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Abstract: This paper addresses the problem of distributed recursive filtering for state-saturated systems
in a networked communication environment. An output mask function is employed to safeguard the pri-
vacy of interaction data during node exchange in sensor networks. Scaled uniform quantization is intro-
duced  to  facilitate  the  digital  communication  and  optimize  the  network  resource  usage.  The  primary
objective of the study is to design a distributed recursive filter that ensures the filtering error covariance
remains bounded over a finite horizon. Specifically, by using Riccati-like equations, an upper bound for
the filtering error covariance is derived, which depends on the network topology, the output mask func-
tion, and the quantization level. The desired gain matrix is then solved recursively. Finally, the effective-
ness of the proposed filtering algorithm is demonstrated through a three-tank simulation example.
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1. Introduction

With the rapid development of Internet of Things technology, sensor networks have received continuous atten-
tion from academia and industry due to their widespread applications in industrial monitoring, smart cities, environ-
mental monitoring, and military surveillance [1, 2]. Sensor networks consist of a large number of spatially distributed
intelligent nodes that can sense environmental information, process data, and communicate with neighboring nodes.
In practical applications, sensor networks face challenges like limited node energy, constrained bandwidth, and harsh
environmental conditions. As one of the fundamental problems in sensor networks, distributed state estimation aims
to  achieve  accurate  estimation  of  target  states  through  local  information  interactions  between  nodes.  However,  in
practical  engineering,  measurement  data  is  often  affected  by  various  factors,  such  as  measurement  noise,  sensor
faults, communication delays, and data loss [3]. These uncertainty factors significantly degrade the system's estima-
tion  performance.  Furthermore,  limitations  in  communication  resources  between nodes  and  uncertainties  in  system
models [4] all pose significant challenges to the design of distributed filters.

H∞

In recent years, various distributed filtering schemes have been proposed, which can effectively avoid computa-
tional bottlenecks and communication burden caused by centralized processing,  while improving system scalability
and  fault  tolerance.  In  practical  applications,  distributed  filtering  achieves  global  optimal  estimation  through  local
information interaction, greatly enhancing the overall system performance. For instance, consensus-based distributed
Kalman filtering algorithms can achieve estimation consistency through iterative averaging between nodes [5].  The
event-triggered-based distributed filtering [6] can effectively reduce network load while guaranteeing system perfor-
mance. The robust distributed filtering methods considering model uncertainties [7] can enhance the system's adapt-
ability to parameter perturbations. Moreover,  criterion-based distributed filtering can effectively handle bounded
disturbances  and  modeling  errors  of  the  system,  while  improving  the  robustness  of  state  estimation.  Therefore,
designing efficient and reliable distributed filtering algorithms is of great significance for improving the overall per-
formance of sensor networks.

Since  Rudolf  Emil  Kalman  introduced  state  space  into  estimation  theory  in  1960  [8],  Kalman  filtering  has

International Journal of Network Dynamics and Intelligence

Copyright: © 2025 by the authors. This is an open access article under the terms and conditions of the Creative
Commons Attribution (CC BY) license https://creativecommons.org/licenses/by/4.0/.

 
https://www.sciltp.com/journals/ijndi

mailto:liushuai871030@163.com
mailto:liushuai871030@163.com
https://creativecommons.org/licenses/by/4.0/
https://www.sciltp.com/journals/ijndi


become a powerful tool for solving state estimation problems in linear systems affected by Gaussian noises due to its
favorable recursive attribute and reliable optimality assurance. Based on hidden Markov models and linear algebra,
Kalman filtering can estimate states in real-time without storing all historical data, which significantly reduces com-
putational resources and storage space requirements [9]. However, the conditions for the traditional Kalman filter are
quite stringent, as it is only applicable to linear systems with Gaussian noises. Due to various uncertainties and non-
linear characteristics in practical systems, these conditions are often difficult to be satisfied, which limits the applica-
tion scope of the Kalman filter [10]. To overcome this limitation, researchers have developed various improvement
methods, among which the extended Kalman filter (EKF) is the most representative. The EKF extends the Kalman
filter's capability to handle nonlinear problems by converting the original nonlinear system into an approximate linear
system through the linearization technique [11]. It is particularly noteworthy that the EKF can effectively handle non-
linear  problems  related  to  process  models,  observation  models,  or  both  by  performing  linearization  around  current
means and covariances [12]. Furthermore, the EKF is recognized as an efficient online (recursive) estimator of pro-
cess variables, particularly suitable for scenarios where large numbers of parameters need to be identified using short
time series. In recent years, the EKF has made significant progress in multiple fields, such as networked control sys-
tems, multi-agent systems [13], and wind turbine fault diagnosis [14].

