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Abstract: In modern industrial machining processes, cutting tools play an important role, and their
health directly affects the quality of machined parts. However, changing cutting tools based on experi-
ence not only increases costs but also reduces productivity. Therefore, predicting the future health of the
cutting tools in advance can enable cutting tools changes to be carried out at the right time. The existing
health status assessment of a cutting tools consists of three main areas: cutting tools wear prediction,
health stages division, and reliability assessment. But traditional deep learning models usually process
these three tasks separately, ignoring the correlation that exists between the three tasks. In order to solve
this problem, this paper proposes a multi-task model based on temporal convolutional network (TCN)
and progressive layered extraction (PLE) network. Firstly, the pre-processed data are subjected to fea-
ture extraction and feature selection and the redundant information between the features is reduced by
using an autoencoder. Secondly, the TCN network module is used to extract the correlation feature infor-
mation of multiple tasks in time, the PLE network module learns the difference information between
each task, and finally, the prediction output is made by each sub-task module for each sub-task. Finally,
the dynamic weight average method is used to adjust the weights of the loss function, which avoids man-
ual adjustment of the weights. The experimental results show that the method not only achieves the pre-
diction of multiple tasks but also has high prediction accuracy.
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1. Introduction

Cutting tools play an important role in the production of parts for the automotive, mold, and aerospace indus-
tries. Inevitably, tool wear occurs during the process of cutting parts [1]. When the degree of wear of the tool is more
serious, it will lead to the production of poor quality parts, seriously affecting the machining accuracy and efficiency
[2]. Replacing cutting tools early in the machining process increases costs and replacing them only after damage
occurs can result in damage to the workpiece [3]. According to statistics, tool wear causes approximately 20% of total
equipment downtime in actual production processes [4]. By monitoring the health of tools during production, down-
time can be reduced by approximately 75% [5]. Therefore, changing tools before they reach a certain level of wear
can increase equipment productivity. However, in order to reduce the probability of failures during the production
process, tools are usually replaced early before damage occurs, often using only 50-80% of their expected life [6].
This not only increases production costs, but also leads to reduced productivity. Therefore, it is very necessary to con-
duct tool health status assessment, which can provide a scientific and accurate basis for tool replacement. By evaluat-
ing the health status of the tool, the tool can be fully utilised, saving the downtime of the machining process and the
cost of tool replacement.

The health status assessment of cutting tools includes prediction of cutting tools wear (TW), division of health
stages (HS), and assessment of reliability (R). Where the TW reflects the cutting quality of the cutting tools, the HS
reflects the current state of health and wear of the cutting tools, and the R of the cutting tools affects the efficiency
and stability of the machining process. Existing health status assessment methods are mainly classified into model-
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based and data-driven approaches [7, 8]. Model-based methods involve modeling the entire cutting tools working
system, which often requires a lot of expert experience and professional knowledge. In addition, real work scenarios
are complex, and it is difficult to build a model that fully reflects the actual cutting tools working conditions [9].
Compared with model-based methods, data-driven methods only require data collection and do not require much
expert experience and professional knowledge [10], making them more suitable for complex scenarios. Therefore,
data-driven methods are increasingly important.

