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Abstract: This paper investigates the least-squares linear estimation problem for multirate systems with
stochastic  parameter  matrices,  under  the  influence  of  random  denial-of-service  (DoS)  attacks.  These
attacks can severely impair the performance of estimation algorithms by causing intermittent loss of mea-
surement data. To counteract the adverse effect of DoS attacks, two compensation strategies –hold-input
and  prediction  compensation– are  used.  For  each  of  these  strategies,  specific  recursive  filtering  and
smoothing algorithms are designed. A key advantage of the proposed methodology is its ability to oper-
ate without requiring a detailed signal evolution model, relying only on the mean and covariance func-
tions  of  the  involved  processes.  The  effectiveness  of  the  proposed  approaches  is  validated  through
numerical  simulations,  which  highlight  how  common  network-induced  phenomena,  such  as  missing
observations,  can be incorporated into the framework of  systems with random parameter  matrices  and,
additionally, they provide insights into estimation performance under different attack probabilities.

Keywords: multirate systems; least-squares estimation; random parameter matrices; DoS attacks; com-
pensation strategies; hold-input; prediction compensation

 
 
1. Introduction

Least-squares (LS) estimation is one of the fundamental techniques in stochastic signal processing, widely used
for the optimal reconstruction of stochastic signals from noisy observations. By minimizing the mean-squared error,
LS  estimators  provide  a  computationally  efficient  framework  suitable  for  a  broad  range  of  applications.  Over  the
years,  significant  advancements  have  been  made  in  adapting  LS  and  other  estimation  methods  to  account  for
challenges such as complex dynamics, noise correlation, randomly missing or fading observations, stochastic distur-
bances, communication constraints or adversarial attacks, among others (see e.g. [1–5] and references therein).

In systems where parameter matrices are randomly varying, the estimation problem becomes significantly more
challenging due to the added uncertainty and variability in system dynamics. Such scenarios often arise in practical
applications, such as digital control of chemical processes, radar control, navigation systems and economic systems,
due  e.g.  to  physical  constraints,  environmental  complexities,  changes  in  subsystem  interconnections  and  random
component failures or repairs.  Recent advancements have extended estimation frameworks to address systems with
random parameter matrices, incorporating techniques such as adaptive filtering, stochastic modeling, and robust opti-
mization. These developments complement the broader efforts to tackle issues like noise correlation, random delays,
packet  dropouts  and  adversarial  attacks  (as  highlighted  in  [2, 4]  and  [6–8]),  further  enhancing  the  applicability  of
signal estimation algorithms in real-world systems.

H∞

Multirate  (MR)  systems  are  frequently  found  in  practical  engineering  applications,  where  different  sampling
rates are utilized based on the distinct  physical  characteristics of  different  components,  with the goal  of  optimizing
both system performance and resource utilization [9]. For example, in biomedical signal processing, different biolog-
ical signals require different sampling rates for efficient processing and analysis. Estimation problems related to MR
systems have been explored in the literature under various scenarios (see [10] and references therein). For instance, in
[11] and [12], the  filtering problem under denial-of-service (DoS) attacks and the distributed recursive filtering
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problem  with  packet  losses  have  been  studied  for  MR  linear  systems,  respectively.  However,  existing  studies
typically rely on the state-space model of the system, which may not always be feasible in practical applications. This
limitation motivates us to propose an alternative approach based on covariance information.

The increasing occurrence of adversarial attacks in practical systems highlights the critical need for algorithms
capable of  delivering robust  performance even in the presence of  malicious interference [13].  Among such threats,
DoS attacks are particularly destructive, as they aim to deplete network bandwidth and system resources, effectively
blocking communication between system components.  This  disruption diminishes  data  availability  and undermines
the effectiveness of estimation algorithms. To mitigate the risks posed by DoS attacks, various solutions have been
proposed in the literature. For instance, [14] introduced a distributed dimensionality reduction fusion filter tailored for
cyber-physical  systems.  In  [15],  a  secure  consensus  control  strategy  was  proposed  for  leader-following  multiagent
systems, leveraging observer estimates to minimize the impact of DoS attacks. The study in [16] addressed periodic
DoS attacks, offering sufficient stability conditions for the system under consideration. A stochastic model based on
Bernoulli  random variables was used in [17] to characterize the occurrence of DoS attacks and a fusion estimation
algorithm was designed. Furthermore, [18] employed a predictive compensation approach to counteract packet losses
caused  by  DoS  attacks,  thereby  preserving  fusion  estimation  accuracy.  A  more  recent  work  in  [19]  proposed  a
protocol-based distributed fusion filter for networked systems with stochastic uncertainties and DoS attacks.

Although  substantial  advancements  have  been  achieved  in  the  study  of  LS  linear  estimation  problems  for
different  types  of  systems,  the  interaction  of  MR  sampling,  system  uncertainty,  and  communication  disruptions
presents compelling challenges that motivate the current investigation. The key contributions of this work are sum-
marized as follows. 1) LS linear estimation algorithms are formulated for time-varying MR systems that incorporate
stochastic  parameter  matrices  and  random  DoS  attacks.  2)  Two  compensation  strategies –hold-input  (HI)  and
prediction  compensation  (PC)– are  introduced  to  counteract  the  adverse  effects  of  random  DoS  attacks,  thereby
improving data integrity and estimation reliability. 3) By replacing the observation process by the equivalent sequence
of  uncorrelated  innovation  terms,  recursive  filtering  and  smoothing  algorithms  are  developed,  along  with  explicit
formulas for the estimation error covariance matrices, that enable a quantitative assessment of the estimators’ accuracy.
This innovation approach simplifies mathematical derivations, while preserving optimality in the LS sense.

The  rest  of  the  paper  is  organized  as  follows.  Section  2  introduces  the  problem  statement  and  describes  the
mathematical model and necessary assumptions. Section 3 details the core contributions, including the development
of recursive filtering and smoothing algorithms for the two examined compensation strategies. Section 4 provides a
simulation  experiment  to  show  the  effectiveness  of  the  proposed  estimation  methods  and  assess  how  attack
probabilities influence their performance. Finally, Section 5 concludes by summarizing the principal insights and con-
tributions of the study.