Over the past few decades, with the rapid development of communication, computing, and control technologies,
networked control systems (NCSs) have been widely applied in various fields such as industrial automation, intelli-
gent  manufacturing,  and  remote  monitoring  [15–18].  By  connecting  components  such  as  controllers,  sensors,  and
actuators through communication networks, NCSs enable remote transmission and processing of information, offer-
ing significant advantages including high flexibility, low cost, and easy maintenance. However, due to the complex-
ity  of  network  environments,  NCSs  inevitably  face  several  challenges  [19].  To  efficiently  utilize  limited  network
resources,  event-triggered  mechanisms have  been widely  adopted  in  NCSs [20, 21], which  can  dynamically  deter-
mine data transmission times based on changes in system states, thereby reducing unnecessary network communica-
tion. Furthermore, limited network bandwidth results in network congestion, communication delays [22, 23], and sig-
nal distortion, which inevitably affect system performance.

To effectively address the challenge of bandwidth constraints,  the quantization technique has been introduced
into NCSs as a data compression method [24–26]. In the quantization process, the sender first maps continuous raw
data to a finite set of discrete values, which are transmitted through communication networks and then reconstructed
at the receiver end as approximations of the original data. Current main quantization strategies include uniform quan-
tization and logarithmic quantization, among which uniform quantization has been widely adopted due to its simple
implementation and high computational efficiency. However, the design of quantization systems faces multiple chal-
lenges.  First,  the selection of  quantization parameters (such as quantization intervals  and levels)  directly affects  the
trade-off between communication efficiency and signal reconstruction accuracy. Second, due to the nonlinear charac-
teristics of the quantization process [27], quantization errors are inevitablely accumulated over time that leads to sys-
tem performance  degradation.  Furthermore,  in  practical  applications,  systems  may  face  uncertainty  factors  such  as
measurement noises and external disturbances, which further increases the complexity of quantizer design.

With the widespread application of sensor networks in distributed computing, intelligent transportation systems,
and smart grids, information exchange between nodes inevitably brings risks of privacy leakage. Currently, the main-
stream privacy protection strategies mainly include two methods: differential privacy and homomorphic encryption.
Differential  privacy protects  sensitive information by adding well-designed noises to transmission signals,  which is
simple  to  implement  and  has  a  low  computational  burden.  However,  existing  research  has  shown  that  consensus
algorithms based on differential privacy cannot achieve exact convergence [28, 29], which is unacceptable in certain
high-precision application scenarios (such as microgrid voltage control) [30]. Homomorphic encryption ensures data
security by converting information into ciphertext. Although Homomorphic encryption can guarantee absolute infor-
mation security, it requires the transmission of additional public key information, resulting in significantly increased
communication overhead. Particularly in large-scale distributed systems, as the number of nodes increases, the com-
munication burden rises dramatically [31]. In recent years, output mask has gained attention as a novel privacy pro-
tection method [32]. This approach protects initial states by superimposing dynamically vanishing mask functions on
the original state information [33, 34], which can achieve exact convergence without requiring additional communi-
cation bandwidth.

In this paper, we aim to develop a distributed recursive filter for state-saturated systems in a networked commu-
nication environment. The main contributions of this paper can be summarized as follows. 1) To safeguard the pri-
vacy of interaction data, an output mask function is, for the first time, introduced to the state-saturated systems over
sensor networks. 2) A novel distributed recursive filter is designed under which the filtering error covariance remains
bounded over a finite horizon by using Riccati-like equations. 3) An upper bound for the filtering error covariance is
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derived, which depends on the network topology, the output mask function, and the quantization level.
R+ Rm

∥ · ∥ MT

E{x}

Notations: ,  are the set of non-negative real numbers and the m-dimensional Euclidean space, respec-
tively.  represents the Euclidean norm. The superscript  stands for the transpose of the matrix M. I represents
the identity matrix with appropriate dimensions.  stand for the mean of any stochastic variable x.

2. Problem Formulation

2.1. Graph theory

G = (V,E,A)
V = {1,2, · · · ,N} E ⊆ V×V A = [ai j]N×N

G A
(i, j) ∈ E ai j > 0

Ni = { j ∈ V|(i, j) ∈ E}

i, j ∈ V G

In this paper, the system output measurement is accomplished through a sensor network consisting of N sensor
nodes. The topology of this sensor network can be described by a directed graph  of order N.  Here,

 represents the set of sensor nodes,  denotes the set of directed edges, and 
is the weighted adjacency matrix of graph . The elements of adjacency matrix  are nonnegative, and there exists
a directed edge  if and only if , which indicates that the ith sensor node can receive information from
the jth sensor node, in which case node j is called a neighbor of node i. For notational convenience, the set of neigh-
bors  of  node i (including  node i itself)  is  denoted  by .  Based  on  this  topology,  each  sensor
node can collect system data and exchange information with its neighboring nodes. In particular, when there exists a
connection between any two nodes  in graph , the communication graph is called completely connected.

