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Abstract: In this paper, an unscented Kalman filtering problem is considered for a class of nonlinear sys-
tems with stochastic nonlinearities under the FlexRay protocol. The phenomenon of stochastic nonlinear-
ities is characterized by the statistical means to account for engineering practice. Moreover, with the
FlexRay protocol implemented between the sensors and the filter, an appropriate measurement model is
established to characterize the measurement outputs after data transmission via the FlexRay protocol. By
considering the stochastic nonlinearities and the FlexRay protocol, an tailored unscented Kalman filter-
ing algorithm is designed where the influence of the stochastic nonlinearities and the FlexRay protocol is
quantified. In the end, the effectiveness of the proposed filtering algorithm is verified in estimating the
state of nonlinear systems through simulation experiments.
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1. Introduction

In recent decades, the rapid development of communication technology has propelled the application of wire-
less communication networks. Nowadays, an increasing number of industrial control systems communicate and con-
nect through wireless communication networks, which are known as the networked control systems (NCSs) [1].
Compared to the traditional systems, the NCSs have advantages in decreasing the construction costs and improving
the reliability of the system. As a result, the NCSs have found extensive applications in numerous fields such as
power system management, drone control, and transportation [2—5]. Despite the advantages provided by the NCSs,
some new challenges have also been brought to the corresponding control and state estimation problems [6]. Con-
strained by the limited bandwidth and transmission capacity of the wireless communication network, data transmis-
sions in NCSs are prone to various network-induced issues including packet dropouts, time delays, and data quanti-
zation. Recently, plenty of researchers have conducted promising research to deal with these network-induced chal-
lenges and fruitful results have been obtained [7—9].

The filtering problem has long been a research hotspot in real engineering and has found extensive applications
in areas such as environmental monitoring and target tracking [10—12]. The filtering technology offers an efficient
method to extract valuable state information from measurements with noises, thereby ensuring the precision and
dependability of system operation [13]. Notably, conventional linear filtering techniques are often unable to meet the
practical requirements since the nonlinearities are ubiquitous in real-world systems [14, 15]. As such, the investiga-
tion on nonlinear filtering technologies is of paramount importance. To address this problem, plenty of nonlinear fil-
tering techniques have been developed [16]. For instance, the extended Kalman filter estimates the system state by
first linearizing the nonlinearities and then applying standard Kalman filtering procedures [17, 18]. Unfortunately, the
extended Kalman filter does have its limitations, e.g. when dealing with highly nonlinear systems, the linearization
error can largely undermine the filtering accuracy.

To achieve satisfactory filtering performance for nonlinear systems with severely nonlinearities, the unscented
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Kalman filtering (UKF) approach has been developed [19, 20]. With the unscented Kalman filter, the linearization of
nonlinearity is no longer needed and the calculation of the Jacobian matrix is spared. Instead, the unscented transfor-
mation is employed to approximate the probability density function which shows superiority in handling high-order
nonlinearities [21—23]. Due to this advantage, the unscented Kalman filter has been widely studied and applied to
various systems. For example, the UKF problem has been considered in [24] for complex networks with quantiza-
tions and amplify-and-forward relays. In [25], the unscented Kalman filter has been designed for unmanned aerial
vehicles under the dynamic event-triggered protocol.

As mentioned before, the limited bandwidth of the wireless communication network inevitably leads to data
collisions and brings undesired network-induced phenomena [26—28]. To address this issue, researchers have devel-
oped various kinds of communication protocols whose aim is to eliminate/reduce the data collisions by orchestrating
the data transmissions based on certain principles [29, 30]. To date, the communication protocols that have been
widely investigated in the signal processing area include the Round-Robin protocol (RRP) [31], the weighted Try-
Once-Discard protocol (WTODP) [32], the stochastic communication protocol [33], and the FlexRay protocol [34,
35]. Among others, the FlexRay protocol incorporates both time-triggered and event-triggered selection principles,
which not only ensures real-time transmission of time-sensitive information, but also dynamically adjusts the trans-
mission priority according to the importance of the information. Therefore, the FlexRay protocol is able to ensure the
transmission of critical information and improve the stability and efficiency of the system. Due to its advantages, the
FlexRay protocol has been used in a variety of applications such as robot control systems, drone control systems and
navigation systems [36, 37]. To date, scholars have investigated state estimation problems under the FlexRay proto-
col and have obtained considerable research results [38—40]. Nevertheless, it has been found that the UKF problems
under the FlexRay protocol have received inadequate attention which motivates the current research.

