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Abstract: Accurate electricity load forecasting is crucial for efficient power system 

operation and planning, especially in urban environments where building energy 

dynamics play a significant role. This study focuses on improving building load 

forecasting by accounting for the differences between indoor and outdoor climate 

conditions, which significantly influence energy consumption patterns in buildings. 

In this paper, a comprehensive comparative study was conducted to assess the 

performance of several deep neural network models, with multi-factors 

incorporated to enhance forecast performance. The input features considered in this 

paper include the input sequence structures, lagged correlation-based temperature 

conditions, calendar information and categorical Building-Adjusted Internal 

Temperature (BAIT) index. The proposed approach innovatively integrates the 

disparities between indoor and outdoor climatic conditions to better capture the 

complexities of energy demand influenced by building characteristics and external 

weather conditions. The proposed method was tested on Singapore EMA load data 

from 2019 to 2022. The experimental outcomes demonstrate that the BAIT-

enhanced models exhibit strong performance across various metrics, which yields 

superior predictions. 

 Keywords: electricity load forecasting; building-adjusted internal temperature; 

deep learning; long short-term memory; transformer; climatic variables 

1. Introduction 

Short-term power load forecasting is crucial for effective power system operation and control, ensuring 

reliable power supply while enhancing the efficiency of power generation, transmission, and distribution. However, 

precise electricity consumption prediction is challenging due to its susceptibility to a range of factors, including 

weather conditions, economic activities, and societal routines [1]. 

The building and construction sector stands as one of the largest consumers of energy in the world, 

contributing to 25–40% of the total load [2]. The forecasting of building energy consumption is inherently complex, 

requiring the consideration of numerous factors, including climatic conditions, occupancy patterns, and energy 

usage behaviors. In Singapore, the consistently hot climate throughout the year results in most energy-intensive 

activities occurring indoors, significantly impacting the overall electricity load profile. In reality, the disparities 

between indoor and outdoor climatic conditions can significantly influence the energy demands of buildings [3]. 

Therefore, both indoor-adjusted and outdoor climate variables are essential for developing accurate load 

forecasting models that capture the nuanced interactions affecting building energy consumption. 

In recent years, advancements in neural network architectures have driven substantial improvements in 

electric load forecasting, classical recurrent approaches were first applied to handle electricity load data. 

Recurrent Neural Networks (RNNs), especially Long Short-Term Memory (LSTM) and Gated Recurrent 

Units (GRU), are widely used for electric load forecasting due to their ability to capture temporal 
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dependencies. Studies have shown that LSTM models outperform traditional statistical methods by 

effectively learning complex, non-linear relationships, enhancing accuracy [4,5]. GRU, with its simpler 

architecture and shorter training time, achieves comparable performance to LSTM in load forecasting [6,7]. 

More recently, advances in transformer-based models, have significantly improved forecasting accuracy by 

effectively capturing long-range temporal dependencies and complex variable interactions. Among these, 

Inverted Transformer (iTransformer) stands out due to its innovative approach of utilizing channels as tokens, 

rather than the traditional positional encoding, enabling the efficient handling of multivariate time series data 

through improved computational efficiency and representation learning capability [8]. The success of 

iTransformer has inspired various derivative models, including iFlashformer, iFlowformer, iInformer, and 

iReformer. Specifically, iFlashformer incorporates Flash Attention mechanisms to drastically reduce 

computational complexity and enhance scalability for extended sequence lengths [9]. iFlowformer integrates 

flow-based attention strategies to dynamically capture and represent the non-stationary interactions typical 

in climatic and electricity load data [10]. The iInformer model utilizes the ProbSparse self-attention 

mechanism to prioritize more informative data segments, significantly reducing redundancy and 

computational overhead [11]. Additionally, iReformer applies locality-sensitive hashing (LSH) attention to 

efficiently approximate full attention, effectively capturing local and global patterns in extensive sequence 

data with reduced computational demand [12]. In most current studies, outdoor meteorological data—

including temperature, humidity, wind speed, and precipitation rate—are directly incorporated into load 

forecasting models [13]. 

Overall, these models demonstrate substantial improvements over classical approaches by capturing both 

global and local patterns in time series data, and their integration into multivariate short-term forecasting 

frameworks has led to state-of-the-art results across various application domains. However, such methods that 

incorporate raw weather data often fail to adequately account for the effect of environmental conditions on indoor 

temperatures, which is crucial for understanding heating and cooling demands. The Building-Adjusted Internal 

Temperature (BAIT) index was proposed in [14] to encapsulate these factors, offering a more accurate 

representation of indoor conditions. 

