International Journal of Network Dynamics and Intelligence =cilight

Article

Federated Bimodal Graph Neural Networks for Text-
Image Retrieval

Xueming Yan 2, Chuyue Wang ', and Yaochu Jin **

!'School of Information Science and Technology, Guangdong University of Foreign Studies, Guangzhou, 510006,
China

% Guangdong Engineering Research Center of Data Security Governance and Privacy Computing, Guangzhou, 510006,
China

? School of Engineering, Westlake University, Hangzhou, 310030, China

* Correspondence: jinyaochu@westlake.edu.cn

Received: 24 December 2024
Accepted: 20 March 2025
Published: 27 June 2025

Abstract: Text-image retrieval is a key challenge in computer vision and natural language processing,
aiming to retrieve the most semantically relevant image or text given a query in the opposite modality.
However, growing privacy and security concerns make traditional centralized learning approaches
increasingly unsuitable for handling sensitive multimodal data. In this paper, we propose FedBi-GNNs, a
federated learning framework for bimodal graph neural networks, which enables collaborative training
across decentralized clients without sharing private data. Each client independently constructs heteroge-
neous graphs from local text and image data and learns correspondences via bimodal graph matching.
These local representations are then aggregated at a central server using a heterogencous federated aggre-
gation scheme. Empirical results on the MSCOCO benchmark demonstrate that FedBi-GNNs signifi-
cantly outperform existing state-of-the-art methods, offering improved retrieval accuracy, enhanced pri-
vacy preservation, and greater robustness to data heterogeneity across clients.
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1. Introduction

In the ever-evolving landscape of computer vision and natural language processing, text-image retrieval remains
a pivotal task with wide-ranging applications. The goal is to retrieve the most relevant textual or visual content from a
dataset given a query in the form of text or an image [1, 2]. One of the primary challenges lies in bridging the seman-
tic gap between visual and textual modalities to enable accurate similarity comparison between text-image pairs. To
tackle this issue, earlier approaches [3—5] typically projected the global feature vectors of images and texts into a
shared latent space, where semantically similar pairs are represented by closer embeddings.

However, when the input data involves complex scenes (e.g., with multiple entities), these methods often yield
suboptimal retrieval performance. As a result, growing research attention has been directed toward capturing local
correspondences within bimodal data by extracting fine-grained features [6]. For example, SCAN [7] employs a
stacked cross-attention mechanism that assigns varying weights to different image regions for representing individual
text words, and vice versa. Building upon this, PFAN [8] introduces positional embeddings to guide the learning of
semantic alignments. In parallel, several methods explore intra-modality and inter-modality fusion techniques to
bridge the feature disparity between visual and textual modalities. For instance, MMCA [9] designs a network that
achieves both intra- and inter-modality fusion through attention mechanisms. SHAN [10] further proposes a progres-
sive hierarchical alignment fusion network to estimate the similarity between text-image pairs more effectively.

Recent studies have also made significant progress in incorporating graph neural networks (GNNs) into text-
image retrieval. GNNs have emerged as powerful tools for modeling both global and local structures in bimodal data
represented as graphs [11]. For example, SGM [12] and LGSGM [13] focus on extracting global and local features
from pre-generated scene graphs of images and texts. Similarly, GSMN [14] and SGRAF [15] construct graphs using
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the stacked cross-attention mechanism introduced by SCAN [7]. These approaches aim to generate both local and
global similarity vectors and infer final similarity scores through graph-based reasoning. By leveraging graph struc-
tures, they enhance the model’s ability to capture fine-grained and holistic information, leading to substantial
improvements in retrieval performance. However, most existing methods rely on centralized datasets, where all image
and text data are stored on a single central server, as illustrated in Figure la. This centralized paradigm introduces
several limitations, including data privacy risks, security concerns, and practical difficulties in accessing and integrat-
ing data distributed across multiple locations [16].
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Figure 1. Comparisons between centralized GNNs and federated learning of bimodal GNNs model for text-image retrieval.