Based on the above discussion, in this paper, we aim to study the UKF problem for nonlinear systems with
stochastic nonlinearities under the FlexRay protocols. The challenges will be encountered are: 1) how to precisely
describe the scheduling effect of the FlexRay protocol and integrate it in the framework of unscented Kalman filter?
and 2) how to characterize the impact of the FlexRay protocol and stochastic nonlinearities on the filtering perfor-
mance? By solving these challenges, the main contributions of this paper are reflected in the following aspects: 1) a
mathematical model is proposed to describe the measurement under the FlexRay protocol which is then used to
design the unscented Kalman filter; 2) both the impact of the FlexRay protocol and the stochastic nonlinearities are
reflected in the developed filtering algorithm; and 3) the desired filter is explicitly presented based on the developed
UKF algorithm.

The structure of the remaining sections of this paper is as follows. In Section I, the underlying nonlinear sys-
tem with stochastic nonlinearities is constructed and the scheduling rule of the FlexRay protocol is described. More-
over, the measurement model under the FlexRay protocol is developed. In Section III, the UKF algorithm is designed
and a simulation example is given in Section IV to verify the effectiveness of the developed filtering algorithm.
Finally, the conclusion is presented in Section V.

Notation. The notations used in this paper are standard. A” and A~! are the transpose and inverse of matrix A,
respectively. diag{---} denotes a diagonal matrix. col{---} denotes a column vector. E{x} means the expectation of
random variable x and E{x[y} describes the expectation of x conditional on y. 6(i, j) is the Kronecker delta function.
mod(a, b) is the nonnegative remainder of a/b.

2. Problem formulations
In this paper, we consider the following discrete time-varying nonlinear system:

{ Xs1 = f(xs) +g(xs’ 779) + Wy (1)
vy = h(xg) + b(xg, L) + v

where x; € R" is the state of the system, y, € R” is the measurement output, w,; € R" is the zero-mean process noise
with covariance Q, > 0, and v, € R™ is the zero-mean measurement noise with covariance R, > 0. f(-) : R" - R"
and A(-) : R" — R™ are known nonlinear functions. 77, and {; are zero-mean Gaussian disturbances. It is assumed
that 7, s, Wy, v, are uncorrelated with each other. Moreover, the measurement outputs are transmitted in N (N <m)
data packets from N transmission nodes, i.e. y, = [ yis -+ Y ]T € R™ where y;, € R™ with S, m; = m.

The stochastic nonlinearities g(x,,7,) : R" XR"* — R”" and b(x;, ;) : R" X R"* — R” satisfy g(0,n,) = b(0,{,) =
0 and
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g(xs,175) }

E{ b(x,.4,) xé}zo’

s{[sam 1[5 ] e =0ees

E{g(xsn9)8" (xeom)lx } = Ix{Tix,,
E{b(x,.£)b" (x,.4)xs } = IR T,

where I1!, TI2, T'! and I'? are known matrices.

In practice, the limitation of network bandwidth often makes the network-induced phenomena inevitable
[41, 42]. To address this challenge, different kinds of communication protocols have been designed to optimize data
transmissions so as to save the limited bandwidth. In this paper, the FlexRay protocol is employed to orchestrate the
sensor nodes.

As shown in Figure 1, a communication cycle of the FlexRay protocol usually contains a static segment, a
dynamic segment, a symbol window and a network idle time [43]. The time lengths of the static segment and
dynamic segment are defined as Ry =/ (I < N) and R, = 1, respectively. Since the time lengths of the symbol win-
dow and the network idle time are usually very short, so their time lengths are defined as R; = R, = 0. Therefore, it
can be concluded that the time length of one communication cycle is /; = [+ 1. During the static segment, the RRP is
used to regulate the transmission of y.,; (€ € {1,2,---,1}). During the dynamic segment, the WTODP is used to regu-
late the transmission of y., (e € {{+1,[4+2,---,N}).