2. Problem Statement and Mathematical Model

Our aim is to address the LS linear estimation problem in discrete-time MR sampling systems subject to ran-
dom variations in the measurement model. In the MR sampling scenario, we assume that the signal to be estimated is
updated uniformly at a certain rate, while the measured outputs are sampled uniformly at a slower rate. Additionally,
it is considered that the measurement transmission is subject to DoS attacks, which randomly disable the system nor-
mal operation, leading to packet losses. Covariance-based recursive algorithms for LS linear filtering and fixed-point
smoothing estimators will be developed using an innovation approach. To mitigate the negative impact of lost infor-
mation caused by DoS attacks, two compensation strategies will be introduced: the HI strategy, which compensates
for lost  measurements by utilizing the most recent received measurement,  and the PC strategy,  which replaces lost
measurements with their prediction estimates.

nx {xn}n≥1Consider an -dimensional stochastic signal process, , and assume that we aim to estimate this signal
based  on  noisy  observations.  The  evolution  dynamics  of  the  signal  process  are  not  required  and,  therefore,  can
remain unknown; however, it  is assumed that its first  and second-order moments exist and adhere to the following
assumption.

n≥1 E[xn] = 0 E
[
xnxT

m

]
= ΦnΨ

T
m, 1≤m≤n Φn Ψm nx ×NAssumption  1: For  all ,  and ,  where  and  are  known 

matrices.

xn = An−1xn−1+wn−1, n≥1
E
[
xnxT

m

]
=

An,mE
[
xmxT

m

]
, m≤n, An,m = An−1 · · ·Am Φn = An,0 ΨT

m = E
[
xmxT

m

]
(A−1

m,0)T

Remark  1. Although  Assumption  1  on  the  signal  covariance  function  might  seem  restrictive,  it  actually  covers  a
broad range of real-world scenarios. For instance, non-stationary signals can satisfy this assumption when the state-
space  model  is  given  as ,  assuming  non-singular  transition  matrices  and  white  noise
independent  of  the  initial  condition.  In  this  case,  the  signal  covariance  function  can  be  expressed  as 

 where .  So,  by taking,  for example,  and ,
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xn = Axn−1+wn−1, n≥1
E
[
xnxT

m

]
= An−mE

[
xmxT

m

]
, m≤n.

Φn = An ΨT
m = E

[
xmxT

m

]
(A−m)T

E
[
xnxT

m

]
=

r∑
h=1

ϕh
nψ

hT
m , m≤n Φn =

(
ϕ1

n,ϕ
2
n, · · · ,ϕr

n

)
Ψm =

(
ψ1

m,ψ
2
m, · · · ,ψr

m

)

Assumption  1  holds.  Similarly,  for  state-space  models  with  stationary  signals, ,  assuming
non-singularity  and  independence,  the  covariance  function  can  be  written  as 
Hence, by taking  and , Assumption 1 is also satisfied. Moreover, processes with finite-
dimensional,  possibly  time-variant  state-space  models  often  have  semi-separable  covariance  functions, 

,  and  this  structure  is  a  particular  case  of  Assumption  1,  just  taking  and

. Additionally, uncertain systems with state-dependent multiplicative noise, such as those con-
sidered in [8], also satisfy Assumption 1. Therefore, the proposed estimation scheme based on the signal covariance
factorization established in Assumption 1 is applicable to a wide variety of signal models, without the need to design
a specific algorithm for each case.  Finally,  it  is  worth noting that,  although a state-space model can be generated
from covariance information, when only covariances are available, it is preferable to directly address the estimation
problem using them, as this approach eliminates the need for prior identification of the state-space model.

2.1. Measurement Model

The measurement model is described by the following equation:

zkn =Cknxkn+ vkn, n≥1, (1)

zkn nz kn k
ρx ρz ρx = kρz

k

where  is the -dimensional measurement at the sampling time  and  is a fixed positive integer that defines
the MR sampling. If we denote  as the signal update rate and  as the measurement sampling rate, then ,
meaning that the signal update frequency is  times faster than the measurement sampling frequency. The following
assumptions are required.{

Ckn
}

n≥1

Ckn = E[Ckn]
Assumption 2:  is a sequence of independent random parameter matrices, whose entries are scalar stochas-
tic processes with known first and second-order moments. We will denote .

{vkn}n≥1

Rkn = E[vknvT
kn].

Assumption 3: The measurement noise  is a white second-order process with zero mean and known second-
order moments. We will denote 

CknAknCT
kn Akn Akn Akn Ckn

(r, s)
nx∑

a=1

nx∑
b=1

E
[
C(r,a)

kn C(s,b)
kn

]
A

(a,b)
kn C(i, j)

kn A
(i, j)
kn

(i, j) Ckn Akn

Remark  2. The  existence  of  second-order  moments  stated  in  Assumption  2  ensures  that  the  expected  value  of
 is well-defined for any random matrix  with mean . Furthermore, when  is independent of ,

the -th entry of this expectation is calculated as , where  and  denote the

-th entries of  and , respectively.
Remark 3. The inclusion of  random parameter  matrices  in  the  proposed measurement  model  provides  a  compre-
hensive  and  unified  framework  for  representing  real-world  uncertainties  that  cannot  be  effectively  captured  using
deterministic system parameters. A key example is the phenomenon commonly referred to as missing measurements
or uncertain observations,  where sensor measurements  may either contain information about  the signal  to  be esti-
mated or consist purely of noise. This situation commonly arises due to sensor saturation, limited sensing capability,
or  temporary  sensor  failures,  among  other  factors.  By  incorporating  random  parameter  matrices,  the  proposed
observation  model  not  only  accounts  for  missing  measurements  but  also  addresses  other  common  challenges  in
stochastic  systems,  including  fading  measurements,  multiplicative  noise,  and  their  combined  effects.  Furthermore,
systems affected by random delays or packet dropouts in transmission can be reformulated as equivalent stochastic
systems with random measurement matrices. As a result, this framework is highly applicable to a broad range of real-
world  systems,  including  digital  control  of  chemical  processes,  human-operated  systems,  economic  models,  and
stochastically sampled digital control systems.