To address these issues, we introduce federated learning into the training of bimodal graph neural networks
(FedBi-GNNs5s) for text-image retrieval, as illustrated in Figure 1b. In our FedBi-GNNs, bimodal GNNs are employed
to process text-image data, where each image and each text sample is represented as an individual graph. Moreover,
federated models for text-image retrieval must accommodate the increased complexity of bimodal data, which poses
greater challenges than unimodal models in terms of both model capacity and computational overhead [11, 17-20].
Our FedBi-GNNs not only preserves data privacy but also improves retrieval accuracy and efficiency by leveraging
the data diversity available across decentralized clients. To the best of our knowledge, this is the first work to inte-
grate federated learning with bimodal GNNs for text-image retrieval, offering an efficient and privacy-preserving
solution for training retrieval models under distributed data storage.

The main contributions of this work are as follows:

e We propose the FedBi-GNNS, a federated bimodal graph neural network framework for text-image retrieval,
which enables federated learning by aggregating model parameters on a central server without accessing clients’
bimodal data.

e We design a bimodal graph matching mechanism within cross-modal GNNs, allowing the model to learn
meaningful correspondences between textual and visual representations through heterogeneous graph alignment.

e Extensive experiments demonstrate that FedBi-GNNSs significantly improves training efficiency and retrieval
performance while preserving data privacy, outperforming previous state-of-the-art text-image retrieval methods.

2. Related Work

Text-image retrieval aims to retrieve the most relevant text description given an image or retrieve the most rele-
vant image given a text. A grand challenge in this field is how to extract semantic features from both images and texts
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effectively. After obtaining image and text features, feature alignment is also a critical step. Existing methods mainly
fall into two categories: global feature alignment and local feature alignment. Global feature alignment methods typi-
cally employ a two-branch structure to learn overall feature representations of images and texts separately. Then, they
map these representations to a common space to compute similarity. The issue with such methods is that they heav-
ily rely on global information while overlooking fine-grained correspondences between local image regions and tex-
tual keywords. For instance, VSE++ [21] employs global feature alignment by learning holistic representations of
images and texts through two separate networks, followed by similarity computation. However, such global match-
ing cannot effectively model the fine-grained relationships between specific regions in images and keywords in texts,
resulting in less accurate matching results.

To enable finer-grained matching, recent studies have started to consider local feature alignment. A common
approach is to introduce attention mechanisms [7] to learn attention weights between different image regions and
words in the text, achieving local matching. However, simple attention mechanisms may not adequately model the
optimal matching between regions and words. Therefore, some studies propose more sophisticated mechanisms to
identify the best local alignment. For example, VSRN [22] introduces graph structures to model relationships between
objects and words. It employs graph convolutional networks to achieve relation-aware feature aggregation, resulting
in better local feature alignment. SHAN [10] adopts a stage-wise matching approach, progressively matching local-to-
local, global-to-local, and global-to-global to gradually acquire semantic associations between images and texts,
enabling more accurate fine-grained matching. GSMN [14] considers matching not only between individual regions
and words but also multi-granularity local alignment between textual segments at different levels (words, phrases,
etc.) and image regions. Based on the idea of GSMN, we adopt the hierarchical matching idea to perform bidirec-
tional retrieval between images and texts represented as graphs.

Furthermore, there have been some recent efforts to employ federated learning in text-image retrieval. For
example, FedCRM [23] introduces federated learning for text-image retrieval by performing local feature extraction
and model updates on local devices, thereby achieving cross-modal retrieval capabilities while safeguarding user pri-
vacy. However, when compared to mainstream text-image retrieval methods, the performance of FedCMR is not out-
standing. This can be attributed to the fact that the local model DSCMR used by FedCRM is based on earlier meth-
ods that map global feature vectors of images and texts into a common latent space for comparing semantic similar-
ity. Such methods struggle to capture the local similarities between the two modalities effectively. In addition to Fed-
CRM, other federated learning methods, such as FedAVG (Federated Averaging) [24] and FedProx (Federated Prox-
imal) [25], have also been applied to text-image retrieval. These methods enable cross-device model training and
optimization through local model updates and parameter aggregation on local devices. The integration of federated
learning allows text-image retrieval tasks to leverage decentralized data for model training while maintaining privacy,
thereby enhancing retrieval accuracy and performance.

3. The Proposed Method

In this section, we first present the overall framework of our FedBi-GNN for text-image retrieval. The FedBi-
GNN trains bimodal GNNs by leveraging highly decentralized text-image data across clients to learn semantic corre-
spondences between textual and visual modalities. We then elaborate on the construction of heterogeneous graph rep-
resentations and the bimodal graph matching process performed locally within each client. Finally, we introduce the
federated heterogeneous aggregation strategy, which is designed to evaluate whether the global model can effectively
integrate client updates to enhance local bimodal GNNs and support continued federated training.