______ ‘ — Data packets
DynamicSymbol
Static segment segment window
Network
idle time
R, R, Ry R,

Figure 1. A communication cycle under the FlexRay protocol.

Now, let's discuss how the FlexRay protocol affects the sensor-to-filter transmission. First, we denote

ys Zcol{yy, yih,

3, col{y}, 37,
yh2col{yi -yl
)’f =colyirter e s YNsh
¥y 2col{Fre - Jush
Y2 2C0l{Frs1 00+ 5 I )

From the principle of the FlexRay protocol, we know that y! is scheduled by the RRP and y? is scheduled by the
WTODRP. 3! and ¥ denote the received measurement outputs by the filter after transmission over the network under
the RRP and the WTODP, respectively.

In what follows, we will characterize ! and y2 by resorting to the principle of the RRP and the WTODP.
Denote ¥, and 7, as the sensor node that is allowed to transmit at time instant s under the RRP and the WTODP,
respectively. According to the scheduling rule of the RRP, we know that

_ [ mod(s—g,)+1, seR,

where Ry 2 {(g— Dl +1,(g— D, +1} and Ry =g, (¢=1,2,3---). Moreover, the zero-order holder strategy is
used on the filter to generated the measurement of the sensors that didn't get the transmission access [44]. According
to (2) and the zero-order holder strategy, the actual measurement output at the filter side can be written as

s Ye.s» €= 0m
ye,s - { .)_)E,S—l? €+ ﬁs (3)

foree{l,2,---,1}.
Similarly, based on the scheduling rule of the WTODP, the selected node can be decided by

30f10


https://doi.org/10.53941/ijndi.2025.100010

1JNDI, 2025, 4, 100010. https:/doi.org/10.53941/ijndi.2025.100010

~T ~
. { argmax i, 140 Vs QjsVisr 8 € Ra, @)
g 0 s € Rl

where 3, £ y;,—¥;s-1 and Q;, > 0 is a known matrix. Based on (4) and the zero-order holder strategy, the actual
measurement output at the filter side is

= ye L) €=Tg,
s=Y 5 5
Ve { ye,s—]’ €F Ty ( )

foree{l+1,l+2,---,N}.
Define @y = diag{d(1,9;),0(2,9;),--,6(1,9;)} and ©, =diag{s(/+1,7,),---,06(N,7,)}. Based on (3) and
(5), ¥! and y* are rewritten as

_ Dyy +(I-Dy)5!,, seR

1 _ 7-7.\ys DA ys—l’ 15

Vo= { oy s€R,, ()
=2

=2 _ ) Vso1s seERy,

Vs = { O, 2 +(I-D, )% ,, sER,. )

From the discussion on the FlexRay protocol, it is obvious that there exists a switching between the RRP and
the WTODP in each communication cycle. By introducing

a O, AES) R| ,
5T { 1, SeRz, (8)
the actual measurement y; at the filter side is
35 =(1=p) (L1 ®y,y; + 11 = ®y)3, , + L7 )
+ps (17, 1+i2c1> Yo+ L(UI-®.)y, ) ©)

:((1_ Y)Il +P12(D I )yv
+((1- ps)®i +p,@0)F,_

where

For convenience of later analysis, we denote Xye11s and Xs+ils+1 as the one-step prediction and the estimate of
the state at time instant s+ 1 respectively Moreover, we set the one-step prediction error and the filtering error be
xm‘g 2 Xgp1 — Xorns and Kgppee1 = Xgp1 — Xa1p541, TESpectively. Accordmgly, the one-step prediction error covariance
is Pyrijy 2 E{F,01,%7, 1.} and the filtering error covariance is Pssijsr1 2 E{Fsa1jsr1 %0, 15,1 ). In this paper, we aim to
design an unscented Kalman filtering algorithm for nonlinear systems under the FlexRay protocol which is able to
effectively deal with the effect of stochastic nonlinearities.

