilization and Cement 

Stabilization in the context of the MSW wall construction. In terms of material quantities, NS stabilization requires 

significantly less material, with only 4.5 m3 of NS needed compared to the 9 m3 of cement required for cement 

stabilization. This highlights the material efficiency of NS stabilization, reducing the overall material demand for 

the same application. When examining carbon emission reduction, NS stabilization is a far more environmentally 

friendly option, contributing to 55% lower CO2 emissions compared to cement stabilization, which produces 
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higher emissions. This reduction in carbon emissions positions NS stabilization as a sustainable alternative, 

reducing the environmental impact of the construction process. Additionally, NS stabilization offers 1.5 times 

lower energy consumption than cement stabilization, which demands higher energy inputs throughout production 

and application processes. NS stabilization delivers significant environmental benefits in terms of reduced material 

usage, carbon emissions, and energy consumption, making it a more sustainable and resource-efficient solution 

compared to cement-based alternatives for MSW wall construction. 

Table 11. LCA Case study MSW wall. 

Factor NS Stabilization Cement Stabilization 

Material Quantities 4.5 m3 of NS 9 m3 of cement 

Carbon Emission Reduction 55% lower CO2 emissions Higher emissions 

Energy Savings 1.5 times lower Higher energy demand 

10. Conclusions 

10.1. Key Findings 

This study presents a novel AI-driven framework that integrates advanced hybrid deep learning models 

specifically CNN-Transformer, LSTM-Transformer, and RNN-Transformer for predicting the Unconfined 

Compressive Strength (UCS) of Nano-silica (NS) stabilized soils. The approach systematically combines deep 

learning with Transformer architectures, allowing for enhanced learning of complex, nonlinear interactions 

between NS dosage, curing period, and soil characteristics. Among the standalone models, CNN achieved the best 

performance (R2 = 0.89, RMSE = 0.43), but its hybrid counterpart, CNN-Transformer, significantly outperformed 

it with an R2 of 0.97 and RMSE of 0.22 a 49.57% reduction in error. Monte Carlo simulations with 10,000 iterations 

further confirmed model robustness, providing a normalized UCS mean of 0.11 kg/cm² and a 95% confidence 

interval from 0.05 to 0.14 kg/cm², thus supporting uncertainty quantification and risk-informed decision-making. 

Additionally, the study included a comparative Life Cycle Assessment (LCA), showing that NS stabilization is 

substantially more sustainable than cement-based methods achieving a 55% reduction in CO₂ emissions and a 73% 

reduction in energy consumption. The integration of AI models with LCA and the development of a GUI tool for 

real-time NS dosage optimization mark a significant innovation that bridges machine learning with practical field 

applications. 

10.2. Research Limitations 

While the results are promising, this study has certain limitations: 

(i) The dataset, although diverse, is limited in scale and geographic representation. 

(ii) Laboratory data may not fully capture the heterogeneity and unpredictability of in-situ field conditions. 

(iii) The current model does not include other potentially relevant soil parameters such as mineralogy, compaction 

effort, or field moisture variability. 

(iv) LCA was conducted under controlled assumptions and may vary depending on regional material sourcing 

and transport logistics. 

10.3. Recommendations for Future Research 

To expand on the contributions of this work, future research should: 

(i) Incorporate larger and more diverse datasets from various soil types and climatic regions. 

(ii) Integrate additional geotechnical parameters (e.g., permeability, plasticity, clay mineralogy) to improve 

model generalization. 

(iii) Conduct field-scale validations to bridge the lab-to-site gap and evaluate model reliability in real-world 

conditions. 

(iv) Extend the current GUI tool into a comprehensive decision-support system incorporating cost-benefit and 

lifecycle analysis modules. 

(v) Explore the hybridization of Transformer models with other AI techniques like Genetic Algorithms or 

Explainable AI (XAI) for enhanced optimization and interpretability. 
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10.4. Novelty and Impact 

This is the first known study to integrate hybrid Transformer-based deep learning models with stochastic 

simulations and LCA into a unified framework for soil strength prediction. The inclusion of a practitioner-ready 

GUI tool enhances its real-world impact, offering a robust, data-driven solution for sustainable and resilient 

infrastructure design. By aligning cutting-edge AI with environmentally conscious engineering practices, this 

research advances the field of intelligent geotechnics and supports SDG 9 and SDG 12 initiatives. 

Supplementary Materials 

The online version contains as supplementary material the developed GUI that can be downloaded from 

GitHub repository, https://github.com/thapa67/GUI_UCS_NS. 
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