3.1. Our Framework

Figure 2 demonstrates the framework of FedBi-GNN, which consists of a central server and a large number of
client users. Each client contains two graphs, including a textual graph composed of sentence words and a visual
graph composed of image regions. In particular, each client learns the semantic correspondence between texts and
images and the GNN model from its local graphs, and uploads the gradient information to the central server. The
central server is responsible for aggregating the gradient information received from multiple clients and sending the
aggregated gradient information back to them to coordinate their work in the model learning process.

The pseudocode of the proposed FedBi-GNN is shown in Algorithm 1, including four main components: het-
erogeneous graphs representation (line 4), bimodal graph Matching (lines 5-6), federated heterogeneous aggregation
(lines 10-11), and update for local bimodal GNNs (lines 12-14). Assuming there are N clients, denoted as
C=C,,Cy,--,Cy, and where C; represents the i-th client. Each client has a data set D = Dy, D,,---,Dy, where
Df ={Text,I mage}f-‘ represents the k-th instance in client C;, consisting of textual and image modalities. Initially,
the text is encoded into word-level feature vectors #; through GloveRNNEncoder, and the image is represented as
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feature vectors v; after being partitioned into regions by the object detection algorithm. Then, the two vectors are dot
multiplied to obtain the word-region matching matrix A, which is then matrix-multiplied with the two feature vectors
respectively to obtain the weighted combination sum of them. The “(@)” in Figure 2 represents the operation of cal-
culating the similarity between computation blocks (corresponding to Formulas 12 and 13), and the “(@)” represents
the operation of vector dimensionality expansion. After operations “(@) and “(2)”, we can obtain the graph struc-
ture representations of text and image, namely text graph and image graph. Next, we apply bimodal graph neural net-
works to the textual graph and the visual graph to model the semantic correspondence between nodes in the graphs,
where we use two GCNs to predict T2I (text to image) and 12T (image to text) similarities on the textual graph and
visual graph respectively, and take the sum of the outputs of the two GCNs as the overall similarity score. Finally,
according to the obtained similarity scores, we compute the overall loss function of the local bimodal GNNs. We use
the loss function to compute gradients for the local model, which will be further uploaded to the server for aggrega-
tion. In the proposed FedBi-GNN, the server aims to coordinate all clients and compute global gradients to update
model parameters on these clients. In each round, the server wakes up a certain number of user clients to compute
gradients locally and send them to the server. After receiving these users' gradients, the aggregator on the server
aggregates these local gradients into a unified gradient. Then the server sends the aggregated gradient back to each
client for local parameter update. This process will be executed iteratively until the model converges.
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Figure 2. The framework of the proposed FedBi-GNNs.

Algorithm 1: The pseudocode of the proposed FedBi-GNNs

Require The set of clients, C = {C',C2,---,CN}; The set of dataset, D = {D',D?,---,D"}; The server model, $ M_S $; The number of
communication round, $ T $; The number of selected clients, $ K $;

For eachround r=1,---,T

1: C;,D; « random set of K clients

For each client ¢ € C; in parallel

: Constructing image graph and text graph by Equation (1)-Equation (7)

: Performing graphs matching in both 12T and T2I by Equation (8)-Equation (15)
: Validating the model and obtaining the r; score

: Obtaining the trained local model parameters 6;

: Send r; and 6; to Mg

: end for

: Obtains weights w; by Equation (17)

0 AN L AW

9: Obtains aggregated global parameters 6gopa by Equation (16)
10: Update Ogiopar to Mg
11: Obtains the updated local model parameters 6; by Equation (18)

12: Update 6‘; to M
13: end for

3.2. Heterogeneous Graphs Representation

For heterogeneous image and text data, we adopt similar approaches to construct graphical representations.
Images are partitioned into regions as nodes in image graphs, while texts are partitioned into words as nodes in text
graphs. Next, we will present how images and texts are represented as image and text graphs, respectively.
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3.2.1. Image Graph