3. Main results
The design of an UKF algorithm under the FlexRay protocol is investigated in this section.

3.1. Unscented transform

The unscented transform for discrete-time nonlinear systems can be summarised as follows. Choose a sigma
point set x5 = {Xo.s>" " »X2ns} Which contains 2n+ 1 sigma points. The sigma points with known mean Xy, and
covariance PS‘S are selected by

XO,S 225\5,
Xj,s :)%s\s'i'Lj,s’ j: 1’2"" NG (10)
Xis =Xgjs —Lljs, j=n+1,n+2,--- 2n

where ¢, = (\/(n+7y)Py,); denotes the jth column of 1/( +¥)Py, and y = n(e® — 1) is a proportion parameter

with 0<e<1.
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To obtain Xs+1is and Ps+1is, two weighted coefficients 67" and ¢; are chosen as

w_ Y
O n+y’
0= +(1-a*+p),
n+y
1
0" = o (= 1.2, .2n

PN Dy T

where 8 > 0 is chosen based on the prior knowledge of the system state.
Remark 1 It can be seen that the selection of sigma points affects the computational complexity of the unscented
Kalman filtering algorithm. The number of sigma points is usually set to be 2n+1 where n is the dimension of the
system state. The computational complexity rises significantly while increasing n. y and « are important parameters
used to adjust the distribution of sigma points and weighting coefficients. Their selection not only affects the accu-
racy and stability of the algorithm but also has a certain impact on the computational complexity. Smaller 'y and «
will reduce the distance between the sigma points and the mean value, thus reducing the scale of the matrix opera-
tion and leading to a decrease in computational complexity.

Propagating the 2n+ 1 sigma points through the nonlinear function f(-) to obtain the following transformed
sigma points X j.s+1s

)A(j,HlIs:f(Xj,s) j=0,---,2n. (11)

Then, the one-step prediction 54115 of state can be obtained by
2n
Rty = DO el (12)
=0

and the one-step prediction error covariance Fs+1s is calculated by

2n

A A A A~ a T
Ps+l|s = Z H;O(j,sﬂls - xs+1\s)()(j,s+l\s - xs+l|s)
= (13)

+E{g(x,,m0)8" (x5,1m0)} + O
where B{g(x,,175)g" (x5,775)} represents the covariance of the stochastic nonlinearities.
From (13), we know that the covariance of the sigma points Xis+lis is different with the covariance Ps+1is due

to the stochastic nonlinearities and the noise. Therefore, to accurately predict the measurement output, we select
another set of sigma points {¢o s+1, 91 5415 * s Pansr1} With

$0,5+1 :-)?Hlls’
Qs =Xgqps Wy, = 1,2, .1 (14)

¢j,s+1 =-xx+l|x_t//j,.v+l|x7 J= n+ 1’ ,27’1

where ¥ 541, = (\/ (1 +7)Py,1,); denotes the jth column of /(1 + VP,
Similarly, propagating the 2n+1 sigma points through the nonlinear function A(-) to obtain the following
transformed sigma points @;,+1(s

gbj,s+l\s = h((tp_i.s+l)9 .] = 0" o ,2}’1. (15)

Then, the prediction Js+11s of the measurement output is obtained by
2n
Poetls = D O1Dj e (16)
=0

After obtaining the state prediction, the error covariance and the measurement output, in the next subsection, we
will present the UKF algorithm in detail.
3.2. UKF Algorithm under the FlexRay protocol

In the following, we will obtain the UKF algorithm under the FlexRay protocol. First, under the FlexRay proto-
col, (15) and (16) are reformulated as
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¢£s+1|s :(1 _szrl)I_l(DﬁHlIﬂl‘@j’H“S
+ps+1[_2q)7.\+11_2T¢j,s+l\s

2 (17)
+(1 _ps+l)®s+1‘pj,s\s—1
+ps+l®§+l¢j,slsfl9
)A){+1|s :(1 _Ps+1)[_1q)19‘+, ilrys+l|s
+ ot b O 1] Doy (18)