2.2. System model
We consider the following discrete-time stochastic nonlinear state-saturated systems:®

xk+1 = σ(f(xk))+wk

yi,k = gi(xk)+ vi,k
(1)

xk ∈ Rn yi,k ∈ Rm

wk ∈ Rn vi,k ∈ Rm Qk

Ri,k ∥wk∥≤w̄ ∥vi,k∥≤v̄ w̄ v̄

f(·) : Rn→ Rn gi(·) : Rn→ Rm

σ(·) : Rn 7→ Rn

where  and  are, respectively,  the  system state  to  be  estimated  and  the  measurement  output  mea-
sured by the sensor i.  and  are two zero-mean white noise sequences with the covariances  and

, respectively. It is assumed that all noises are uncorrelated and bounded by  and  with  and 
being  the  known  positive  constants,  which  are  also  uncorrelated  with  the  initial  state.  The  nonlinear  functions

 and  are  known  and  continuously  differentiable.  The  saturation  function
 is defined as

σ(z) = [σ1(z1) σ2(z2) · · · σn(zn)]T (2)

where

σi(zi) = sign(zi)min{zi,max, |zi|} (3)

zi,max zmaxand  is the ith element of the vector  (i.e., the saturation level).

2.3. Output Mask Privacy-Preserving Method
The basic principle of the output mask approach is to avoid leaking the initial value of the exchanged informa-

tion and keep the initial attractor convergence by inserting a dynamic vanished mask function [33].
hi(·, ·, ·) : R+×Rm×Rm 7→ Rm, i = 1,2, · · · ,mAs described in [33], define the map function . Accordingly, the

output mask function is defined as

ȳi,k = hi(k,yi,k,ϕi) = (1+ψie−νik)(yi,k + θie−ϵik) (4)

ϕi ≜ {ψi, νi, θi, ϵi} ψi νi ϵi θi ∈ Rm

hi(·, ·, ·) ψi νi θi

ϵi

where , ,  and  are given positive scalars,  is a non-zero vector. It is worth noting that
the internal parameters of the output mask  are also private to the other nodes, and parameters , ,  and

 are independently decided by the node i, which implies that node j in the network cannot deduce the precise state
value of node i based on the received information.

Before the signals enter into the digital  network, the uniform quantization technique is  adopted to encode the
analogy signals to the digital signals. The following uniform quantizer is used:

q(χ) =


M, χ≥M

−M, χ < −M

−M+
(2t−1)M

ρ
, −M+

2(t−1)M
ρ

≤χ < −M+
2tM
ρ
, t = 1,2, · · · ,ρ

(5)

χ [−M,M] ρwhere  is  the  signal  to  be  quantized  and M is  the  saturated  bound.  The  interval  is  partitioned  into 
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regions.

ȳ(s)
i,k (s = 1,2, · · · ,m) qs

(
ȳ(s)

i,k

)
≜ ϱ(s)

i,k q
Ç

ȳ(s)
i,k

ϱ(s)
i,k

å
ϱ(s)

i,k > 0

qs(·) ϱ(s)
i,k

ȳ(s)
i,k

ϱ(s)
i,k

[−M,M]
∣∣∣ȳ(s)

i,k

∣∣∣ > M

ξ(s)
i,k ≜ ȳ(s)

i,k −qs
(
ȳ(s)

i,k

)

For  the  measurement  component ,  define  where  is  an

adjustable parameter. In order to address the issue of quantization saturation of , the parameter  is selected to

ensure that the value  enters into the interval  when . Therefore, it is easy to derive that the

quantization error  satisfying ∣∣∣ξ(s)
i,k

∣∣∣≤ϱ(s)
i,k M
ρ

. (6)

Define

q̄(ȳi,k) ≜col
{

q1(ȳ(1)
i,k ),q2(ȳ(2)

i,k ), · · · ,qm(ȳ(m)
i,k )

}
ξi,k ≜col

{
ξ(1)

i,k , ξ
(2)
i,k , · · · , ξ(m)

i,k

}
ϱi,k ≜col

{
ϱ(1)

i,k ,ϱ
(2)
i,k , · · · ,ϱ(m)

i,k

}
.