We represent each image as a fully connected, undirected graph when constructing the visual graph. The graph
consists of 36 nodes, each corresponding to a salient region detected by Faster R-CNN [26], with every node con-
nected to all others. The extracted image features are then passed through a fully connected layer to obtain $ D $-
dimensional image feature vectors, as follows:

Vi = WO,"‘rb (1)

Here, v; represents the feature vector of the i-th region, o; denotes the region information and feature vector of the i-
th salient entity, W is the weight matrix of the fully connected layer, and b is the bias vector. By multiplying the
region information and feature vector of each salient entity with the weight matrix and adding the bias vector, we
obtain the feature vector for each salient entity, which serves as the feature representation of the image. Based on pre-
vious experience [7], we set the number of extracted salient regions k for each image to 36, and the dimension $ D $
of the image feature vectors to 1024. Besides, we employ the Faster R-CNN object detection model to detect salient
entities in image regions. Ultimately, Faster R-CNN identifies k salient entities, denoted as O = 0,0, ,0; €
R¥2048 \yithin each image and extracts their corresponding regions.

Additionally, we employ polar coordinates to model the spatial relationships within each image. Specifically,
the polar coordinates are computed based on the centers of the bounding boxes for each pair of regions, as follows:

p=(—x)*+0 -y
6 = arctan2(y, — y1, X, — X;) @

Here, (x;,y;) and (x;,y;) represent the center coordinates of a region pair. p represents the distance between the
region pair, while 6 denotes the direction between the region pair, with positive values indicating the counterclock-
wise direction from the positive x-axis as the reference. By calculating the polar coordinates of region pairs, we trans-
form spatial relationships into a set of values. This transformation helps capture semantic and spatial relationships
between different regions, as these relationships and attributes are often associated with the position and orientation of
objects. Positional information aids in estimating the strength of relationships, with closer distances generally corre-
sponding to stronger relationships. Directional information assists in determining the type of relationships, such as
whether the directional relationship between two regions is “close” or “far”. After calculating the polar coordinates
(p,0) based on the centers of bounding boxes for region pairs, we use these values to set the edge weight matrix W,.
Specifically, for each region pair (i, j), we compute their polar coordinates (o;;,6;;). These polar coordinates are then
used as the elements of the edge weight matrix W.,, ie., W, = (0;;,6;;). In this way, polar coordinates effectively
represent the spatial relationships between each region pair and serve as edge weights for constructing the fully con-
nected graph representing the image.

3.2.2. Text Graph

In this section, we adopt an approach similar to that used for constructing image graphs, where each word is
treated as a node to form an undirected, fully connected textual graph G' = (V', E"), analogous to the image graph
representation.

To represent a given text U consisting of k words, we first extract word-level textual features involving con-
verting each word into a 1024-dimensional vector using one-hot encoding based on the entire vocabulary of the train-
ing dataset, and then we transform the one-hot encoding into fixed and adjustable vectors using the pre-trained word
embedding model GloVe [27] and learnable embedding layers. These two vectors are concatenated to obtain the final
word representations. Subsequently, we input these vectors into a bidirectional gated recurrent unit (Bi-GRU) to
enhance the word-level representations by capturing contextual information in both forward and backward directions
of the sentence:

h, = GRU <wj,hf_l>
h, = GRU (w,«,h;) 3)

Here, l;; and l; represent the forward and backward GRU hidden states, respectively, with their dimension set to D =
1024. The textual feature for the j-th word is obtained by averaging these forward and backward GRU hidden states:
b +h,

wj= % )
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Then, we utilize these word vectors to construct a textual undirected fully connected graph. When constructing
an undirected fully connected graph for the text, each word is considered a node, and an edge exists between any two
nodes i and j, denoted as:

Eip=1 ®)

This approach captures all semantic relationships within the text. Clearly, we can represent this connectivity between
word nodes using an adjacency matrix A, which is an identity matrix. Subsequently, we compute the vector similar-
ity s;; between two words:

_exp (w]w))
> jm1€Xp (] w))

where s;; represents the similarity between node i and node j, which indicates the relationship between words. A is a
scaling factor. We also use a weight matrix W, to denote edge weights in the graph. Specifically, we obtain W by
taking the element-wise product of the similarity matrix S and the adjacency matrix A, followed by L2 normaliza-
tion:

(6)

Sij

W, =|S 04|, 7

Here, S is the similarity matrix consisting of the similarities s between each pair of nodes, and each element in W,
indicates the degree of semantic dependence for the corresponding edge.