2.2. Randomly Occurring DoS Attacks

{γkn}n≥1

γkn = 1 γkn = 0

Physical systems usually operate under adversarial threats aimed at disrupting or manipulating the accuracy of
measurements. In such scenarios, the observations utilized for estimation can differ substantially from the true data,
demanding an  appropriate  mathematical  framework  to  account  for  the  impact  of  potential  attacks  on  the  measure-
ment outputs. This paper considers that the system is exposed to DoS attacks, which can randomly succeed or fail,
leading to random packet losses. This fact is described by a sequence of Bernoulli random variables, , where

 represents a successful attack (packet loss), and  indicates normal operation (no packet loss). Under
this framework, the observations affected by DoS attacks are modeled as:

ykn = (1−γkn)zkn, n≥1.

γk = 0 yk = zkIt will be assumed that , specifying that ; in other words, the initial observation corresponds to the first
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received measurement, which is fixed as the reference time point. The following assumptions are considered.
{γkn}n≥1

γkn = P(γkn = 1) n≥1
Assumption 4:  is a sequence of independent Bernoulli random variables with known probabilities. We will
denote , .

{xn}n≥1

{
Ckn

}
n≥1 {γkn}n≥1 {vkn}n≥1Assumption 5: The processes , ,  and  are mutually independent.

2.3. Compensation Strategies for DoS-induced Measurement Losses
Measurement losses caused by DoS attacks disrupt  the flow of reliable data,  compromising the accuracy and

performance of estimation processes. To mitigate these disruptions, compensation strategies are essential for ensuring
continuity and reliability in system operation,  even under adverse conditions.  Two distinct  strategies for addressing
these losses are the HI strategy and the PC strategy. Both strategies offer valuable solutions, with their applicability
depending on the specific characteristics of the system and the required level of performance.

•  HI  strategy.  This  approach  compensates  for  lost  measurements  by  reusing  the  most  recent  successfully
received data. For this reason, it is also referred to as zero-order hold strategy in the literature. Its simplicity and ease
of implementation make it particularly suitable for systems with limited computational resources or where measure-
ment variations are relatively slow. After the compensation, the observations available are

yH
kn = (1−γkn)zkn+γknyH

k(n−1), n≥2; yH
k = zk. (2)

•  PC strategy.  This  method  estimates  lost  data  based  on  historical  information.  While  more  computationally
intensive, it is well-suited for applications requiring higher accuracy and where system characteristics can be reliably
modeled. The compensated observations are formulated as

yP
kn = (1−γkn)zkn+γknẑP

kn/k(n−1), n≥2; yP
k = zk, (3)

ẑP
kn/k(n−1) zkn

{
yP

ki : i =

1,2, · · · ,n−1
}

x̂P
kn/k(n−1)

ẑP
kn/k(n−1) =Ckn x̂P

kn/k(n−1)

where  denotes  the  prediction  estimate  of  based  on  the  previous  available  observations 
. This prediction estimate will be described later (see (13)); specifically, it is calculated from 

–the prediction estimate of the signal– as .
In the next section, these compensation strategies will be integrated into the estimation framework to address the

challenges posed by DoS-induced measurement losses and ensure reliable signal estimation even in the presence of
adversarial disruptions.

3. Main Results

y∗kn ∗ = H P
kn

In this section, we develop recursive LS filtering and fixed-point smoothing algorithms tailored to the two com-
pensation  strategies  introduced  in  Section  2.  For  notational  convenience,  we  will  write ,  with  and ,  to
comprehensively denote the observation at time  under the HI and the PC strategies, respectively.

3.1. LS Estimation
n≥1 xn

n x̂∗n/n n n < k
x̂∗n/n = E[xn] = 0 n k

t≥1 kt≤n < k(t+1) kt k n
k(t+1) k n k

k t
n x̂∗n/n

kt
{

y∗ki : i = 1,2, · · · , t
}

x̂∗n/kt k≤kt≤n

For each , our aim is to obtain the LS linear estimator of the signal  based on the observations available
till  time , ,  that is the filtering estimator.  If  is  less than the first  sampling time ( ),  no observations are
available and, consequently, . Otherwise, the time  lies between two consecutive multiples of . Let

 be a positive integer such that ; that is,  is the largest multiple of  less than or equal to  and
 is the smallest multiple of  greater than . This setup partitions the timeline into intervals of length , corre-

sponding to the sampling periods of the observations. The observations are only available at multiples of , so  rep-
resents  the  total  number  of  observations  available  at  time .  Clearly,  the  LS linear  filter, ,  will  depend  on  the
observations up to time , which are . So, our aim is to derive a recursive algorithm for the esti-
mators , with .

kn

n≥2 µ∗kn = y∗kn− ŷ∗kn/k(n−1) ŷ∗kn/k(n−1)

y∗kn

{
y∗ki : i = 1,2, · · · ,n−1

}
n = 1

µ∗k = y∗k

To simplify the complexity of mathematical derivations, the LS estimation problem will be approached by the
innovation method. The innovation sequence comprises the measurement residuals that capture the new information
gained from each observation relative to its prediction estimate. In other words, at each sampling step , the innova-
tion is  defined as the difference between the actual  observation and its  predicted value based on prior  information.
Specifically, for , the innovation is defined as , where  is the LS linear estimator of

 based on the set of previous observations , while for the initial sampling time ( ) the
innovation is .

The innovation sequence is a white process that spans the same linear space as the observation sequence. This
property ensures that the innovation sequence fully encapsulates the information provided by the observations, allow-
ing the estimation problem to be formulated recursively and solved efficiently with reduced computational complex-
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x̂∗n/ktity using the innovations. Actually, the LS linear estimator  is expressed as the following linear combination of
the innovations:

x̂∗n/kt =

t∑
j=1

X∗n,k j

(
Π∗k j

)−1
µ∗k j, k≤kt≤n, (4)

X∗n,k j = E
[
xn(µ∗k j)

T
]

Π∗k j = E
[
µ∗k j(µ

∗
k j)

T
]

X∗n,k j

(
Π∗k j

)−1

µ∗k j k j
µ∗k j Π∗k j

with  and .  The  product  represents  the  gain  coefficient  that
weights the contribution of the innovation  at each sampling step . From this expression, the derivation of the
estimators involves computing the innovations  and their covariance matrices , which are clearly affected by
the choice of compensation strategy. The following propositions provide the formulas for the innovations and their
covariance matrices under the HI (Proposition 1) and PC (Proposition 2) strategies.