Based on the obtained quantization measurement, the following robust Kalman-type filter is designed:

x̂−i,k+1 = σ(f(x̂+i,k|k)) (7)

x̂+i,k+1 =x̂−i,k+1+

N∑
j=1

Ki j,k+1ai j
(
q̄(ȳ j,k+1)−h j(k+1, ŷ−i,k+1,ϕi)

)
(8)

x̂−i,k+1 ∈ Rn
xk+1

x̂+i,k+1 ∈ Rn
xk+1

k+1 ŷ−i,k+1 yk+1 ŷ−i,k+1 ≜ gi(x̂−i,k+1) Ki j,k+1

where  is the one-step prediction of  for node i at time k,  is the estimation of  at time
,  is  the  prediction of  defined by ,  and  is the  filter  gain  matrix  to  be  deter-

mined.

Σ+i,k

The main purpose of this paper can be summarized as follows. For the state-saturated stochastic nonlinear sys-
tems subject to the privacy protection and the signal quantization, there exists a sequence of positive-definite matrices

 such that the filtering error satisfies the following inequality constraints:

E{(xk − x̂+i,k)(xk − x̂+i,k)
T }≤Σ+i,k. (9)

Ki j,k Σ+i,kMoreover, the filter parameter  can be derived by minimizing the upper bound .

3. Main results

∀x1, x2 ∈ R εi ∈ [0, 1]Lemma 1 For , there exists a real number  such that

σi(x1)−σi(x2) = εi(x1− x2) (10)

σi(·) (i = 1,2, · · · ,n)where  is the saturation function defined in (2).
Λ ΛΛT≤I

α α−1I−CZCT > 0
Lemma 2 [33] Let the matrices A, B, C and  be given with appropriate dimensions and satisfy . For any
positive definite matrix Z and any positive constant ,  if  the condition  is  satisfied,  the following
inequality holds

(A+BΛC)Z(A+BΛC)T≤A(Z−1−αCTC)−1AT +α−1BBT . (11)

x̃+i,k ≜ xk − x̂+i,k x̃−i,k+1 ≜ xk+1− x̂−i,k+1Define  the  estimation  error  and  the  one-step  prediction  error .  Based  on
Lemma 1, it follows from (1) and (7) that the one-step prediction error can be computed as

x̃−i,k+1 = σ(f(xk))+wk −σ(f(x̂+i,k))

= Υi,k
(
f(xk)− f(x̂+i,k)

)
+wk

(12)

and the estimation error can be derived as
 
 
 
 
 

IJNDI, 2025, 4, 100012. https://doi.org/10.53941/ijndi.2025.100012

 
4 of 12

https://doi.org/10.53941/ijndi.2025.100012


x̃+i,k+1 =x̃−i,k+1−
N∑

j=1

Ki j,k+1ai j
(
q̄(ȳ j,k+1)−h j(k+1, ŷ−i,k+1,ϕi)

)
=x̃−i,k+1−

N∑
j=1

Ki j,k+1ai j
(
q̄(ȳ j,k+1)− ȳ j,k+1+ ȳ j,k+1−h j(k+1, ŷ−i,k+1,ϕi)

)
=x̃−i,k+1−

N∑
j=1

Ki j,k+1ai j
((

1+ψ je−ν j(k+1)
)(

g j(xk+1)+ v j,k+1+ θ je−ϵ j(k+1)
)

−
(
1+ψ je−ν j(k+1)

)(
g j(x̂−j,k+1)+ θ je−ϵ j(k+1)

)
− ξ j,k+1

)
=x̃−i,k+1−

N∑
j=1

Ki j,k+1ai j
((

1+ψ je−ν j(k+1)
)
(g j(xk+1)−g j(x̂−j,k+1)+ v j,k+1)− ξ j,k+1

)

(13)

where

Υi,k ≜ diag
{
ε(1)

i,k , ε
(2)
i,k , · · · , ε(n)

i,k

}
.

f (·) x̂+i,kThe Taylor expansion of the function  at the point  yields

f(xk) = f (x̂i,k|k)+Ai,k x̃+i,k +Gi,kΓkHi,k x̃+i,k (14)

Ai,k ≜
∂f
∂x

∣∣∣
x=x̂+i,k

Gi,kΓkHi,k x̃+i,k Gi,k

Hi,k x̂+i,kΓk

where  denotes the Jacobian matrix.  is used to represent the linearization error.  and

 are known matrices dependent on  is  an unknown matrix satisfying the following norm-bounded uncer-
tainty:

ΓkΓ
T
k≤I. (15)

gi(·) x̂−i,k+1Along the same line, the nonlinear function  is expanded at the point , thus leading to

gi(xk+1) = gi(x̂−i,k+1)+Ci,k+1 x̃−i,k+1+ Ḡi,k+1Γ̄i,k+1H̄i,k+1 x̃−i,k+1 (16)