Liu et al. [11] proposes a meta-invariant feature space learning method that constructs an invariant feature space
for the pairing task to approximate the marginal distribution, whose natural laws under crossover conditions are learnt
through meta-learning, and which can be adapted to and accurately predict tool wear under crossover conditions with
a small number of new samples. Zhou et al. [12] proposed a milling tool condition monitoring (TCM) method based
on two-tier angular kernel limit learning machine (TAKELM) and binary difference evolution (BDE). Among them,
TAKELM enhances intrinsic feature extraction from microarray data without the need to manually preset the kernel
function or optimize its hyperparameters. The BDE algorithm is applied to search for the optimal combination of fea-
ture parameters among alternative feature parameters in multiple domains in order to achieve the minimum number
of feature parameters that satisfy very small prediction errors. Qin et al. [13] proposed a tool wear identification and
prediction method based on stack sparse self-coding network, which can simplify the process of monitoring model
establishment, accurately monitor the tool wear state and wear amount, and has certain reference value for efficient
tool replacement in the actual metal cutting process. Wei et al. [14] proposed to perform spectral analysis of milling
force to obtain signal frequencies that reflect the degree of tool wear. Then, a force signal decomposition model based
on whitened variational mode decomposition was developed for filtering out the sensitive signals and effectively
avoiding mode mixing. Next, the joint information entropy is used to select the force signal features. Compared with
other dimensionality reduction algorithms, the optimal subset of features obtained by the JIE method can reflect the
strong correlation between features and wear states. Finally, the identification of tool wear states is achieved by the
optimal path forest algorithm. Liu et al. [15] proposed a novel TWM model that firstly uses a parallel residual net-
work to adaptively extract multi-scale local features of sensor signals, and then uses a stacked bi-directional long and
short-term memory network to acquire time-series features related to tool wear characteristics. Finally, the predicted
tool wear values are outputted through a fully connected network and a smoothing correction method is applied to
improve the prediction accuracy.

HS division reflects the short-term state of the cutting tools, while TW prediction represents the state of the
entire life cycle of the cutting tools, and R assessment embodies the stability of the entire life cycle of the cutting
tools. These three tasks reflect different aspects of the current health information of cutting tools from different per-
spectives. However, the existing research ignores the intrinsic connection between the three, which helps to improve
the prediction accuracy of the three tasks. Therefore, this paper establishes a multi-task deep learning model to
achieve simultaneous prediction of tool HS division, TW prediction, and R evaluation. It provides a more compre-
hensive and scientific basis for tool change, which is conducive to helping actual industrial production save time and
economic costs.

Multi-task learning (MTL) has been applied to various fields such as natural language processing, speech
recognition, computer vision [16], and health management. Wang et al. [17] proposed a multi-task learning model
based on DBN for simultaneously learning the wear state of cutting tools and the surface quality of parts. Miao et al. [ 18]
constructed a dual-task network based on LSTM to predict both HS and RUL simultaneously. Kim et al. [19] used a
multi-task learning network based on CNN to complete the joint prediction of HS and RUL. Although these models
have achieved relatively good results, they all ignore one issue, that is, HS is a classification task while RUL is a
regression task. The label of the two tasks is continuous and discrete values with different units. Additionally, tradi-
tional multi-task network loss functions usually use the same weights or manual adjustment methods. Improving model
performance through manual weight adjustment usually requires multiple attempts, which consumes a lot of time.

To achieve simultaneous prediction of TW, HS division, and R assessment without manual weight adjustment,
this paper proposes a multi-task network model based on the progressive layered extraction (PLE) and temporal con-
volutional network (TCN). As a typical multi-task learning model, the PLE network separates task-specific and
shared parameters by adopting a progressive layering approach through the perspective of joint representation and
information routing, and successfully realizes the mutual integration and transfer of knowledge between multiple
tasks, thus reducing the problem of poor prediction results due to the weak correlation between multiple tasks. How-
ever, the health status assessment of a tool is essentially a time-series problem, and PLE was originally designed to be
used in recommender systems. TCN by combining the null causal convolution and residual cross-layer connectivity
approach, which allows TCN to obtain a larger sensory field with fewer number of networks layers, and is more con-
ducive to processing time-series data with long-term historical dependencies. At the same time, the cross-layer con-
nection approach can inhibit the emergence of gradient vanishing or explosion problems in the process of deepening
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the network model and can better learn the features in tool data. Therefore, to cope with the demand for information
mining of tool data, which is time-series data, the TCN network is added before the PLE network to be able to extract
the time-series information in the tool data, to better achieve accurate prediction of the three tasks in the tool health
status assessment. In addition, the dynamic weight average method is used to adapt the weights of multi-task loss
during model training. The main contributions of this paper can be summarized as follows:

* Multi-task learning is introduced into the field of cutting tools health status assessment for multifaceted cut-
ting tools health monitoring.