In this paper, a multi-factor data-driven method is proposed considering the indoor climate correlations to 

improve short-term load forecasting, where several deep learning architectures are evaluated on multivariate single 

and multi-step forecasting tasks against a detailed representation of indoor conditions and other factors to 

effectively delineate the impact of building-specific climate dynamics on energy usage. The analysis was 

conducted utilizing electricity consumption data from Singapore spanning 2019 to 2022, with a four-fold cross-

validation approach to substantiate the robustness of the findings. The results of this study verify the advantages 

of integrating indoor and outdoor climatic factors into deep learning frameworks for enhancing power load 

prediction. This approach significantly enhances the models’ capacity to simulate energy demand variability by 

capturing the distinctive climatic dynamics affecting buildings. Traditional short-term load forecasting studies 

usually feed raw outdoor weather variables or simple thermal indices such as Cooling-Degree-Days (CDD) and 

Effective Temperature (ET) into neural networks. These proxies implicitly assume an instantaneous equilibrium 

between outdoor and indoor conditions, thereby ignoring the thermal inertia of building envelopes. The Building-

Adjusted Internal Temperature (BAIT) proposed by Staffell et al. (2023) successfully captures such inertia, yet its 

application has hitherto been confined to macro-scale heating and cooling demand assessment. This work is the 

first to operationalize BAIT for hourly building-level electricity load forecasting and to embed it in data-driven 

deep-learning frameworks. 

The rest of the paper is organized as follows. Firstly, Figure 1 illustrates the overall workflow, where pre-

processing (top) converts raw data into an 11×h feature matrix before training the deep-learning models (bottom). 

The input matrix contains traditional factors discussed in Section 2.1 and BAIT index introduced in Section 2.2. 

Then, the input matrix is fed into deep neural networks for training. After that, multivariate single-step and multi-

step forecasting tasks are described in Sections 2.3 and 2.4. Finally, all the results and discussion can be found in 

the case study. 
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Figure 1. Framework of the proposed method (Blue blocks denote conventional features, orange blocks denote 

BAIT-enhanced features). 

2. Proposed Method 

In this study, different deep neural network models are used to predict the load incorporated with multi-

factors. The inputs of the models include historical load, calendar information and the BAIT index. A 

comprehensive comparative study is then conducted with BAIT index replacing weather data. Section 2 outlines 

how raw data are transformed into model-ready features, starting with traditional factors (Section 2.1) and then 

the proposed BAIT index (Section 2.2). 

2.1. Traditional Factors 

As displayed in Figure 1, the input matrix is created through four stages: input sequence length selection, 

consideration of preceding temperature conditions, classification of calendar information and the BAIT index, 

which is introduced to replace outdoor meteorological data used in traditional methods [13]. This section contains 

the first three stages. 

In this paper, the 96-h electricity load was chosen as the first-dimension input feature. This duration allows 

the model to learn inter-day relationships, which is essential for accurate electricity demand prediction. 

Then calendar effect is discussed in detail. Significant fluctuations in electricity usage on Mondays and 

Saturdays, are observed which is due to changes in human behavior. Mondays typically exhibit high energy loads 

due to the resumption of work and industrial activities after the weekend. In contrast, energy loads on Saturdays 

are lower, reflecting workplace closures and a shift in energy consumption patterns as more people stay at home. 

To capture these variations, Mondays and Saturdays are delineated in the input data. There is also a clear distinction 

between weekday and weekend energy consumption. Weekdays are dominated by commercial and industrial use, 

while weekends are characterized by residential consumption. During summer, higher temperatures lead to 

increased air conditioning use, especially during daylight hours, which boosts electricity demand. To incorporate 

these elements, weekend and summer indicators are also introduced, finally creating a 4 × h calendar matrix that 

was integrated into the initial input matrix. 

Finally, given the pivotal role of temperature in predicting power load demand, the analysis incorporates two 

rows within the input matrix to represent temperature conditions. The first row contains a sequence of temperatures 

recorded for each of the past h hours, formatted as a 1×h string. The second row represents the most correlated 

lagged temperature. The substantial impact of temperature fluctuations on electricity usage necessitates examining 

historical weather-electricity consumption patterns to identify the most pertinent temperature characteristics. 

Consequently, the second-row data is adjusted such that the final value corresponds to the temperature with the 

highest correlation, while the preceding values reflect time points prior to this. 

2.2. BAIT Index Factor 

Buildings-Adjusted Internal Temperature (BAIT) estimates perceived indoor temperature in buildings 

without heating or cooling systems. It incorporates natural conditions of temperature, solar irradiation, wind speed, 
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and humidity to determine indoor climate conditions. Simplified, BAIT simulates the thermostat reading in a home 

without air conditioning, thereby elucidating the correlation between external climate conditions and a building’s 

energy usage [14]. The calculation of BAIT involves integrating multiple factors that significantly influence the 

perception of indoor climate condition. 