µH
k j

Proposition 1. Under the HI strategy, consider the model equations (1) and (2) and assumptions 1-5. The inno-
vation  is given by

µH
k j = yH

k j− (1−γk j)Ck j x̂H
k j/k( j−1)−γk jy

H
k( j−1), j≥2; µH

k = yH
k , (5)

x̂H
k j/k( j−1) xk j

{
yH

ki : i = 1,2, · · · ,
j−1

}where  is  the  prediction  estimator  of  the  signal  based  on  the  prior  observations 
.

The innovation covariance matrix satisfies

ΠH
k j = Σ

yH

k j − (1−γk j)2Ck jΣ
x̂H

k j/k( j−1)C
T
k j−γ2

k jΣ
yH

k( j−1)

−γk j(1−γk j)
(

Ck jΣ
x̂H yH

k j/k( j−1)+ (Σx̂H yH

k j/k( j−1))
TC

T
k j

)
, j≥2; ΠH

k = Σ
yH

k ,

(6)

Σx̂H

k j/k( j−1) = E
[
x̂H

k j/k( j−1)(x̂H
k j/k( j−1))

T
]

Σ
x̂H yH

k j/k( j−1) = E
[
x̂H

k j/k( j−1)(y
H
k( j−1))

T
]

Σ
yH

k j = E
[
yH

k j(y
H
k j)

T
]

where  is the predictor covariance matrix, and  is
the  cross-covariance  between  the  signal  predictor  and  the  last  observation.  The  observation  covariance,

, is recursively calculated by

Σ
yH

k j = (1−γk j)Σ
z
k j+γk jΣ

yH

k( j−1), j≥2; Σ
yH

k = Σ
z
k, (7)

with

Σz
k j = E[Ck jΦk jΨ

T
k jC

T
k j]+Rk j, j≥1. (8)

µH
k j = yH

k j− ŷH
k j/k( j−1) ŷH

k j/k( j−1)Proof. To obtain the innovation ,  we need to  calculate  the observation predictor .
From (2), we have

ŷH
k j/k( j−1) = (1−γk j )̂z

H
k j/k( j−1)+γk jy

H
k( j−1), j≥2. (9)

ẑH
k j/k( j−1) =Ck j x̂H

k j/k( j−1)

ΠH
k j = E[yH

k j(y
H
k j)

T ]−E[ŷH
k j/k( j−1)(ŷ

H
k j/k( j−1))

T ]

According  to  (1)  and  Assumption  5,  we  can  write .  Combining  this  with  (9)  yields
expression  (5)  for  the  innovation.  From it,  the  innovation  covariance  is  derived  taking  into  account  that,  from the
Orthogonal Projection Lemma (OPL), . Using (9) and the independence
hypotheses specified in Assumption 5, we have

E[ŷH
k j/k( j−1)(ŷ

H
k j/k( j−1))

T ] = (1−γk j)2Ck jE
[
x̂H

k j/k( j−1)(x̂H
k j/k( j−1))

T
]
C

T
k j

+γ2
k jE[yH

k( j−1)(y
H
k( j−1))

T ]
+γk j(1−γk j)Ck jE

[
x̂H

k j/k( j−1)(y
H
k( j−1))

T
]

+γk j(1−γk j)E
[
yH

k( j−1)(x̂H
k j/k( j−1))

T
]
C

T
k j,

from which equation (6) is obtained.

E[γ2
k j] = γk j E[(1−γk j)2] = 1−γk j E[γk j(1−γk j)] = 0

Expression  (7)  for  the  observation  covariance  is  easily  obtained  from  (2),  according  to  the  independence
assumptions and using that ,  and . Finally,  (8)  is  straightfor-
ward from equation (1) and the model assumptions. This completes the proof.
 

µP
k j

Proposition  2. Under  the  PC  strategy,  consider  the  model  equations  (1)  and  (3)  and  assumptions  1-5.  The
innovation  is computed as

µP
k j = yP

k j−Ck j x̂P
k j/k( j−1), j≥2; µP

k = yP
k , (10)

x̂P
k j/k( j−1) xk j

{
yP

ki : i = 1,2, · · · , j−1
}

where  is the prediction estimator of the signal  based on the prior observations .
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The innovation covariance matrix is given by

ΠP
k j = Σ

yP

k j −Ck jΣ
x̂P

k j/k( j−1)C
T
k j, j≥2; ΠP

k = Σ
yP

k , (11)

Σx̂P

k j/k( j−1) = E
[
x̂P

k j/k( j−1)(x̂P
k j/k( j−1))

T
]

Σ
yP

k j = E
[
yP

k j(y
P
k j)

T
]

where  is the predictor covariance matrix and  is the observa-
tion covariance, which satisfies

Σ
yP

k j = (1−γk j)Σ
z
k j+γk jCk jΣ

x̂P

k j/k( j−1)C
T
k j, j≥2; Σ

yP

k = Σ
z
k, (12)

Σz
k j, j≥1,where  is given in (8).

µP
k j = yP

k j− ŷP
k j/k( j−1)

ŷP
k j/k( j−1)

Proof. To  derive  the  innovation ,  it  is  necessary  to  compute  the  observation  predictor
. From (3), we obtain:

ŷP
k j/k( j−1) = (1−γk j )̂z

P
k j/k( j−1)+γk jẑ

P
k j/k( j−1), j≥2.

ŷP
k j/k( j−1) = ẑP

k j/k( j−1)Consequently, , which using (1) and Assumption 5, can be expressed as

ẑP
k j/k( j−1) =Ck j x̂P

k j/k( j−1), (13)

and expression (10) for the innovation is immediately obtained. From (10), the innovation covariance in expression
(11) is directly obtained by using the OPL and applying the independence hypotheses outlined in Assumption 5.