3.3. Bimodal graph Matching

We construct heterogeneous image and text graphs to model spatial, semantic and contextual relations within
and across modalities. Next, we match the bimodal graphs in two steps: node-level matching and structure-level
matching. Graph matching aligns image and text representations by combining node semantic similarities and struc-
tural dependencies, laying the foundation for subsequent text-image retrieval.

3.3.1. Node-Level Matching

Node-level matching involves the process of establishing correspondences between individual nodes in the
visual graph and the textual graph to learn their relationships. For instance, let’s consider node-level matching on the
textual graph.

In the initial step, we employ a bidirectional cross-attention mechanism to create one-to-one correspondences
between nodes in the textual graph, which are formed by textual words, and nodes in the visual graph, formed by
image regions. This process is illustrated in the figure above. Mathematically, we begin by calculating the word-
region matching matrix based on the word vectors representing textual nodes and the region vectors representing
image nodes. This matrix is denoted as:

A=t ®)

where A € R®" is the word-region matching matrix, representing the similarity between image and text nodes. A;;
represents the semantic similarity between the $ i $-th region and the j-th word. The similarity values in A measure
the correspondence between image nodes and each textual node. We then aggregate all visual nodes into a weighted
combination of their feature vectors, where the weights are calculated based on similarities. This process can be
expressed as:

C,—i=SoftMax;(AA)v, ©

where A is a scaling factor that focuses on the matching nodes.

Next, we divide the i-th feature of the textual node and its corresponding aggregated image node into j blocks,
represented as [f1, fio, -+, #;;] and [ci1, ¢, -+, ¢;5], and calculate the inter-block similarity between each pair of
blocks. For example, the similarity calculation for the r-th block is:

Xir = cos(ty , ciy) (10)

where x;. is a scalar value, and cos(-) represents cosine similarity calculation. By concatenating all block similarities,
we obtain the matching vector for the i-th textual node:

xi:XilHXizH"'Hxij (11)
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“””

where represents concatenation. In this way, each textual node is associated with its matching visual nodes,
which will be propagated to its neighbors in the structural-level matching to guide the learning of phrase correspon-
dences. Similarly, given an image graph, node-level matching will be performed on each node. The corresponding

textual nodes will be associated differently:
Ci— =SoftMax; (AA") 1; (12)

where A’ represents the representation of v,z . Then, each visual node and its associated textual nodes will be pro-
cessed through multiple block modules to generate matching vectors x.

3.3.2. Structure-Level Matching

Structure-level matching operates on the node-level matching vectors represented as x and propagates these
vectors along with the graph edges to neighboring nodes. This approach is advantageous for learning local corre-
spondences, as neighboring nodes can offer valuable contextual relationships. To be more precise, structure-level
matching updates the matching vector for each node by incorporating matching vectors from neighboring nodes using
Graph Convolutional Networks (GCNs). The GCN layer utilizes K kernels, which are responsible for learning the
aggregation of neighboring matching vectors. This process is expressed as follows:

2=10 (D jen WeWex; +b) (13)

where N; represents the neighborhood of the i-th node and W, represents the edge weights. W, and b are parame-
ters that are learned for the k-th kernel. K kernels are applied, and the output of the spatial convolution is defined as
the concatenation of the outputs from these kernels. This results in convolutional vectors that capture connected node
correspondences forming local phrases.

By propagating neighboring node correspondences, phrase correspondences can be inferred. These phrase cor-
respondences are then used to calculate the overall matching score for the text-image pair. The convolved vectors are
fed into a multilayer perceptron (MLP) to jointly consider all the learned phrase correspondences and infer the global
matching score. This global matching score indicates the degree of matching between one structural graph and
another. The process is formulated as follows:

1 R
Sim = sz: Wi (o (Wikc +b})) + b,
1 i i 2 i i
Sioy = Ezj: Wi (o (Wig;+b})) +b' (14)

where W, and b; represent the parameters of the MLP, which consists of two fully connected layers. o () represents
the hyperbolic tangent (tanh) activation function. Performing structure-level matching on both the visual graph and
textual graph allows the model to learn complementary phrase correspondences between the two modalities. The text-
image pair’s overall matching score, denoted as sim, is computed as the sum of matching scores from both direc-
tions in the following.