* The PLE structure behind the shared TCN layer is adopted to improve the generalization ability of the multi-
task network model to address the problem of multiple tasks with different label scales resulting in less correlation.

* A loss function based on dynamic weight average is utilized to automatically learn the weight values between
multiple losses, which avoids the difficulties process of manual weight tuning in multi-task scenarios.

The organization structure of this paper is as follows: Section 2 introduces the proposed multi-task network
framework. Section 3 covers data processing, feature extraction, and label construction. Section 4 presents the experi-
mental results and performance comparison. Section 5 summarizes the paper and provides prospects.

2. Methodology

This paper aims to achieve three main objectives: TW prediction, HS division, and R assessment of the cutting
tools. First, the collected tool data are preprocessed, including steps to remove noisy data and abnormal data. Next,
we construct reliability labels and health stages labels using logistic regression and Gaussian mixture models. Then,
the training set data is input into the TCN-PLE model for training in order to optimize the whole model. Finally, the
trained model is used to predict the test set. In this way, we can obtain accurate prediction results for the state of the
tools in the test set. The overall framework of this paper is shown in Figure 1. This section will mainly introduce
TCN and PLE and elaborate on the entire multi-task network based on these basic modules.

. Mulli-]ay‘)rexlraclior’ network -

Label construction

_________ |
@

Feature Slection E‘?e\[rgg;ﬁn $ -

|
|
|
|
|
|
|
|
|
|
|
|
|
=i
|
|
|
|
|
|
|
|
|
|
|
|
|
|

2 |

Softmax |

Health stages

Autoencoder

e —————— e i e |
! |
| Data collection | | Result |
| | |
I L :
| [ 1.0 —True tool wear 1L0] = —True eliabiliy |
| | | Predicted tool wear Predicted reliability
| | | 0.8 0.8 |
I o $ 06 7 £ 06 :
z |
: ! : 2 04 el 2 04 I
| = o |
| | | 0.2 0.2 |
) - ot 0 |
! | | 0 50 100 150 200 230 300 0 50 100 150 200 230 300 |
| 0 2 4 6 8 10 12 | | i Cut number Cut number 1.0 |
Ti x10* 2{—True HS
: ime : : ~ Predicted HS . |
. o I
| Data processing | | g |
I [ 2 1 E I
| | | E |
s | 100 , [ 2 I
o150 fl 80 / Pl ; = |
| 125 [ |~ 60 / | | 0
| 100 |V 6 | | 0 50 100 150 200 250 300 |
| 75 40 /‘ | L Time |
50 2 JLIL [ 5 i o i oo e e e i s el ok e R e e
: 25 e R ——— : s |
| 0 50 100 150 200 250 300 0 50 100 150 200 250 300 |
: 14000 100 I TCN-PLE model
| 12000 80 / |
| 10000 0 | |
8000 J | | TN R
. i’ L | ba (7]
| 4000 / [ LM |
P
P = D= |
~2000
: 90550 100 150 200 250 300 050 100 150 200 250 300 |
|
! |
| I
| |
! I
! |
: |
|
| ! |
| | Experts | | Experts | | Experts| |Experts
| o shared | FC |
|
| 0 50 100 150 200 250 300 !
4 s !
| Feature Fusion o =~ |
E ==
| | IR P — A — ) Vector 1 |-{ Vector m
| _.08 | 'l' [ ] [ ]
| Z 06 \ | e e -
| Label Normalization 2 ' ‘
S 04 | | TON

| |
| 0.2 \ :
| ‘ ) I — I
| Label Construction 0 50 100 150 200 250 300

Cut number |

Figure 1. The overall flowchart of the proposed methodology.
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2.1. Temporal Convolutional Network

TCN [20] is a time-series prediction model based on causal convolution and dilated convolution, with the addi-
tion of a residual module to solve gradient vanishing problems. The main idea of TCN is to share weights locally,
which helps capture long-term dependencies in the input sequence.