The  observation  covariance  in  (12)  is  easily  derived  from  (3),  using  (13)  and  the  model  assumptions.  This
concludes the proof.
 

X∗n,k j = E
[
xn(µ∗k j)

T
]

k≤k j≤n ∗ = H ∗ = P
Once we have calculated the innovations and their covariance matrices, the following lemma provides the cross-

correlation terms in (4), , , under the HI ( ) and the PC ( ) strategies. These
coefficients will play a crucial role in the derivation of the estimators.

∗ = H ∗ = P X∗n,k j = E
[
xn(µ∗k j)

T
]

k≤k j≤n
Lemma  1. Under  the  HI  ( )  and  the  PC  ( )  strategies,  the  coefficients ,

, satisfy

X∗n,k j = (1−γk j)
Å
ΦnΨ

T
k j−

j−1∑
i=1

X∗n,ki(Π
∗
ki)
−1(X∗k j,ki)

T
ã

C
T
k j, j≥2; X∗n,k = ΦnΨ

T
k C

T
k . (14)

X∗n,k j

∗ = H,P
Proof. Since the innovations are influenced by the selected compensation strategy, the coefficients  must

be derived separately, for .
∗ = H(a) Under the HI strategy ( ), using (5), we can write

XH
n,k j = E

[
xn(yH

k j)
T
]
− (1−γk j)E

[
xn(x̂H

k j/k( j−1))
T
]
C

T
k j−γk jE

[
xn(yH

k( j−1))
T
]
, k≤k j≤n. (15)

From (2) and Assumption 1, it follows that

E
[
xn(yH

k j)
T
]
= (1−γk j)ΦnΨ

T
k jC

T
k j+γk jE

[
xn(yH

k( j−1))
T
]
, j≥1.

Additionally, using (4), we obtain

E
[
xn(x̂H

k j/k( j−1))
T
]
=

j−1∑
i=1

XH
n,ki

(
ΠH

ki

)−1(XH
k j,ki

)T
, j≥2.

∗ = HSubstituting the above expectations into (15), we derive expression (14) for .
∗ = P(b) Under the PC strategy ( ), using (10), we can express

XP
n,k j = E

[
xn(yP

k j)
T
]
−E

[
xn(x̂P

k j/k( j−1))
T
]
C

T
k j, k≤k j≤n. (16)

According to (1), (3) and the model assumptions, it follows that

E
[
xn(yP

k j)
T
]
= (1−γk j)ΦnΨ

T
k jC

T
k j+γk jE

[
xn(x̂P

k j/k( j−1))
T
]
C

T
k j, j≥1.

Furthermore, using (4), we also find

E
[
xn(x̂P

k j/k( j−1))
T
]
=

j−1∑
i=1

XP
n,ki

(
ΠP

ki

)−1(XP
k j,ki

)T
, j≥2.
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∗ = PSubstituting these expectations into (16), we obtain expression (14) for .
 

x̂∗n/kt k≤kt≤n

Σx̃∗
n/kt = E

[
x̃∗n/kt(x̃∗n/kt)

T
]

x̃∗n/kt = xn− x̂∗n/kt

The following theorem provides a comprehensive formula for the estimators , , and the associ-
ated error covariance matrices, , with , under both the HI and the PC strate-
gies.

∗ = H ∗ = P x̂∗n/kt k≤kt≤nTheorem 1. Under the HI ( ) and the PC ( ) strategies, the LS estimators , , are cal-
culated by

x̂∗n/kt = Φn f ∗kt, k≤kt≤n, (17)

Σx̃∗
n/ktand the estimation error covariance matrices  satisfy

Σx̃∗
n/kt = Φn

(
Ψn−ΦnΣ

f ∗
kt

)T
, k≤kt≤n. (18)

f ∗kt Σ
f ∗
ktThe vectors  and the matrices  are recursively obtained by

f ∗kt = f ∗k(t−1)+F∗kt(Π
∗
kt)
−1µ∗kt, t≥1; f ∗0 = 0, (19)

Σ
f ∗
kt = Σ

f ∗
k(t−1)+F∗kt(Π

∗
kt)
−1(F∗kt)

T , t≥1; Σ
f ∗
0 = 0, (20)

with

F∗kt = (1−γkt)
(
Ψkt −ΦktΣ

f ∗
k(t−1)

)TC
T
kt, t≥1. (21)

X∗n,k j

Proof. From (4), the determination of the estimators requires the calculation of the innovations and their covari-
ance matrices, given in Propositions 1 and 2, together with the coefficients . Using Lemma 1 and defining

F∗k j = (1−γk j)
Å
ΨT

k j−
j−1∑
i=1

F∗ki(Π
∗
ki)
−1(X∗k j,ki)

T

ã
C

T
k j, j≥2; F∗k = Ψ

T
k C

T
k , (22)

the following factorization is obtained:

X∗n,k j = ΦnF∗k j, k≤k j≤n. (23)

Hence, by defining

f ∗kt =

t∑
j=1

F∗k j(Π
∗
k j)
−1(µ∗k j)

T , t≥1; f ∗0 = 0, (24)

the recursion (19) is immediately obtained and expression (17) is deduced using (4), (23) and (24).
Σx̃∗

n/kt = E[xnxT
n ]−E[x̂∗n/kt(x̂∗n/kt)

T ],
Σ

f ∗
kt = E

[
f ∗kt( f ∗kt)

T
]Using  the  OPL,  the  estimation  error  covariance  matrices  satisfy  which,

according to Assumption 1 and (17), leads to (18), with .
Σ

f ∗
ktEmploying (24) and noting that the innovation sequence is a white process, the matrices  can be computed

as

Σ
f ∗
kt =

t∑
j=1

F∗k j(Π
∗
k j)
−1(F∗k j)

T , t≥1; Σ
f ∗
0 = 0, (25)

from which (20) is straightforward. Finally, by combining (25) with (22) and (23), expression (21) is derived and the
proof is complete.
 

Σx̂∗
k j/k( j−1) Σ

x̂H yH

k j/k( j−1)The following corollary provides the prediction covariances  and the cross-covariances , that
are necessary to calculate the innovation covariance matrices in Propositions 1 and 2.