+ (1 - Ps+1)®;+1)7s\s—1
+Ps+1®?+|5’sls—1

where @im\s and 5}{+1|5 denote the transformed sigma points and predicted measurement under the FlexRay protocol.
Based on (17) and (18), the covariances 13},},,”“5 and IAJXy,H“S can be calculated by

2n
P)’)’,S*”S = Z 95(¢§,s+1|s _5)£+1|s)(¢§,s+lls _5)£+IIS)T
j=o (19)

+ Ns+l(1E’{b()Cs+l’é’s-%—l)bT(xs-H,é’s-ﬁ—l)} +Rs+1)Nz—+1’

2n
pxy,s+1\s = Z 95(/?_/’,5+1|s - )?s-%—l\s)((;bisﬂ\s _5{+”S)T (20)
Jj=0

where 8.1 = (1= po )@ IT + pyui LO: I and B {b(xy41,4541)b" (X541,4541) } represents the covariance of the
stochastic nonlinearities. Then, we have the following unscented Kalman filter under the FlexRay protocol:

)%s+1\s+1 :J?s+1|s+Ks+1(Ys+1 _5\7{4.1\5)’ (21)
13x+l\.v+l = Pﬁ-l\s _Kr+lpyy,s+l\sK:+19 (22)
KHI = ny,ﬁIls(Pyy,erl\s)_l- (23)

The UKF algorithm under the FlexRay protocol is summarized in Algorithm 1 based on the above analysis.

Algorithm 1 The UKF algorithm under the FlexRay protocol

Step 1. Initialize the parameters Xoj0 = Xop, PO‘O - f’0|0' Select appropriate weighted coefficients 6, 65, 0;” and 65 (j=1,2,...,2n). Let

j
the time length of the communication cycle be /; =1+ 1. Set s =0;

Step 2. At time instant s+ 1, calculate 2n+ 1 sigma points y ;s with known %sis and Psls, then calculate one-step prediction state Esrtls

and one-step prediction error covariance Py+1|s;
Step 3. Choose the node with transmission permission at the current time according to scheduling rules of the FlexRay protocol and

calculate psy1;

. . . of . p D
Step 4. Calculate 211+ 1 sigma points ¢; s+1. Then, compute the prediction measurement Yy, 1), the covariance Pyy.s+1ls and Pry.s+1ls.
Obtain the filter gain K1, then update 135-+1|s+1 and Xsp1)541;
Step 5. If s+ 1 < Syax, then let s = s+ 1 and go to Step 2, else go to Step 6;
Step 6. Stop.

4. An illustrative example

In this section, an example is given to demonstrate the efficiency and applicability of the proposed UKF algo-
rithm under the FlexRay protocol.
Consider a time-varying nonlinear system (1) with stochastic nonlinearities and the following parameters:

F) = [0.58x;,,+0.3cos(s)x; s +0.39x
W1 0.28x1, +0.2sin(s)x; +0.52x2

0.36x) 5 + x2,5x2
X1,5X2,5 T 0.16X2,s
0.8cos(s)x s+ 0.36x;
0.5x1 5+ X1, 5X0.5
0.7cos(s)x; s +0.8x,
0.3x; ;+0.8sin(s)x,

h(x,) =
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where x;; (i = 1,2) is the i-th element of x;. Furthermore, we set the covariance of the process noise as O = 0.057
and the covariance of measurement noise as R, = 0.017, respectively. Supposed that N = 6, then y; is denoted as
Y5 £ COL{ V1.6, Y2.60 V3.0 Vs V5.5 Veus | -

In the simulation, we let the first four nodes be scheduled by the RRP and the last two nodes be scheduled by
the WTODP. Therefore, the time length of the communication cycle of the FlexRay protocolis /; =1+ 1 =5.