1) Causal Convolution: Compared to ordinary convolution, causal convolution only moves the convolution ker-
nel at the front or back of the sequence, thus ensuring that the output results are consistent with the temporal relation-
ship of the input sequence. For one-dimensional time series input X = (xo, Xy, , X, -+, X7), the network’s output y,
at time ¢ only depends on the current time x,and some past inputs (i.e., x;_j, X;—2, X;-3) but not on any future inputs
(1-€., X415 X425 Xr435 - » X7 ). This means that the network’s output is only affected by past input information, thereby
avoiding the problem of information leakage.

2) Dilated Convolution: The dilated convolution, compared to ordinary convolution, introduces the parameter d
to represent the size of dilation. With the introduction of the dilation rate, the receptive field of the convolutional ker-
nel is increased. For a time series input X = (xo, X1, ,X;, - ,Xr), when the convolutional kernel is K = (k,
ky,--- k), the dilation convolution operation D(-) is:

M
D(T)= K(i)-Xr_a; ()
i=1
where M is the size of the convolutional kernel, d is the dilation rate, K (i)indicates the filtering operation. and
Xr—q.1s the past data. By increasing the values of M and d, TCN can accept a wider range of input information.
Additionally, due to its parallel processing approach, the model has high computational efficiency.

3) Residual Block: In addition to using the dilation convolution approach, TCN can also increase its receptive
field by increasing the number of hidden layers. However, as the number of hidden layers increases, the model may
suffer from gradient vanishing. To address this issue, TCN employs residual blocks. If the fitting function of TCN is
F (x), then for an input x, the final output can be described as:

o = Activation(F (x) + x) 2)

2.2. Progressive Layered Extraction

PLE [21] is a classic multi-task network. Compared to other multi-task networks that share a single expert net-
work among multiple tasks, it proposes the method of giving each task a specific expert network and cascading mul-
tiple layers of expert networks, which reduces the impact of multi-task learning due to weak or complex correlation
between multiple tasks. PLE has good performance in many multi-task learning scenarios. In PLE, a customized gate
control model is proposed to separate shared network layers from specific network layers. Customized gate control is
equivalent to the single-layer version of PLE.

The customized gate control mainly consists of a bottom expert module and a top tower network, where each
expert module is composed of multiple expert sub-networks. The expert modules are divided into shared networks
and specific networks, where the shared network module learns features that are shared by multiple tasks, while the
specific network learns features corresponding to a single task. Finally, the shared and specific task experts are selec-
tively fused through the gate network. For task k, the output of the gate network can be expressed as:

gF () =wh(x)S*(x) 3)

where x denotes the input. w* (x) is the weighting function used to compute the weight vector of task & after linear
transformation and SoftMax layer:

wh(x) = Softmax (Wf;x) 4)

where Wéf € Rlxrexdig the parameter matrix after linear transformation of the input x, c,, and c,are the number of
shared and task K’s specific networks, respectively, and d is the input dimension. S*(x) is the matrix composed of
the shared network and the task k’s specific network. The S* (x)can be represented as:

T
§*(x) = [E<Tk.1>’E(Tk,2)"”’E<Tk,mk)’E<Ts,1)’E<7;,2>"“ Ef, ] ®)

> = (smy)
where E{,, is selected vector.
2.3. Multi-task Network Structure
The proposed multi-task networks based on TCN and PLE can achieve cutting tools HS division, R assessment,
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and TW prediction. The network structure is shown in Figure 2. It consists mainly of four parts: the input layer, the
shared bottom of TCN, the PLE layer, and the output layer. TCN module is primarily used for extracting related fea-
tures across multiple tasks, while the PLE module is employed to learn from different tasks and simultaneously out-
put results from multiple tasks. The outputs of the three tasks are represented as follows:

Yire = trne (frne (X)) (6)

Fre @) = i (h(x) %)
i=1

gi;r,r,c = Wg (gi—l;r,r,c (.X)) S (-x) (8)

where y,,. is the prediction results for R, TW, and HS. ¢,,.is the tower network, f,,.(x) is gating network output,
h(x) is the output of TCN, g;,,.,..is gating network, W, is the weighting function when the input is g, (x), S (x)

is the selected matrix.
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Figure 2. Multi-task learning model based on TCN and PLE.