Σx̂∗
k j/k( j−1) ∗ = H ∗ = PCorollary 1. The prediction covariance matrices  in Proposition 1 ( ) and Proposition 2 ( )

are given by

Σx̂∗
k j/k( j−1) = Φk jΣ

f ∗
k( j−1)Φ

T
k j, j≥2. (26)

Σ
x̂H yH

k j/k( j−1)The cross-covariance matrices  in Proposition 1 are calculated as
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Σ
x̂H yH

k j/k( j−1) = Φk jΣ
f H yH

k( j−1), j≥2, (27)

Σ
f H yH

k jwhere  satisfies the following recursion:

Σ
f H yH

k j = FH
k j+ (1−γk j)Σ

f H

k( j−1)Φ
T
k jC

T
k j+γk jΣ

f H yH

k( j−1), j≥2; Σ
f H yH

k = FH
k . (28)

n = k j t = j−1

Σ
x̂H yH

k j/k( j−1) = E
[
x̂H

k j/k( j−1)(y
H
k( j−1))

T
]

Σ
f H yH

k j = E
[

f H
k j (y

H
k j)

T
]

Σ
f H yH

k j

Proof. Expression (26) is directly derived from (17) by setting  and . Using (17) again, the cross-
covariance matrices  clearly satisfy (27), with . To derive (28),
we decompose  as

Σ
f H yH

k j = E
[

f H
k j (µ

H
k j)

T
]
+E

[
f H
k j (ŷ

H
k j/k( j−1))

T
]
.

E
[

f H
k j (µ

H
k j)

T
]
= FH

k j

E
[

f H
k j (ŷ

H
k j/k( j−1))

T
]
= E

[
f H
k( j−1)(ŷ

H
k j/k( j−1))

T
]

ẑH
k j/k( j−1) =Ck j x̂H

k j/k( j−1)

Using  (24)  and  noting  that  the  innovation  is  a  white  process,  it  follows  that  and
. Finally, applying (9), taking into account that , and

using (17), we compute

E
[

f H
k( j−1)(ŷ

H
k j/k( j−1))

T
]
= (1−γk j)Σ

f H

k( j−1)Φ
T
k jC

T
k j+γk jΣ

f H yH

k( j−1).

Combining these results we obtain (28), thus concluding the proof.
 

x̂∗n/kt

Σx̃∗
n/kt k≤kt≤n < k(t+1)

Remark 4. The  computational  procedure  to  obtain  the  estimators  and  the  associated  error  covariance
matrices , for , is summarized as follows:

F∗k = Ψ
T
k C

T
k Σ

y∗
k = E[CkΦkΨ

T
k CT

k ]+Rk Π∗k = Σ
y∗
k µ∗k = y∗k f ∗k =

F∗k (Π∗k)−1µ∗k Σ
f ∗
k = F∗k (Π∗k)−1(F∗k )T Σ

f H yH

k = FH
k

x̂∗n/k = Φn f ∗k Σx̃∗
n/k = Φn

(
Ψn−ΦnΣ

f ∗
k

)T t = 2

Step  1. Initialize  the  algorithm  with , , , , 
 and  (under  the  HI  strategy,  also  include ).  Compute  the  estimator

value, , and the error covariance matrix, . Set .
x̂∗kt/k(t−1) = Φkt f ∗k(t−1) µ∗ktStep  2. Use  (17)  to  obtain  the  predictor  value  and,  from it,  compute  the  innovation 

using (5) or (10), depending on the selected compensation strategy (HI or PC, respectively).
F∗ktStep 3. Compute the matrix  using equation (21).

Σx̂∗
kt/k(t−1) Σz

kt Σ
y∗
kt

Σ
x̂H yH

kt/k(t−1)

Σ
f H yH

kt

Step 4. Evaluate the covariance matrices  using (26),  using (8) and  using (7) or (12), depend-
ing on the chosen compensation strategy (HI or PC, respectively). Under the HI strategy, also compute  from
(27), with  given in (28).

Π∗ktStep 5. Determine the innovation covariance matrix  by (6) or (11), depending on the selected compensa-
tion strategy (HI or PC, respectively).

f ∗kt Σ
f ∗
ktStep 6. Compute  from (19) and  from (20).

kt≤n < k(t+1) x̂∗n/kt

Σx̃∗
n/kt

Step  7. For ,  obtain  the  estimator  value, ,  using  (17),  and  the  error  covariance  matrix,
, using equation (18).

t = t+1Step 8. Set  and return to Step 2.
 

Remark 5. The proposed estimation scheme –like the Kalman filter– provides the LS linear estimator. How-
ever, the key advantage is that our approach does not require full knowledge of the state-space model, relying only
on covariance information. This distinction results in a recursive structure that differs from conventional Kalman-like
estimation algorithms based on state-space models, while still yielding optimal linear estimators.

3.2. LS Smoothing
n≥k t≥1 kt≤n < k(t+1)

∗ = H,P xn

x̂∗n/kt y∗k(t+1),y
∗
k(t+2), · · ·

Given  a  fixed  time ,  let  be  a  nonnegative  integer  such  that . Under  the  two  pro-
posed compensation strategies ( ), our purpose is to design the smoothing estimators of  by updating the
estimators  with the incoming observations .

∗ = H ∗ = P x̂∗n/k(t+L), L≥1
Σx̃∗

n/k(t+L) = E
[
(xn− x̂∗n/k(t+L))(xn− x̂∗n/k(t+L))

T
]Theorem 2. Under the HI ( ) and the PC ( ) strategies, the LS fixed-point smoothers ,

and  the  associated  error  covariance  matrices  satisfy  the  following
recursions

x̂∗n/k(t+L) = x̂∗n/k(t+L−1)+X∗n,k(t+L)(Π
∗
k(t+L))

−1µ∗k(t+L), L≥1, (29)

Σx̃∗
n/k(t+L) = Σ

x̃∗
n/k(t+L−1)−X∗n,k(t+L)(Π

∗
k(t+L))

−1(X∗n,k(t+L))
T , L≥1, (30)
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x̂∗n/kt Σx̃∗
n/ktwhose initial conditions are  and , respectively, both given in Theorem 1.