Ci,k+1 ≜
∂gi

∂x

∣∣∣
x=x̂−i,k+1

Ḡk+1Γ̄k+1H̄k+1 x̃−i,k+1

Ḡk+1 H̄k+1
x̂−i,k+1 Γ̄i,k+1

where  denotes the Jacobian matrix.  is used to represent the linearization error.

 and  are known matrices dependent on .  is an unknown matrix satisfying the following norm-
bounded uncertainty:

Γ̄i,k+1Γ̄
T
i,k+1≤I. (17)

Therefore, the one-step prediction error and the estimation error can, respectively, be rewritten as

x̃−i,k+1 = Υi,k(Ai,k +GkΓkHk)x̃+i,k +wk (18)

and the estimation error can be derived as

x̃+i,k+1 = x̃−i,k+1−
N∑

j=1

Ki j,k+1ai j
((

1+ψ je−ν j(k+1)
)
((C j,k+1+ Ḡ j,k+1Γ̄ j,k+1H̄ j,k+1)x̃−j,k+1+ v j,k+1)− ξ j,k+1

)
. (19)

Define the following notations:

x̃+k+1 ≜col{x̃+1,k+1, x̃
+
2,k+1, · · · , x̃+N,k+1}

x̃−k+1|k ≜col{x̃−1,k+1, x̃
−
2,k+1, · · · , x̃−N,k+1}

Ψk+1 ≜diag{1+ψ1e−ν1(k+1), · · · ,1+ψNe−νN (k+1)}⊗ Im

A⃗k ≜diag{A1,k,A2,k, · · · ,AN,k}
G⃗k ≜diag{G1,k,G2,k, · · · ,GN,k}
H⃗k ≜diag{H1,k,H2,k, · · · ,HN,k}
Υk ≜diag{Υ1,k,Υ2,k, · · · ,ΥN,k}
w̄k ≜col{wk,wk, · · · ,wk}
Ai ≜diag{ai1,ai2, · · · ,aiN}

IJNDI, 2025, 4, 100012. https://doi.org/10.53941/ijndi.2025.100012

 
5 of 12

https://doi.org/10.53941/ijndi.2025.100012


Kk+1 ≜[Ki j,k+1]N×N , Γ⃗k ≜ IN ⊗Γk

Ck+1 ≜diag{C1,k+1,C2,k+1, · · · ,CN,k+1}
Ḡk+1 ≜diag{Ḡ1,k+1,Ḡ2,k+1, · · · ,ḠN,k+1}
Γ̄k+1 ≜diag{Γ̄1,k+1, Γ̄2,k+1, · · · , Γ̄N,k+1}
H̄k+1 ≜diag{H̄1,k+1,H̄2,k+1, · · · ,H̄N,k+1}
vk+1 ≜col{v1,k+1,v2,k+1, · · · ,vN,k+1}
ξk+1 ≜col{ξ1,k+1, ξ2,k+1, · · · , ξN,k+1}

Ei ≜diag{0, · · · ,0︸    ︷︷    ︸
i−1

, I,0, · · · ,0︸    ︷︷    ︸
N−i

}.

The compact form of (18) and (19) can be further written as

x̃−k+1 = Υk(A⃗k + G⃗kΓ⃗kH⃗k)x̃+k + w̄k (20)

and

x̃+k+1 =(I−
N∑

i=1

EiKk+1AiΨk+1Ck+1−
N∑

i=1

EiKk+1AiΨk+1Ḡk+1Γ̄k+1H̄k+1)x̃−k+1

−
N∑

i=1

EiKk+1AiΨk+1vk+1+

N∑
i=1

EiKk+1Aiξk+1.

(21)

P−k ≜ E{x̃−k (x̃−k )T }
P+k ≜ E{x̃+k (x̃+k )T }

Define  the  one-step  prediction  error  covariance  and  the  estimation  error  covariance
. Next, we shall give some results to calculate the recursive algorithm of the one-step error covari-

ance and the estimation error covariance.
α1 α2 κ

P−k+1 P+k+1

Theorem 1 For given scalars , , , considering the error dynamics (20)–(21), the upper bound of the one-step
prediction error covariance  and the estimation error covariance  obey the following recursions:

Σ−k+1 = Υk[A⃗k((Σ+k )−1−α1H⃗T
k H⃗k)−1A⃗k +α

−1
1 G⃗kG⃗T

k ]ΥT
k + Q̄k (22)

and

Σ+k+1 =ϖ1(I+Kk+1ΨkCk+1)((Σ−k+1)−1−α2H̄T
k+1H̄k+1)−1(I+Kk+1ΨkCk+1)T +Kk+1Uk+1KT

k+1 (23)

with the following constraints

α−1
1 I− H⃗kΣ

+
k H⃗T

k > 0 (24)