(1) Basic formula 

The BAIT at each day (d) and grid location (l) is calculated as follows: 

BAITd.l = T + x(S − S*) −  y(W − W*) + z(H − H*)(T − T*)   (1) 

where d represents days, l represents location, and BAIT represents the temperature in Celsius. BAIT is affected 

by four factors: T (outdoor air temperature), S (solar intensity), W (wind speed) and H (relative humidity). The 

coefficients x, y and z correspond to the effects of solar irradiation, wind speed and relative humidity on 

temperature changes. In addition, S*, W*, H*, and T* are the ideal air temperature, solar irradiation, wind speed, 

and humidity values to be used in the estimation. 

(2) Smoothing for Thermal Inertia 

Due to thermal inertia, indoor temperatures change slowly and do not immediately reflect outdoor weather 

variations. This is due to insulation and the building’s structure. This phenomenon is modeled by smoothing the 

BAIT values over 48 h, reducing short-term fluctuations and their impact on perceived room temperature. 

BAITd,l = 
BAITd,l + σBAITd−1,l + σ2BAITd−2,l

1 + σ + σ2
 (2) 

In this context, σ is a smoothing parameter, usually between 0 and 1, which describes the influence of previous 

temperature data, assigning weights to previous days’ temperatures. 

(3) Blending with Raw Temperature 

During hot weather, unadjusted temperature data may be analyzed to assess the effectiveness of cooling 

measures, such as ventilation and air conditioning. This approach was adopted to investigate the impact of these 

measures, including heat dissipation from opening windows. 

B = 
Bmax

1 + e−B′ (3) 

B′ = (T −  0.5(BU  − BL))
10

BU −  BL

 (4) 

In this model, B represents the mixing value and Bmax refers to the maximum mixing degree. The model also 

involves an input to a sigmoid curve, denoted as B′. The model sets boundaries: the highest is BU = 23 °C, and the 

lowest is BL = 15 °C. When BU is reached or exceeded, the building’s insulation effectiveness decreases, and 

human behavior changes, reducing the weather’s impact on the building by half. 

A sigmoid function is used to adjust the BAIT, 

BAITd,l = (BAITd,l(1 − Bd,l)) + (Td,lBd,l) (5) 

Bd,l represents blending factors based on occupant behavior and specific environmental conditions, such as 

opening a window during warm weather. 

The BAIT index is evaluated numerically but is categorized into four distinct levels, as illustrated in Table 1. 

Similar to the date factor, One-hot encoding is employed to enrich the date information. This method transforms 

the categorical BAIT data into a 4×h matrix, which is then appended to the input matrix [15]. 

Finally, the input matrix, with a size of 11×h, is composed, where 11 represents the category number of 

calendar effects, and h denotes the length of historical input. Subsequently, this structured grid is fed into multi-

layer RNN-derived forecast structures to predict power load. In summary, Sections 2.1 and 2.2 construct an 11×h 

feature matrix that feeds the networks described next. 

Table 1. bait levels (categorical index). 

BAIT Level BAIT Range One-Hot Encoding 

Very Low (0, 26.738) [1, 0, 0, 0] 

Low [26.738, 27.348) [0, 1, 0, 0] 

Moderate [27.348, 27.850) [0, 0, 1, 0] 

High [27.850, +∞) [0, 0, 0, 1] 
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2.3. Multivariate Single-Step and RNN-Derived Forecasting Methods 

The multivariate single-step forecasting task involves predicting electricity load for the immediate next time 

step based on multiple influencing variables recorded up to the current time step. This immediate next step can 

vary depending on the application context and data resolution, typically being half-hourly, hourly, or daily 

predictions. Formally, given historical multivariate time series data 𝐗𝑡−ℎ+1:𝑡 ∈ ℝℎ×𝑚(ℎ = 96, 𝑚 = 11), where ℎ 

is the length of the historical observation window and 𝑚 represents the number of influencing factors (variables), 

the single-step forecasting objective is defined as: 

𝑥𝑡+1 = 𝑓(𝐗𝑡−ℎ+1:𝑡; 𝜃)  

where 𝑥𝑡+1 ∈ ℝ𝑚 indicates the predicted electricity load and influencing factors at the subsequent single time 

step 𝑡 + 1, and 𝑓(⋅; 𝜃) is the forecasting function parameterized by model parameters 𝜃. 

To examine the effect of BAIT index on multivariate single-step forecasting task, conventional recurrent 

neural network models are applied. Recurrent Neural Networks (RNNs) form the foundation for these forecasting 

tasks by processing sequential data and updating their hidden state at each time step according to the current input. 