X∗n,k(t+L)The coefficients  are computed by

X∗n,k(t+L) = (1−γk(t+L))
(
Ψn−M∗n,k(t+L−1)

)
ΦT

k(t+L)C
T
k(t+L), L≥1, (31)

M∗n,k(t+L)where the matrices  are recursively calculated by

M
∗
n,k(t+L) =M

∗
n,k(t+L−1)+X∗n,k(t+L)(Π

∗
k(t+L))

−1(F∗k(t+L))
T , L≥1, M

∗
n,kt = ΦnΣ

f ∗
kt . (32)

Proof. Similar to (4), the LS fixed-point smoother is expressed as a linear combination of the innovations:

x̂∗n/k(t+L) =

t+L∑
j=1

X∗n,k j(Π
∗
k j)
−1µ∗k j, L≥1. (33)

x̃∗n/k(t+L) = xn− x̂∗n/k(t+L)

x̃∗n/k(t+L) = x̃∗n/k(t+L−1)−X∗n,k(t+L)(Π
∗
k(t+L))

−1µ∗k(t+L)

From this,  expression (29) is immediately derived. Using (29), the smoothing error, ,  can be
expressed  as ,  from  which  the  smoothing  error  covariance  (30)  is
straightforwardly obtained using the OPL.

X∗n,k(t+L) = E
[
xn(µ∗k(t+L))

T
]

To compute the coefficients , we observe that

X∗n,k(t+L) = E
[
xn(y∗k(t+L))

T
]
−E

[
xn(ŷ∗k(t+L)/k(t+L−1))

T
]

= (1−γk(t+L))ΨnΦ
T
k(t+L)C

T
k(t+L)−E

[
xn( f ∗k(t+L−1))

T
]
ΦT

k(t+L)C
T
k(t+L),

M∗n,k(t+L) = E
[
xn( f ∗k(t+L))

T
]

and (31) follows, just defining .
M∗n,k(t+L)Finally,  the  recursion  (32)  for  the  matrices  is  derived  using  (19)  and  its  initial  condition  is  easily

obtained from the OPL and expression (17). This completes the proof.
 

x̂∗n/k(t+L) n≥k
n < k x̂∗n/kL

Σx̃∗
n/kL

Remark  6. Theorem  2  provides  the  formulas  to  compute  the  smoothing  estimators  for .  For
, a similar reasoning leads to the following recursions for the smoothers  and their covariance matrices
:

x̂∗n/kL = x̂∗n/k(L−1)+X∗n,kL(Π∗kL)−1µ∗kL, L≥2,

Σx̃∗
n/kL = Σ

x̃∗
n/k(L−1)−X∗n,kL(Π∗kL)−1(X∗n,kL)T , L≥2,

x̂∗n/k = X∗n,k(Π∗k)−1µ∗k Σx̃∗
n/k = ΦnΨ

T
n −X∗n,k(Π∗k)−1(X∗n,k)Twhose initial conditions are  and , respectively.

X∗n,kLThe coefficients  are computed by

X∗n,kL = (1−γkL)
(
Ψn−M∗n,k(L−1)

)
ΦT

kLC
T
kL, L≥1,

with

M
∗
n,kL =M

∗
n,k(L−1)+X∗n,kL(Π∗kL)−1(F∗kL)T , L≥1, M

∗
n,0 = 0.

4. Numerical Simulation Example

{xn}n≥1

In this section, a simulation example is considered to assess the effectiveness of the proposed estimation meth-
ods  and  analyze  the  impact  of  attack  probabilities  on  their  performance.  Specifically,  consider  a  two-dimensional
stochastic signal process . For simulation purposes, the following signal model is adopted [20]:

xn+1 = Fxn+Gwn, n≥1,

where

F =
Å

0.95 0.1
0 0.95

ã
, G =

Å
0.8
0.6

ã
.

x0 E
[
x0xT

0

]
= 0.1I2 I2

2×2 {wn}n≥1 E
[
w2

n

]
= 0.1

x0 {wn}n≥1 E
[
xnxT

m

]
The initial signal  is a zero-mean Gaussian vector with covariance matrix , where  denotes

de  identity matrix. The sequence  is a zero-mean white Gaussian noise with variance  and
both  and  are assumed to be mutually independent. From this, the signal covariance function  can
be factorized as follows:
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E
[
xnxT

m

]
= Fn−mE

[
xmxT

m

]
= FnF−mΣx

m, 1≤m≤n,

Φn = Fn ΨT
m = F−mΣx

m Σx
m = E

[
xmxT

m

]
verifying Assumption  1 with  and ,  where  the  matrix  can be  derived  recur-
sively by

Σx
m = FΣx

m−1FT +0.1GGT , m≥1, Σx
0 = 0.1I2.

Consider that the measurement model is given by the following equation

zkn = θknCxkn+ vkn, n≥1,

C = (0.5,1) {θkn}n≥1

P(θkn = 1) = θ {vkn}n≥1

Rkn = 0.1 Ckn = θknC

where  and  is a  sequence of independent identically distributed (i.i.d.)  Bernoulli  random vari-
ables, such that . The measurement noise  is a zero-mean white Gaussian sequence with vari-
ance . Note that this is a specific case of the measurement model (1), with , representing situa-
tions where signal information may be randomly missed in certain observations, resulting in measurements that con-
sist only of noise (missing measurements).

{γkn}n≥1

P(γkn = 1) = γ

According to the theoretical model, these observations are assumed to be affected by DoS attacks, whose ran-
dom success or failure is modeled by Bernoulli random variables ,  and we assume that these variables are
i.i.d. with probability .