SIM = S, + Sioy (15)

3.4. Federated Heterogeneous Aggregation

In the proposed FedBi-GNNs, multiple clients collaborate with a trusted central server to collectively train a
machine learning model. During each communication round, selected clients individually compute updates to the
model using their local datasets and then upload these updated model parameters to the server for aggregation. When
aggregating model parameters in federated learning, the server frequently assigns weights to each client’s contribu-
tion based on their performance in the current round. These weights are then employed for weighted aggregation.
During each round of federated training, the weights for aggregation are usually determined by considering factors
such as the amount of data that each client contributed and the quality of their training results. This weighting mecha-
nism ensures that clients with larger datasets or superior performance significantly impact the model’s updates during
the aggregation process.

Specifically, assume K clients are participating in training, with model parameters 6, 6,, ---, 8¢ for each
client, and corresponding data size D,, D5, ---, Dk and training result ry, r», ---, r¢. The global model parameters
can be computed using weighted averaging:
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K
9glaba1 = Z w;b; (16)
i=1

where w; denotes the weight for the i-th client, which can be calculated based on the client’s data size and training
result. A common approach is to define the weight as:

_ D iti
YK D

where D; is the data size and 7; is the training result of the i-th client. Using weighted aggregation, weights can be
computed based on each client’s data size and training results to reflect their contributions to the global model better.
This can better balance each client’s contributions in the parameter aggregation process, so that clients with better
performance have more influence on the model update, thereby improving the effectiveness of federated learning.

3.5. Update for Local Bimodal GNNs

Once the global model parameters 6,5, are aggregated, they need to be sent back to each client to update their
local models. This process can be expressed as:

w;

(17)

0! = Oqiopar + AG; (18)

where 6; represents the updated value of the local model parameters for the i-th client, 6,0, represents the global
model parameters, and A6; represents the difference between the i-th client’s local model parameters and the global
model parameters.

Specifically, A6; can be obtained by calculating the difference between each client's local model parameters and
the global model parameters, typically using the following formula:

AG; = a’(eglobal - 95) (19)

where a represents the learning rate for parameter updates, controlling the speed of updating the local model param-
eters.

Using these formulas, the global model parameters 6., are updated by adding the differences Aé;, resulting
in the updated local model parameters 6:. Subsequently, 6; is sent back to the corresponding client to update its local
model parameters, completing one round of federated learning iteration.

4. Experiments

4.1. Datasets and Baselines

We evaluate our model using the widely used MSCOCO dataset [28], which consists of multiple text-image
pairs. Each image is associated with five texts describing it. MSCOCO comprises a total of 123,287 images and
123,287 x 5 = 616,435 sentences. Following the conventions established in previous research [7, 10, 12—14], we split
the dataset into 113,287 training images, 5,000 validation images, and 5,000 test images. In real-world scenarios, data
across clients are often non-independent and identically distributed (non-IID) [29, 30]. To simulate this non-IID prop-
erty, there are three different ways to create non-IID data across clients [31]: feature distribution skew, label distribu-
tion skew, and quantity skew. In our experiments, we use quantity skew to simulate the non-IID property of data
across different clients in federated learning. For each client, we allocate a random subset of the full training set as the
local training set while retaining the full validation and test sets for local validation and testing purposes. As shown in
Table 1, we allocate the entire MSCOCO training set to client 1, randomly sample 80% of the full training set as
client 2's training set, and randomly sample 60% of the full training set as client 3's training set.

Table 1 Data allocation of MSCOCO training dataset among clients

Client 1 Client 2 Client 3
Percentage 100% 80% 60%
Number of Texts 566,435 453,150 39,860
Number of Images 113,287 90,630 7,972

In the experiments, we compare the proposed FedBi-GNN with a series of existing methods to assess its per-
formance in text-image retrieval tasks, mainly including:

o (Classic cross-attention methods: some traditional methods that use cross-attention mechanisms to align and
retrieve information between text and image modalities, such as SCAN [7], PFAN [8], MMCA [9], and SHAN [10].
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e Centrally trained graph matching methods: These methods, such as SGM [12] and GSMN [14], focus on
graph-based representations for matching text and images. They often involve training a centralized model to per-
form the matching task.

e SGRAF [15]: SGRAF is a current state-of-the-art method (SOTA) with the highest retrieval performance in
text-image retrieval.