Among these, Long Short-Term Memory (LSTM) networks mitigate the challenges of traditional RNNs by 

employing three gates—input, forget, and output—to regulate information flow over long sequences. The Gated 

Recurrent Unit (GRU) simplifies this process with a more streamlined architecture that uses fewer gates, thus 

improving computational efficiency while addressing the vanishing gradient problem. Additionally, bidirectional 

models like Bidirectional LSTM (Bi-LSTM) and Bidirectional GRU (Bi-GRU) further enhance performance by 

processing data in both forward and reverse directions, enabling them to capture contextual information from both 

past and future time points effectively [16]. 

2.4. Multivariate Multi-Step Forecasting and Transformer-Based Models 

To further explore the effectiveness of the BAIT index in a multi-step forecasting context and investigate 

the interactions among multiple variables, we extend our analysis beyond conventional recurrent neural network 

models to advanced transformer-based models on multivariate multi-step forecasting task. Transformer-based 

architectures are selected due to their proven capability in capturing long-range dependencies and efficiently 

modeling interactions among multiple input variables, making them highly suitable for multi-step electricity 

load forecasting. 

Multivariate multi-step forecasting extends this scenario to predict electricity load and relevant influencing 

factors across multiple future time steps. This prediction spans a forecast horizon of multiple consecutive time 

points, such as several hours or days ahead, offering greater utility for planning and management purposes. Given 

historical observations 𝐗𝑡−ℎ+1:𝑡 ∈ ℝℎ×𝑚, the multi-step forecasting problem is formally represented as: 

𝐗𝑡+1:𝑡+𝑀 = 𝐹(𝐗𝑡−ℎ+1:𝑡; 𝜙)  

where 𝐗𝑡+1:𝑡+𝑀 ∈ ℝ𝑀×𝑚 is the predicted multivariate time series for the upcoming 𝑀 time steps, and 𝐹(⋅; 𝜙) 

is a multi-step forecasting model parameterized by parameters 𝜙. Here ℎ (look-back window) is fixed to 96 for 

single-step and 336 for multi-step experiments, whereas 𝑚  = 11 includes load, calendar flags and BAIT 

categories, as detailed in Sections 2.1 and 2.2. 

In this study, we evaluate five transformer-based models derived from the Informer Transformer 

(iTransformer) framework. The baseline iTransformer utilizes sparse attention and distillation mechanisms for 

efficient long-sequence forecasting. Building on this foundation, the iFlashformer integrates Flash Attention to 

significantly reduce memory and computational complexity, enabling faster training and inference. The 

iFlowformer incorporates flow-based attention mechanisms to capture dynamic temporal correlations among 

climatic variables, historical load, and calendar features, thereby enhancing the modeling of non-stationary 

interactions. Furthermore, the iInformer employs a ProbSparse self-attention mechanism to prioritize informative 

queries, optimizing computational load for extended forecasting horizons. Finally, the iReformer leverages 

locality-sensitive hashing (LSH) attention to efficiently approximate full-attention, facilitating the capture of both 

local and global temporal dependencies. 

Along with the single-step forecasting, these two frameworks provide a robust platform to examine the effects 

of varying input lengths and forecasting horizons on the accuracy and stability of each model. The comprehensive 

comparative analysis not only highlights the strengths and weaknesses of individual models in capturing 

multivariate temporal patterns but also offers critical insights into the role of the BAIT parameter in improving 

electricity load forecasting performance. 
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3. Case Study 

The impact of the BAIT index on electricity demand predictions was investigated using a comparative 

experiment. Initially, a comprehensive input matrix was compiled, incorporating critical variables such as 

historical power grid usage, weather temperature, solar irradiation, wind speed and temporal patterns. Then for 

multivariate single-step forecasting task, four deep learning models—LSTM, Bi-LSTM, GRU, and Bi-GRU—

were trained and evaluated. Next, the weather-related features (temperature, solar radiation, wind speed, humidity) 

were replaced with the categorical BAIT index, and the models were re-evaluated. After that, the same process 

was performed for multivariate multistep prediction where several SOTA models were chosen: iTransformer, 

iFlashformer, iFlowformer, iInformer and iReformer. To rigorously evaluate these models in a multi-step 

forecasting scenario, the input historical sequence length is set to 336 h (two weeks), with multiple forecast horizons 

considered, namely 92 h (4 days), 192 h (8 days), 336 h (14 days), and 720 h (30 days). This comprehensive range 

of prediction lengths facilitates an extensive assessment of the models’ capability to handle short-term to very long-

term forecasting scenarios. 