1− θ
γ

The current simulation study aims to: analyze the impact of the measurement sampling rate on estimation accu-
racy;  demonstrate  the  feasibility  and  effectiveness  of  the  derived  estimators  through error  covariance  comparisons;
evaluate their performance in relation to the probability that the measurements consist only of noise, ; and assess
the influence of successful attack probability, , on estimation accuracy.

k k = 1,2,3,5,9
θ γ

k

k
k

n

First, to analyze the impact of the measurement sampling rate on estimation accuracy, Figure 1 displays the fil-
tering error variances under the two compensation strategies, HI and PC, for different values of  ( ),
while keeping both probabilities  and  fixed at 0.5. As expected, this figure shows that the error variances of both
signal components increase with , indicating that estimation accuracy deteriorates as the measurement sampling fre-
quency decreases. Additionally, this figure reveals that the error variances exhibit a sawtooth pattern, with increasing
phases between consecutive multiples of  (where the set of observations is not updated, and the filter acts as a pre-
dictor based on increasingly outdated observations) and reaching local minimum values at multiples of  (where the
set  of  observations  is  updated,  allowing  the  estimator  to  incorporate  the  new  information).  Notably,  although  this
sawtooth behavior prevents the error variances from stabilizing at  a single value,  it  allows us to define “error vari-
ance bands”, determined by their lower and upper bounds, whose behavior can stabilize –as it actually does in this
example– when the sampling time  is sufficiently large.
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Figure 1.  Filtering error variances, under HI and PC compensation strategies, for different measurement sampling
rates.
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k
γ = θ = 0.5

Table 1 displays the stabilized upper bound values of the filtering error variances for different values of  and
fixed probabilities .  These results  support  the  comments  made about Figure  1 and show a reduction in
error variance when using the PC strategy compared to HI, demonstrating its superior estimation accuracy.
  

Table 1    Stabilized upper bound values of the filtering error variances
First component Second component

HI PC HI PC
k = 1 0.6297 0.5354 0.1801 0.1625
k = 2 0.9343 0.8213 0.2314 0.2153
k = 3 1.1491 1.0285 0.2618 0.2472
k = 5 1.4448 1.3207 0.2979 0.2857
k = 9 1.7808 1.6682 0.3321 0.3237

 

θ γ

k = 3

L = 3

In order to compare the accuracy of the filtering and smoothing estimators, the associated error variance bands
are computed for both components of the signal process, keeping  and  fixed at the same value 0.5. Furthermore,
the sampling period is selected as , meaning that the signal update frequency is three times faster than the mea-
surement sampling frequency. The results, presented in Figure 2, are analyzed under the two compensation strategies,
HI and PC. Three key aspects are worth highlighting. First, the fixed-point smoothers consistently outperform the fil-
ters,  exhibiting  lower  error  variances.  Second,  the  values  of  fixed-point  smoothing  error  variances  decrease  as  the
number of available observations increases, further improving estimation accuracy. Lastly, the PC strategy achieves a
greater  reduction  in  error  variance  compared  to  the  HI  strategy.  The  comparative  advantages  of  the  PC  strategy
become even more apparent in Figure 3, which presents the filtering and smoothing ( ) error variance bands and
demonstrates its superiority compared to the HI strategy.
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1− θ

Next, we compare the performance of the estimators versus the probability that the observations contain the sig-
nal, . Figure 4 shows the stabilized lower and upper bound values for both filtering and smoothing error variances,
considering different values of , ranging from  to , while assuming that the attack probability is  and
the sampling period is . As expected, better estimation performance is observed as  increases. In other words,
the filtering and smoothing estimators become more accurate when the probability that the measurements consist only
of noise, , decreases.

γ

θ = 0.5 k = 3
γ 0.1 0.9

Finally, the influence of successful attack probability, , on the accuracy of the filtering and smoothing estima-
tion schemes is analyzed. For this purpose, considering  and , Figure 5 presents the stabilized lower and
upper bound values of the error variances for different probabilities , ranging from  to . The results demon-
strate a clear relationship between increasing attack probability and reduced estimation performance, as evidenced by
the increasing trend of the error variances for both filtering and smoothing. In line with previous findings, both Fig-
ure 4 and Figure 5 confirm that smoothing estimators outperform filtering estimators and the superiority of the PC
strategy over the HI strategy is also reaffirmed.
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Our final aim in this section is to show the superior performance of the proposed estimation method in scenar-
ios involving random parameter variations (e.g.  missing measurements) and DoS attacks.  To this end, we compare
the estimators derived in this paper (Theorem 1) with those presented in [21] for multirate systems with multiple ran-
dom measurement time delays, where missing measurements can be considered a particular case.
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For both signal components, the comparison is based on the empirical values of the mean-squared error (MSE)

at each time instant. These values are calculated over five thousand independent simulations as follows:

MSEa,n =
1

5000

5000∑
s=1

(
x(s)

a,n− x̂(s)
a,n/kt

)2
, 1≤n≤100, a = 1,2,

n s x(s)
a,n a

x̂(s)
a,n/kt

where, for each sampling time  and the th simulation run,  denotes the th component of the simulated signal,
and  represents its corresponding estimate.

θ = γ = 0.5 k = 3
Since the estimator in [21] does not account for DoS attacks, the proposed method is expected to yield better

performance. Indeed, assuming  and , this is confirmed by the results presented in Figure 6, which
show that  the  empirical  MSE values  for  both  signal  components  are  consistently  lower  for  the  proposed estimates
(under HI and PC strategies) compared to those in [21].
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Figure 6.  MSE comparison of proposed estimators and estimator in [21].

5. Conclusions

This  paper  has  addressed  the  problem  of  LS  linear  estimation  for  time-varying  MR  systems  with  stochastic
parameter matrices under the influence of randomly occurring DoS attacks. Through an innovation approach, recur-
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sive  filtering  and  smoothing  algorithms  have  been  developed  under  both  the  HI  and  the  PC  strategies.  Moreover,
explicit expressions for the estimation error covariance matrices have been derived, providing a rigorous mechanism
to assess the accuracy of the estimators. Simulation results have demonstrated that the theoretical model accommo-
dates missing measurements as a specific case and have validated the effectiveness of the proposed methods, high-
lighting the influence of attack probabilities on estimation performance.

The findings of this study open interesting directions for future research. One potential  direction is the exten-
sion  of  the  proposed  framework  to  multisensor  systems,  where  fusion  estimation  techniques  can  be  employed  to
improve accuracy under DoS attacks and other communication constraints. Another valuable research direction is the
development of quadratic estimators, especially for situations where higher estimation accuracy is crucial. Addition-
ally, the design of distributed estimation algorithms for large-scale networked systems represents an important area of
exploration.
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