α−1
2 I− H̄k+1Σ

−
k+1H̄T

k+1 > 0 (25)

where

Uk+1 ≜ϖ1α
−1
2 Ψk+1Ḡk+1ḠT

k+1Ψ
T
k+1+Ψk+1Rk+1Ψ

T
k+1+ϖ2ϱ⃗kINm

Rk+1 ≜diag{R1,k+1,R2,k+1, · · · ,RN,k+1}
ϖ1 ≜1+ κ,ϖ2 ≜ 1+ κ−1, Q̄k ≜ IN ⊗Qk

ϱ̄k ≜col{ϱ1,k,ϱ2,k, · · · ,ϱm,k}⊗
M
ρ
, ϱ⃗k ≜ ϱ̄T

k ϱ̄k.

Proof of Theorem 1. First, according to the error dynamics (20), it is easy to obtain that

P−k+1 ≜E{x̃−k+1(x̃−k+1)T }
=Υk(A⃗k + G⃗kΓ⃗kH⃗k)P+k (A⃗k + G⃗kΓ⃗kH⃗k)TΥT

k + Q̄k.
(26)

Based on Lemma 2, we can derive the following inequality:

P−k+1≤Υk[A⃗k((P+k )−1−α1H⃗T
k H⃗k)−1A⃗k +α

−1
1 G⃗kG⃗T

k ]ΥT
k + Q̄k. (27)

Kk+1 = −
∑N

i=1 EiKk+1AiBy defining , we can obtain from (21) that

x̃+k+1 =(I+Kk+1Ψk+1Ck+1+Kk+1Ψk+1Ḡk+1Γ̄k+1H̄k+1)x̃−k+1

+Kk+1Ψk+1vk+1−Kk+1ξk+1.
(28)
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Further, we have

P+k+1 ≜E{x̃+k+1(x̃+k+1)T }
=E

{
((I+Kk+1Ψk+1Ck+1+Kk+1Ψk+1Ḡk+1Γ̄k+1H̄k+1)x̃−k+1

+Kk+1Ψk+1vk+1−Kk+1ξk+1)
×((I+Kk+1Ψk+1Ck+1+Kk+1Ψk+1Ḡk+1Γ̄k+1H̄k+1)x̃−k+1

+Kk+1Ψk+1vk+1−Kk+1ξk+1)} .

(29)

Based on the fundamental inequality

xyT + yxT≤ϵxxT + ϵ−1yyT (30)

x,y ϵfor any vectors  and any positive scalar , we have

P+k+1≤ϖ1(I+Kk+1Ψk+1Ck+1+Kk+1Ψk+1Ḡk+1Γ̄k+1H̄k+1)P−k+1

× (I+Kk+1Ψk+1Ck+1+Kk+1Ψk+1Ḡk+1Γ̄k+1H̄k+1)T

+ϖ2Kk+1ξk+1ξ
T
k+1KT

k+1+Kk+1Ψk+1Rk+1Ψ
T
k+1KT

k+1.

(31)

Then, according to Lemma 2, we have

P+k+1≤ϖ1(I+Kk+1Ψk+1Ck+1+Kk+1Ψk+1Ḡk+1Γ̄k+1H̄k+1)P−k+1

× (I+Kk+1Ψk+1Ck+1+Kk+1Ψk+1Ḡk+1Γ̄k+1H̄k+1)T

+ϖ2Kk+1ξk+1ξ
T
k+1KT

k+1+Kk+1Ψk+1Rk+1Ψ
T
k+1KT

k+1

≤ϖ1(I+Kk+1Ψk+1Ck+1)((P−k+1)−1−α2H̄T
k+1H̄k+1)−1

× (I+Kk+1Ψk+1Ck+1)T +ϖ1α
−1
2 Kk+1Ψk+1Ḡk+1ḠT

k+1Ψ
T
k+1KT

k+1

+Kk+1Ψk+1Rk+1Ψ
T
k+1KT

k+1+ϖ2ϱ⃗kKk+1KT
k+1.

(32)

The proof is thus complete.
Theorem 2 The filter gain can be given by

Ki j,k+1 =

ß
Ki j,k+1a−1

i j , ai j , 0
0, ai j = 0. (33)

Kk+1Proof of Theorem 2. Taking the partial for the upper bound (23) with respect to  yields

∂Σ+k+1

∂Kk+1
= 2(I+Kk+1Ψk+1Ck+1)Vk+1+2Kk+1Uk+1 (34)

where

Vk+1 =ϖ1((Σ−k+1)−1−α2H̄T
k+1H̄k+1)−1CT

k+1Ψ
T
k+1.