Several metrics are used to evaluate the predictive model’s effectiveness: mean absolute error (MAE), root 

mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R2), and mean 

square error (MSE). These metrics collectively provide a comprehensive assessment of the model’s efficiency. 

This ensures a nuanced understanding of prediction accuracy. 

This study employed data spanning four years (2019–2022), with a specific emphasis on electricity consumption 

patterns in Singapore. To evaluate the model’s performance, a four-fold cross-validation approach is utilized. 

A. Calendar information analysis by SHAP 

SHapley Additive exPlanations (SHAP) is an interpretable method rooted in cooperative game theory, 

designed to quantify and visualize the impact of individual features on the predictions made by machine learning 

models. By calculating Shapley values, SHAP determines the contribution of each feature, effectively capturing 

their relative importance and interaction effects within the predictive model. 

Figure 2 provides a detailed SHAP summary plot illustrating the influence of calendar-based features and 

environmental variables on model predictions for electricity demand. Each data point in the plot represents an 

individual observation, positioned horizontally according to its SHAP value—positive values indicate a positive 

impact on electricity demand predictions, while negative values reflect a reduction in predicted demand. The color 

gradient from blue to red conveys the magnitude of feature values, with red signifying higher values and blue 

indicating lower ones. 

 

Figure 2. SHAP graph of the model with calendar info. 

From the analysis depicted in Figure 2, it is evident that calendar information significantly impacts electricity 

demand predictions. Among these features, is_saturday and is_monday demonstrate the most substantial 

contributions. Specifically, the feature is_monday, associated with the commencement of the working week, 

displays a clear positive impact on electricity demand predictions. This observation aligns with the expected rise 

in industrial and commercial energy consumption as operations resume after the weekend. Conversely, is_saturday 

exhibits predominantly negative SHAP values, signifying a reduction in electricity demand consistent with reduced 

industrial and commercial activities during weekends. 

In comparison, features such as is_weekday and is_sunday show relatively less significant influence, 

indicating that although these days contribute to variations in electricity consumption patterns, their effects are 

comparatively modest. Environmental factors such as temperature, radiation, wind_speed, and humidity display 
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balanced distributions around zero, suggesting that their influence, while present, is context-dependent and does 

not dominate the prediction outcomes as clearly as calendar-related features. 

Overall, this SHAP analysis effectively underscores the critical role of temporal and environmental features 

in influencing electricity demand forecasts, highlighting the importance of incorporating domain-specific calendar 

indicators and contextual environmental conditions into predictive modeling frameworks. 

B. Temperature correlation analysis 

Figure 3 illustrates the influence of temperature data from the previous 24 h on subsequent hourly power 

consumption. The X-axis represents the time lag (in hours), elucidating the correlation between temperature 

fluctuations and electricity demand several hours prior. The Y-axis denotes the correlation strength, and three 

curves correspond to distinct measurements. The blue curve depicts the direct relationship between temperature 

and electricity demand, peaking at an 11-h lag. The orange curve represents the R2 coefficient from linear 

regression, following the trend of the blue curve but with a lower value. The green curve represents an R2 fit 

derived from a quadratic equation, typically offering a more pertinent correlation than the orange curve. 

 

Figure 3. Correlation and R2 analysis result between lagged temperature and real load. 

The analysis reveals that temperature conditions from around 11 h earlier have the strongest correlation with 

electricity consumption. This may reflect delayed consumer responses to temperature changes for indoor climate 

adjustments. Identifying the most correlated scenarios significantly enhances the precision of electricity demand 

forecasts. Additionally, the graph highlights temperature readings from 11 h earlier. 

C. Improve load forecasting with categorical BAIT index 

Figure 4 presents the correlation between outdoor temperature and indoor BAIT for Singapore using a scatter 

plot. The dot color, ranging from light yellow to dark red, corresponds to the intensity of solar radiation. Same as 

the wind speed, ranging from light purple to dark purple, corresponds to the intensity of it. The plot clearly 

demonstrates the significant influence of outdoor temperature on indoor comfort. The black dotted line represents 

a 1:1 linear correlation, confirming outdoor temperature as a key factor affecting the indoor environment. Solar 

irradiation plays a crucial role. Strong solar irradiation (indicated by red) correlates with higher outdoor 

temperatures, leading to a concomitant rise in BAIT due to increased heat absorption and retention by building 

exteriors. Wind speed also impacts BAIT, though less directly. Mild winds (shown in dark purple) are often 

associated with higher temperatures, suggesting natural cooling is less effective during hot conditions. 

 

Figure 4. Influence of BAIT by solar irradiance and wind speed respect to real temperature. 
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Figure 5 denotes a bar chart depicting the distribution of BAIT values across all samples. As depicted in the 

figure, the majority of BAIT values are grouped within a specific range, indicating consistent internal temperatures 

across buildings of different ages. This consistency is likely due to Singapore’s stable climate with minimal 

temperature variation. 