4.2. Experiment Setting

We evaluate the performance of each local model and the global model using Recall@K (K = 1, 5, 10) as the
evaluation metric. Recall@K measures the proportion of relevant instances that are retrieved among the top-K results.
Specifically, we denote the scores of retrieved instances in the top 1, 5, and 10 results as R@1, R@5, and R@10,
respectively. To be consistent with previous studies, we assess our method’s effectiveness in both text retrieval (iden-
tifying the most relevant text given an image) and image retrieval (finding the matching image for a specific text
description) tasks. A higher recall value indicates better performance. Additionally, to show the overall matching per-
formance, we employ the “rSum” metric, which sums up the recall values across all evaluation points, to compare
our model with other state-of-the-art methods. Finally, we evaluate the model's performance by taking the average
over 5-fold cross-validation on 1000 test images.

We set the number of federated training rounds to 30. In each training round, there are 3 local clients participat-
ing, with each client performing 1 epoch of training. We choose to validate the local model on the validation set after
each epoch of training on the clients and validate the federated model after each round of model aggregation. Finally,
we select the model with the highest rSum on the validation set for testing. We use MSCOCO datasets and conduct
30 rounds of training on 1 NVIDIA GeForce RTX 3070Ti GPU. When extracting feature representations for the
image modality, we use Faster-RCNN to extract feature vectors of image regions, obtaining 36 salient regions. The
dimensions are converted from 2048 to 1024 through a fully connected layer. For the text modality, we set the word
vector dimension to 300 and obtain 1024 word embedding dimensions through Bi-GRU. We use the Adam opti-
mizer for learning optimization, with an initial learning rate set to 0.0005, decayed by 10% every 10 epochs, and a
mini-batch size of 64. In structure-level matching, we use a spatial graph convolutional layer with 8 convolutional
kernels, each being 32-dimensional. After that, we input each node in the graph into two fully connected layers and
use a tanh activation function to infer the matching score. The triplet loss margin in the optimization function is set to 0.2.

4.3. Experiment Result Analysis

The comparison experimental results on MSCOCO are shown in Table 2. Our method ranks among the top 2 in
terms of R@1, R@5, and R@10 for both image-to-text (I12T) and text-to-image (T2I) retrieval. Compared to single-
step matching methods like SCAN and PFAN, the progressive graph matching approach of FedBi-GNNs can better
model semantic associations between texts and images. Specifically, it improves R@1 over SCAN by 7.5% and 5.4%
for I2T and T2I retrieval, respectively; and over PFAN by 3.7% and 2.6%, respectively. Additionally, on the impor-
tant rSum metric, our method improves over SCAN and PFAN by 19.3% and 9.0%, respectively. Clear performance
gains can also be observed when compared to multi-step matching methods MMCA and SHAN based on SCAN.
Specifically, we achieve improvements of 6.0% and 9.4% on R@1 over MMCA for I2T and T2I retrieval, respec-
tively, and 3.4% and 1.6% over SHAN.

Table2 Text-image retrieval results on MSCOCO

Image-to-Text Text-to-Image

Methods R@l R@5 R@10 R@l R@S R@10 rSum
SGM 73.4 938 97.8 575 873 94.3 504.1
GSMN 78.4 96.4 98.6 633 90.1 95.7 5225
SGRAF 79.6 96.2 98.5 63.2 90.7 9.1 5243
SCAN 727 94.8 98.4 58.8 88.4 94.8 507.9
PFAN 76.5 9.3 99.0 61.6 89.6 95.2 518.2
MMCA 742 928 96.4 548 81.4 87.8 4874
SHAN 76.8 96.3 98.7 62.6 89.6 95.8 519.8
FedBi-GNNs(Ours) 80.2 96.6 98.8 64.2 91.2 96.3 527.2

Moreover, unlike centralized graph matching methods like SGM and GSMN, FedBi-GNNs adopts a federated
learning framework that exploits data from different clients for collaborative training while protecting data privacy,
improving model generalization. Our method outperforms SGM on R@1 by 6.8% and 6.7% for I2T and T2I
retrieval, respectively, and GSMN by 1.8% and 0.9%, respectively. It also improves over the best rSum result from
SGRAF by 3.1%. Finally, compared to the state-of-the-art SGRAF model, we achieve superior performance across
all metrics. Specifically, we obtain improvements of 0.6% and 1% on R@]1 for I2T and T2I retrieval, respectively.
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We also improve rSum by 3.1% over SGRAF. In general, by adopting a federated learning framework, FedBi-GNNs
enables separate local client training and avoids centralized data storage for better privacy and security. It also collab-
oratively trains on distributed data to improve generalization.