∂Σ+k+1

∂Kk+1
= 0Letting , one has

Kk+1 = −Vk+1W−1
k+1 (35)

where

Wk+1 ≜Ψk+1Ck+1Vk+1+Uk+1.

Furthermore, we have

Kk+1 =

N∑
i=1

EiKk+1Ai. (36)

Therefore, it is easy to conclude that

[Ki1,k+1,Ki2,k+1, · · · ,KiN,k+1] = [Ki1,k+1,Ki2,k+1, · · · ,KiN,k+1]A†i (37)

A†i Aiwhere  is the Moore-Penrose pseudoinverse of . The proof is complete.
Remark 1 In this paper, we consider the distributed filtering problem for sensor networks with the uniform quanti-
zation and the privacy protection.  The network consists  of  a large number of  spatially distributed intelligent nodes
capable of sensing environment information, processing data, and communicating with neighboring nodes. To effec-
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tively  address  bandwidth  constraints,  uniform quantization is  introduced in  inter-node communication.  Meanwhile,
we introduce an output mask function to protect the privacy of measurement data. It is noteworthy that, in our main
theorems, key elements of the system are comprehensively considered: the selection of quantization parameters, out-
put  mask  function,  the  influence  of  network  topology,  and  linearization  errors,  all  of  which  are  closely  related  to
engineering practice.
Remark 2 This paper proposes an innovative distributed recursive filtering framework that addresses data privacy
protection and resource allocation in network communications through the introduction of output mask functions and
scaled uniform quantization techniques. In Theorem 1, a tight upper bound for the filtering error covariance is ana-
lytically derived, which directly relates to the output mask function and quantization level. In Theorem 2, we develop
a recursive method for solving the desired filter gain matrix by means of Riccati-like difference equations. The effec-
tiveness and practical applicability of the proposed filter design approach are rigorously validated through a three-
tank  simulation,  confirming  both  theoretical  soundness  and  engineering  viability.  Future  work  will  investigate
advanced privacy protection technologies, such as differential privacy and homomorphic encryption, for more com-
plex nonlinear systems to strengthen privacy safeguards without compromising estimation accuracy.

4. Numerical Simulations

Ga

Gn

W1(t) W2(t)

In this section, an experimental simulation is conducted on an internet-based three-tank system [36] to validate
the effectiveness and applicability of the proposed distributed filtering strategy in a networked environment. As illus-
trated in  [35],  the  system comprises  three tanks,  where each has  an equivalent  cross-sectional  area  and is  con-
nected by two cylindrical pipes with a specific cross-sectional area . Tanks 1 and 2 are both equipped with pumps
that  supply water  at  designated flow rates  and .  Furthermore,  two sensors  are installed to measure the
water levels in each tank.

h̄1(t) > h̄3(t) > h̄2(t)In the simulation, it is assumed that the water levels in the three tanks satisfy the condition ,
meaning that  water  always  flows from Tank 1  to  Tank 2  via  Tank 3.  Based on the  ``mass  balance  principle",  the
dynamic behavior of the tank levels can be described by the following differential equations:

˙̄h1(t) =
1

Ga
(W1(t)−W13(t))+b11w1(t)

˙̄h2(t) =
1

Ga
(W2(t)+W32(t)−W20(t))+b12w2(t)

˙̄h3(t) =
1

Ga
(W13(t)−W32(t))+b13w3(t).

(38)

Wi j(t)Here,  represents the water flow rate from the ith tank to the jth tank, and can be calculated as

Wi j(t) = χiGnsign(h̄i(t)− h̄ j(t))
√

2g|h̄i(t)− h̄ j(t)| (39)

χi Gn g = 9.8m/s2

W20(t)
where  is the outflow coefficient of pipe i,  is the cross section area of the connection pipe, and  is
the gravity acceleration. The term  represents the outflow rate from tank 2 and is given by

W20(t) = χ2Gn

√
2gh̄2(t). (40)

wi(t) b1iAdditionally,  denotes the process noise with the intensity coefficient . Substituting the explicit forms of
the parameters into (38) yields the following expression:

˙̄h1(t) =
1

Ga

Ä
−χ1Gn

√
2g(h̄1(t)−h3(t))+W1(t)

ä
+b11w1(t)

˙̄h2(t) =
1

Ga

Ä
χ3Gn

√
2g(h̄3(t)− h̄2(t))−χ2Gn

√
2gh̄2(t)+W2(t)

ä
+b12w2(t)

˙̄h3(t) =
1

Ga

Ä
χ1Gn

√
2g(h̄1(t)− h̄3(t))−χ3Gn

√
2g(h̄3(t)− h̄2(t))

ä
+b13w3(t).