 

Figure 5. the distribution of the BAIT value on frequency. 

D. Multivariate Single-step Forecasting Results 

As is illustrated in Figure 6, the study revealed that the Bi-GRU model outperformed other models trained 

on conventional climate factors, including temperature, solar irradiation, wind speed, and humidity, in terms of all 

evaluation metrics. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Performance from different models and different features applied. (a) MAE, RMSE and MSE with 

climate features (b) MAE, RMSE and MSE with BAIT features (c) MAPE and R2 with climate features (d) MAPE 

and R2 with BAIT features. 

LSTM and Bi-LSTM models performed well but were slightly less accurate with a marginally higher error 

rate compared to GRU models. This trend is also evident when evaluating data based on BAIT index features. Bi-

directional GRU (Bi-GRU) models consistently rank highest across multiple criteria, with GRU, Bi-dimensional 

GRU, and LSTM models following respectively. The GRU’s simple structure efficiently handles BAIT features 

without the added complexity that can hinder LSTM performance. 
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The comparative outcome for each model is shown in Table 2. The application of our proposed categorical 

BAIT index led to improvements across all evaluation metrics. For LSTM models, MAE, RMSE, MAPE and MSE 

were decreased by 1.16%, 2.76%, 10.60% and 5.21%, and R2 was increased by 1.04%. For GRU model, MAE, 

RMSE, MAPE and MSE were decreased by 1.40%, 2.48%, 10.77% and 4.30%, and R2 was increased by 1.06%. 

For Bi-LSTM model, MAE, RMSE, MAPE and MSE were decreased by 0.70%, 2.37%, 10.00% and 4.44%, and 

R2 was increased by 1.07%. For Bi-GRU model, MAE, RMSE, MAPE and MSE were decreased by 0.83%, 1.78%, 

10.46% and 4.35%, and R2 was increased by 1.10%. 

Table 2. Comparative study of proposed method and baseline methods. 

 
LSTM GRU Bi-LSTM Bi-GRU 

Original BAIT Original BAIT Original BAIT Original BAIT 

MAE (GW) 0.0865 0.0855 0.0855 0.0843 0.0859 0.0853 0.0848 0.0841 

RMSE (GW) 0.0978 0.0951 0.0966 0.0942 0.097 0.0947 0.0957 0.0940 

MAPE (%) 1.6105 1.4398 1.5905 1.4192 1.5983 1.4385 1.5797 1.4144 

R2 0.9406 0.9505 0.9418 0.9518 0.9411 0.9513 0.9420 0.9525 

MSE (GW2) 0.0096 0.0091 0.0093 0.0089 0.0094 0.0090 0.0092 0.0088 

E. Visualization Analysis 

To provide deeper insights into the predictive capabilities of the models evaluated, visualizations for the 

predicted electricity load using the LSTM model are presented, both without and with the integration of the BAIT 

index, for comparative purposes. 

Figure 7A,B illustrate the performance of the LSTM model without employing the BAIT index. Specifically, 

Figure 7A presents the predictions across the entirety of the first-year data. The predictions generally align with 

the observed load trends, but some noticeable deviations and fluctuations suggest the model’s limitations in 

capturing intricate short-term variations. A more detailed view provided in Figure 7B, showing predictions for the 

final 1000 time samples of the first year, further highlights these discrepancies, particularly in periods exhibiting 

sharp fluctuations or unusual consumption patterns. 

In contrast, Figures 7C,D demonstrate the improved predictive accuracy of the LSTM model when the BAIT 

index is incorporated. Figure 7C, covering the same full year as Figure 7A, exhibits significantly enhanced 

alignment between predictions and actual load data, demonstrating the efficacy of the BAIT index in capturing the 

nuanced climatic influences on electricity demand. Figure 7D reinforces these findings through a closer 

examination of the last 1000 time steps of the same year, where the BAIT-enhanced predictions substantially 

reduce deviations and more accurately capture fluctuations, especially during critical demand periods. 

Overall, these visualizations underscore the practical advantages and predictive improvements achieved 

through the integration of the BAIT index into forecasting models. They vividly illustrate the index’s capability to 

encapsulate complex indoor-outdoor climatic interactions, thereby enhancing the reliability of short- to medium-

term electricity load predictions. 

F. Multivariate Multi-step Forecasting Results 

This section presents and analyzes the results obtained from the proposed transformer-based multi-step 

forecasting models. Table 3 and Figure 8 summarize the performance comparison between models trained with 

traditional input features (Original) and those integrated with the BAIT index across different forecast horizons 

(96, 192, 336, and 720 h). 