The stochastic nonlinearities g(x,,7;) and b(x,,{) are given as

0.3
g(xsarls)z |: 02 :| [ O-2xl,snl,s+o~3x2,sn2,s ]

b(xs’gs) = Ul : [ 0-2xl,s§l,s +0-3-x2,s£2,s ]

where U; = [ 03 02 01 01 02 03 ]T. n;s and ¢ (i = 1,2) are the Gaussian white noises with zero-
mean and unity covariance. From the stochastic nonlinearities, we know that

0.09 0.06 004 0
E{g(xs,m)gT(xs,m)lxs}={0_06 0_04}){{ 0 0_09})65,

04
Blbe, )b (e, 2obe) =Ua! | O0F 0 |,

where

0.09 0.06 0.03 0.03 0.06 0.09
0.06 0.04 0.02 0.02 0.04 0.06
0.03 0.02 0.01 0.01 0.02 0.03
0.03 0.02 0.01 0.01 0.02 0.03
0.06 0.04 0.02 0.02 0.04 0.06
0.09 0.06 0.03 0.03 0.06 0.09

U

In the simulation, the initial values are set as Koo = ¥oo =[5 =21" and Poo = Poo = diag{1,1}. For the
unscented transform, the weighted coefficients are selected as @ =1, =2, y = 0. With the given parameters, we
can calculate the filter gain and obtain the simulation results as shown in Figures 2-5.

4.0

35 —— Actual state x,
- - - Estimated state X,

3.0
2.5
2.0
1.5
1.0
0.5
U
of
05[]
-1.0

0 10 20 30 40 50 60 70 80 90 100
Time step/s

Figure 2. State x,, and its estimate *1.s.
1.0

051

0

-0.5

-1.0

—— Actual state x,
-1.5 - - - Estimated state %,

—2.0

0 10 20 30 40 50 60 70 80 90 100
Time step/s
Figure 3. State x,, and its estimate £2.s.

70f 10


https://doi.org/10.53941/ijndi.2025.100010

1JNDI, 2025, 4, 100010. https:/doi.org/10.53941/ijndi.2025.100010

——Upper bound
0 —logMSE

0 10 20 30 40 50 60 70 80 90 100
Time step/s

Figure 4. {logMSE} and its upper bound.

o The sensor node accessing the network at time step(s)
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4l00000000000000000O00O0O0
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—_
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0 10 20 30 40 50 60 70 80 90 100
Time step/s

Figure 5. The sensor node accessing the network.

In the simulation results, Figure 2 and Figure 3 describe the trajectories of the actual states x;, and the esti-
N . . 1 N R
mates X5, respectively. The mean square error (MSE) is calculated by MSE = 7 Zis:l(xm = Rigs)* + (s — Xo.45)?
with S = 100. As can be observed from Figure 4, the log of MSE is consistently maintained below the log of the
upper bound. From Figures 2-4, it is evident that the proposed UKF algorithm shows satisfactory performance.

The effect of the FlexRay protocol on the measurement outputs is shown in Figure 5 with the sensor nodes
being granted the transmission access at time instants. From Figure 5, we can see that the data transmission is effec-
tively reduced. In conclusion, the algorithm proposed in this paper shows significant effectiveness in dealing state
estimation problems with stochastic nonlinearities under the FlexRay protocol.

5. Conclusion

In this paper, an UKF algorithm has been designed for nonlinear systems with stochastic nonlinearities under
the FlexRay protocol. First, a novel measurement model that characterizes the scheduling effect of the FlexRay pro-
tocol has been established. Then, a novel unscented transformation has been conducted by taking into account the
FlexRay protocol and the stochastic nonlinearities. With the novel unscented transformation, the unscented Kalman
filtering algorithm has been designed where the influence from the FlexRay protocol and the stochastic nonlinearities
has been quantified. Finally, a simulation experiment has been provided whose results show that the proposed algo-
rithm is effective in estimating the state of nonlinear systems under the FlexRay protocol. In the future, we could fur-
ther explore applications of the proposed algorithm in intelligent manufacture [45] and sensor networks [46]. For
example, in intelligent manufacture, the algorithm can be used for predictive maintenance and cost control. In sensor
networks, the algorithm can be used for distributed state estimation. These potential applications provide new direc-
tions for the development of the unscented Kalman filtering algorithm.
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Hanbo Wang: Methodology, Software, Writing-review & editing; Yongxin Li: Software, Writing-original draft;
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