(41)

tk

By applying the Euler discretization method [36] to the continuous-time state equation at each sampling instant
, the corresponding approximate discrete-time counterpart is given by

 
 
 
 

IJNDI, 2025, 4, 100012. https://doi.org/10.53941/ijndi.2025.100012

 
8 of 12

https://doi.org/10.53941/ijndi.2025.100012


h̄1(tk+1) = h̄1(tk)−
TGn

Ga
χ1
√

2g(h̄1(tk)− h̄3(tk))

+
T
Ga
+

T
Ga

W1(tk)+Tb11w1(tk)

h̄2(tk+1) = h̄2(tk)+
TGn

Ga
χ3
√

2g(h̄3(tk)− h̄2(tk))

−TGn

Ga
χ2
√

2gh̄2(tk)+
T
Ga

W2(tk)+Tb12w2(tk)

h̄3(tk+1) = h̄2(tk)+
TGn

Ga
χ1
√

2g(h̄1(tk)− h̄3(tk))

−TGn

Ga
χ3
√

2g(h̄3(tk)− h̄2(tk))+Tb13w3(tk).

(42)

T ≜ tk+1− tkIn this context, T represents the constant sampling interval, defined as . Similarly, the measurement
equation is formulated in the following manner:

y1(tk) = (1+ sin(tk))h̄1(tk)+b21v1(tk)
y2(tk) = h̄2(tk)+b22v2(tk)

(43)

sin(tk) vi(tk) b2iwhere  stands for the measurement error and  is the measurement noise with the intensive coefficient .
tk

wik (i = 1,2,3)
wik (i = 1,2,3) Qk

vik (i = 1,2) vik = vk ∼ N(0,Rk) (i = 1,2)

For simplicity, in the following sections, we will use k as an abbreviation for . Additionally, we assume that
the  process  noises  are  identical  and  follow  truncated  Gaussian  distributions.  Specifically,

 are  drawn  from a  Gaussian  distribution  with  zero  mean  and  variance .  Similarly,  we  make  the
same assumption about the measurement noises , that is, . Based on (41) to
(43), the system parameters are outlined as follows:

B1k =
[
b11 b12 b13

]T
=
[
1 1 0.05

]T
,B2k =

[
b21 b22

]T
=
[
1 1

]T

Ck =

ï
1+0.1sin(k) 0 0

0 1 0

ò
,Qk = 0.0001,Rk = 0.05

(44)

Ga = 254cm2 Gn = 8s Q1 = 20cm2 Q2 = 21cm3 χ1 = 0.48 χ2 = 0.58
χ3 = 0.48

Other system parameters are set as , , , , , ,
and .

The system state is measured by four sensors with the following topology structure:

A =


1 0 0.5 0.5

0.5 1 0 0.5
0 0.5 1 0.5

0.1 0.5 0 1

 . (45)

ψi = 0.2 νi = 0.2 θi =

ï
0.5
0.5

ò
εi = 0.12

M = 1 ρ = 100 ϱi = 2
x0 =

[
0.45 0.14 0.18

]T x̂+i,0 =
[
0.05 0.04 0.08

]T
Σ+i,0 = I

Gi = 0.5I Hi = 0.1I Ḡi = 0.1I H̄i = 0.1I α1 = α2 = 0.1 κ = 15

For the output mask function (4), we set , ,  and . For the uniform quanti-

zaiton (5), let the quantization range , the quantization level  and the adjustable parameter . The
following  initial  values  are  given ,  and .  For  the
Taylor expansion, set , , , ,  and . The simulation results
are shown in Figures 1–3 where the estimation trajectories track the real state. It can be observed that the proposed
distributed recursive filtering algorithm demonstrates high accuracy and robustness in estimating all three states. The
algorithm effectively handles the challenges posed by quantization effects and privacy protection mechanisms.
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5. Conclusions

This paper has addressed the distributed recursive filtering issue for state-saturated systems in networked envi-
ronments.  An output mask function has been used to safeguard privacy during sensor node interactions and scaled
uniform quantization has been employed to enhance communication efficiency and optimize network resource usage.
The study focuses on designing a distributed recursive filter to ensure that the filtering error covariance is bounded
over a finite horizon. By using Riccati-like equations, an upper bound for the filtering error has been derived, which is
influenced by the network topology, the mask function, and the quantization level. The gain matrix has been deter-
mined recursively, and the effectiveness of the proposed filtering algorithm has been validated through a three-tank
simulation example.
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