From Table 3, it is evident that incorporating the BAIT index consistently improves forecasting accuracy 

across all transformer-based models and forecast horizons. Specifically, the iReformer model with BAIT features 

achieved the best MSE results (bolded), outperforming other models across most horizons, particularly at the 

shorter prediction length (96 h, MSE = 0.0813). Similarly, the MAE metrics showed substantial improvements 

with BAIT integration, with iReformer and iInformer models demonstrating superior performance, achieving the 

lowest MAE values of 0.2172 and 0.2250 respectively at the 96-h horizon. 

Figure 8 further visualizes these performance differences. Clearly, all models exhibit improved accuracy with 

BAIT across both MSE and MAE metrics, particularly noticeable in shorter-term forecasts (96 and 192 h). The 

iTransformer and iFlashformer models exhibit larger relative improvements upon BAIT integration, especially 

noticeable at the 336-h forecast length, highlighting the advantage of BAIT in capturing nuanced climatic 

interactions for intermediate-term predictions. 
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(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 7. Real load and prediction by LSTM with and without BAIT index for demonstration. (A) First year 

prediction by LSTM without BAIT; (B) First year prediction by LSTM with BAIT; (C) 1000 time samples 

prediction by LSTM without BAIT; (D) 1000 time samples prediction by LSTM with BAIT. 

However, as the prediction horizon extends to 720 h, the improvement margins offered by BAIT tend to 

diminish, suggesting that long-term load predictions become increasingly challenging, even with improved 

climatic representations. Nonetheless, the BAIT-enhanced transformer models consistently maintain lower error 

rates compared to their counterparts using original features. 

Notably, several models exhibited superior or comparable predictive accuracy for the 720-h forecast horizon 

(e.g., iTransformer, iFlashformer for MSE) when contrasted with the 336-h horizon. This apparently 

counterintuitive phenomenon can be attributed to distinct characteristics of the time series and model capabilities. 

The 720-h interval, equivalent to 30 days, may align more effectively with dominant and stable long-term cyclical 

patterns, such as monthly variations, inherent in power load data. The Transformer-based architectures employed 
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are particularly adept at capturing such long-range dependencies. Consequently, these models might identify more 

robust and predictable signals at this extended horizon, potentially less obscured by the intermediate-term volatility 

or less defined periodicities that could exert a greater influence on predictions at the 336-h mark. 

Overall, the empirical results underscore the effectiveness of integrating the BAIT index into transformer-

based forecasting frameworks, confirming its utility in capturing relevant climatic conditions and enhancing 

predictive performance across multiple forecasting horizons. 

  

 

(A) (B)  

  

 

(C) (D)  

Figure 8. Performance from different models with different features and prediction lengths. (A) MAE with climate 

features; (B) MSE with BAIT features; (C) MAE with climate features; (D) MAE with BAIT features. 

Table 3. Comparative study of proposed method and baseline methods on multivariate task. 

 iTransformer iFlashformer iFlowformer iInformer iReformer 

Pred  Original BAIT Original BAIT Original BAIT Original BAIT Original BAIT 

96 
MSE 0.1467 0.0822 0.1461 0.0816 0.1495 0.0831 0.1490 0.0849 0.1478 0.0813 

MAE 0.2919 0.2190 0.2909 0.2180 0.2964 0.2207 0.2949 0.2250 0.2885 0.2172 

192 
MSE 0.1681 0.0879 0.1757 0.0880 0.1694 0.0894 0.1702 0.0923 0.1675 0.0871 

MAE 0.3171 0.2297 0.3222 0.2297 0.3186 0.2315 0.3194 0.2352 0.3150 0.2277 

336 
MSE 0.1807 0.0943 0.1843 0.0947 0.1811 0.0962 0.1869 0.0937 0.1801 0.0947 

MAE 0.3285 0.2379 0.3320 0.2384 0.3276 0.2425 0.3333 0.2370 0.3283 0.2392 

720 
MSE 0.1769 0.0943 0.1785 0.0946 0.1739 0.0983 0.1720 0.0930 0.1726 0.0974 

MAE 0.3261 0.2382 0.3276 0.2385 0.3236 0.2423 0.3227 0.2359 0.3237 0.2408 

4. Discussion 

The empirical findings presented in this study underscore several critical insights regarding the effectiveness 

of integrating multi-factor inputs, particularly the Building-Adjusted Internal Temperature (BAIT) index, in 

electricity load forecasting models. 