To better demonstrate our experimental results, we also visualized the 12T and T2I retrieval results on
MSCOCO, as shown in Figure 3 and Figure 4. These show that our approach consistently achieves a high-ranking
retrieval of the ground truth. We can clearly observe semantic relevance between the images and texts even for
retrieved results outside of ground truth matches in the dataset.

Image query 1 1: “A large teddy bear with a smaller teddy sitting in a rocking chair.”

: “Two teddy bears, one a police officer bear sitting in the lap of the other,
a white bear, both of them sitting on a wooden chair.”

: “a teddy bear in a cop uniform sitting on the lap of another teddy bear «

: “Two teddy bears sit on a rocking chair.”

: “Large teddy bear with smaller on in lap sitting on rocking chair.”

[y}

wn AW

1: “A baby elephant reaching into it's mother's mouth”

2: “A small elephant is standing next to a large elephant.”

3: “There is a adult elephant and a baby elephant standing together.”
4: “Two elephants are walking through the mud in a clearing.”

5: “Two elephants on a dirt ground behind a fence.”

“A couple of elephants that are standing in the dirt.”

Figure 3. Visualization of text retrieval results on MS-COCO for given image queries. Each image has five ground
truth-matching descriptions. For each sentence query, we show the top 5 ranked images from ranks 1 to 5. Real
matches are labeled in green, false matches are in red, and real matches outside the top 5 are in blue.

Text query 1 : “A couple holding a knife and cutting their wedding cake together.”

Figure 4. Visualization of image retrieval results on MSCOCO for given sentence queries. Each sentence describes
one ground truth image. We show the top 5 ranked images for each query from left to right. Real matches are labeled

in green, and false matches in red.

4.4. Effect of Federated Learning

To validate the efficacy of our proposed FedBi-GNNs framework, we trained both federated and single-client
models on the MSCOCO dataset for comparison in Table 3. In the federated setting, we employed three clients, each
of which was trained locally for one epoch per round using its own local data. The server aggregated model parame-
ters from the clients after each round. A total of 30 training rounds were conducted. In the single-client setting, a
model was trained on a single client using the entire MSCOCO training set. This model also trained for one epoch
per round without any server communication or parameter aggregation. We recorded the performance of both mod-
els at each round using metrics like R@1 and R@5 and compared their best results.

As shown in Table 3, the federated model outperformed the single-client model across all evaluation metrics.
Specifically, it achieved a 3.6% improvement in R@]1 and an 8.1-point increase in rSum for the image-to-text (12T)
retrieval task. These performance gains can be attributed to the improved generalization enabled by aggregating
knowledge from multiple clients. The single-client model, trained on a single dataset, suffered from limited data
diversity and thus exhibited weaker generalization. In contrast, the federated model benefits from the integration of
sample distributions from different clients, leading to more robust and transferable representations. Moreover, these
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improvements are achieved without sharing raw data, highlighting the potential of federated learning for privacy-pre-
serving multimodal applications.

Table3 Performance comparison between federated model and single client settings

Setting Image-to-Text Text-to-Image rSum
R@1 R@5 R@10 R@1 R@5 R@10

Single Client 76.6 95.3 98.2 63.0 90.1 95.9 519.1

Federated Model 80.2 96.6 98.8 64.2 91.2 96.3 527.2

5. Conclusion

In this paper, we introduced a federated learning framework into bimodal graph neural networks for text-image
retrieval, enabling effective training under distributed data storage constraints. Experimental results demonstrate that,
compared to conventional centralized approaches, our method significantly improves training efficiency while ensur-
ing data privacy. Moreover, by aggregating knowledge across decentralized clients, the federated models enhance
generalization and yield superior retrieval performance. Our findings demonstrate that federated learning can serve as
an effective paradigm for scalable and privacy-preserving text-image retrieval. Future work may further investigate
the optimization and robustness of bimodal models within federated settings.
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