Firstly, the comparative results demonstrate that employing the BAIT index substantially enhances 

forecasting accuracy across various models and prediction horizons. The improvements observed in evaluation 

metrics such as MAE, RMSE, MAPE, and R² suggest that the BAIT index effectively encapsulates the complex 

interactions between climatic variables and building-specific characteristics, significantly outperforming 

traditional weather features alone. For instance, the Bi-GRU model, which leverages bidirectional contextual 

information processing, consistently delivered superior performance in single-step forecasting scenarios when 
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integrated with BAIT. The observed reduction in errors, such as a 10.46% decrease in MAPE for the Bi-GRU 

model, clearly illustrates the benefit of capturing nuanced climatic dynamics with BAIT. 

The transformer-based multi-step forecasting results further reinforce the robustness and adaptability of 

advanced neural network architectures in handling extended forecasting horizons. Among the evaluated 

transformer models, the iReformer notably exhibited exceptional predictive accuracy across shorter forecast 

horizons, particularly at 96-h intervals, achieving the lowest MAE and MSE values. This highlights the 

effectiveness of locality-sensitive hashing attention mechanisms in managing both local and global dependencies 

within multivariate time series data. However, as forecasting horizons extended beyond two weeks, the marginal 

benefits offered by integrating BAIT decreased, indicating that long-term load forecasting remains inherently 

challenging, even when leveraging advanced climate representation techniques. 

The visual analyses of BAIT demonstrated the significant impact of outdoor climatic conditions, particularly 

solar irradiance and wind speed, on indoor temperature dynamics. The clear correlation observed between outdoor 

temperatures and BAIT values validates the underlying premise of the BAIT index as an effective proxy for 

perceived indoor comfort levels and subsequent energy demands. 

Finally, the performance analysis across various forecast lengths confirmed the practical advantages of 

transformer-based models combined with BAIT, particularly in mid-range forecasting (up to two weeks). Although 

predictive accuracy inevitably declines as the forecast horizon lengthens, the consistent superiority of BAIT-

enhanced models suggests their suitability for reliable short- to medium-term load management decisions. 

In summary, this study provides strong theoretical justification and empirical validation for adopting multi -

factor approaches, particularly those incorporating nuanced indoor-outdoor climatic interactions, to improve 

electricity load forecasting accuracy. The insights derived from this research not only advance forecasting 

methodologies but also offer practical implications for enhancing the efficiency and sustainability of power 

system operations. 

5. Conclusions and Future Work 

This study emphasizes the critical role of integrating multi-factor inputs, particularly the Building-Adjusted 

Internal Temperature (BAIT) index, in enhancing the accuracy and reliability of electricity load forecasting models. 

Through extensive comparative analyses, the incorporation of BAIT into various deep learning architectures—

including RNN-derived models (LSTM, GRU, Bi-LSTM, Bi-GRU) and advanced transformer-based models 

(iTransformer, iFlashformer, iFlowformer, iInformer, iReformer)—consistently demonstrated superior predictive 

performance over traditional climatic factors alone. Empirical results underscored notable improvements across 

multiple evaluation metrics, affirming BAIT’s effectiveness in capturing intricate indoor-outdoor climatic 

dynamics and addressing the delayed responses of building energy consumption to external weather fluctuations. 

Although the proposed BAIT-enhanced framework was validated on a tropical commercial-building dataset, 

its transfer to other regions is straightforward: the statistical coefficients (𝑥, 𝑦, 𝑧, 𝜎) can be recalibrated with just 

a few weeks of local data. In heating-dominated climates, Heating Degree Days (HDD) should be appended, and 

the sigmoid switching threshold should be shifted upwards to reflect heating activation. For arid regions with large 

diurnal swings, incorporating absolute humidity (or enthalpy) and shortening the smoothing window improves 

responsiveness, whereas heavy-mass buildings may require extending the window to 72–96 h. The current study 

still assumes a single thermal zone without advanced HVAC control; validating these adaptations on other cities’ 

datasets constitutes our immediate future work. 

Future research directions include extending the proposed approach to other geographic regions with distinct 

climatic and building characteristics, exploring additional influencing factors such as socio-economic indicators 

and occupant behavior, and incorporating real-time adaptive mechanisms for model updating and dynamic 

forecasting. Further investigation into large language models might also provide enhanced predictive capabilities 

for long-term forecasting horizons, ultimately contributing to more sustainable, efficient, and resilient urban power 

systems. Future work will also focus on further enhancing model interpretability. In addition to SHAP-based 

feature importance analysis, we plan to employ advanced explanation techniques such as attention visualization, 

attention rollout, and integrated gradients to better elucidate the decision-making processes of both RNN and 

transformer-based models. We will also investigate counterfactual and example-based explanations to uncover 

how specific input changes influence predictions. These efforts aim to bridge the gap between model accuracy and 

transparency, making our forecasting system more trustworthy for practical applications. 
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