2.4. Multi-task Loss Function Based on Dynamic Weight Average

In multi-task learning, the weight setting of the loss function has a significant impact on the effectiveness of the
model. Therefore, this paper adopts a dynamic weight average [22] method to dynamically adjust the weight values
in the model. In the multi-task learning model, the dynamic weight average determines the difficulty of each task by
calculating the ratio of the loss values of each task for the first two times and then sets the weight value according to
the difficulty.

In this study, HS division is a classification task and therefore uses the cross-entropy loss function. R assess-
ment and TW prediction are regression tasks and therefore use the mean squared error loss function. The final loss
function can be expressed as:

L (Xk, S Wi, ') = A Ligs (X, i) + A Ly (X, 1) + A3 Lg (i, 7) 9
M
Lys (%) = =Y e (py) (10)
k=1
1 K
Lrw (1) = =2 > (= frw ()’ (11)

k=1
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1 K
Ly (1) = = ; (= fr () (12)
where, Ay is the actual HS category, py is the predicted probability of the kth category, M is the number of HS cate-
gories, K is the total number of samples, #; is the actual TW value, and r; is the actual R value. The A;is the weight
coefficient of each loss function. fys (*)is the HS prediction function, fry () is the TW prediction function, and
fr (%) is the R prediction function. The weight Ak for the kth task can be written as follows:

Kexp (L (;_ 1))

A () = (13)
(=1
ZieXP(iw (IT ))
_La=D
wet=1)= 7 (14)

where wy, (*)is used to calculate the decline rate of loss, ¢ is the number of iterations, 7 is a hyperparameter, and the
larger T is, the smaller the weight difference between tasks will be. Algorithm 1 shows how to determine the param-
eters in the loss function based on dynamic weight average.

Algorithm 1: The proposed model optimization by using dynamic weight average loss function
Input: Training featurexi, regression label wy, ryand classification label sx ; Model initialization of network parameters 6 and loss
function parameters A1, 12, A3

Output: Loss function parameters 11, 12, 13

tte—1;

: while 7 < T do

: for each batch B do

: Feeding training feature xx and label wy, rx, si to the model;

: Calculate the predicted values fHS (xk), fHS (xk), fHS (xk) through forward propagation;

: Update the model parameters 6, 11,42, 13 with Adam optimizer;

end

ste—t+1;

:end

10: return 6,41,42,43

XIS AP =

3. Dataset and Label Construction

This section will first introduce the PHM2010 dataset and construct two labels for reliability and health stages
based on this dataset. As the dataset contains a label for cutting tools wear, it will not be discussed in this section.

3.1. Dataset Introduction

The PHM2010 dataset was collected by collecting vibration signals and cutting force signals data in the X, Y,
and Z directions during the processing of 6mm alloy file cutting stainless steel workpieces as well as the root mean
square value of acoustic emission signals. A total of seven sets of feature data were obtained. Through six repetition
experiments, six test datasets (C1, C2, C3, C4, C5, and C6) were obtained. Among the data of C1, C4, and C6, the
wear amount of three cutting edges after each cutting is also included. The average value of these three wear amounts
is used as the cutting tools wear value.

3.2. Data Processing

During the cutting process of workpieces, there is a period of idle time for the cutting tools. The vibration sig-
nals generated during this idle time are also collected by sensors. These signals belong to invalid signals that can
affect the effectiveness of the model, so they need to be deleted. In this paper, we use the truncation method to
remove the invalid data. In addition, due to external factors such as the environment, noise is contained in the
acquired data during signal collection. To clean up noisy data, we use wavelet threshold denoising. The comparison
between data before and after cleaning is shown in Figure3, with blue representing processed data and yellow repre-
senting noisy data.
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Figure 3. Data processing comparison diagram.

3.3. Feature Extraction and Selection

During the process of cutting tools machining, data is sampled at a high frequency, resulting in a large amount
of data. To address this, we can extract features from the high-dimensional collected data. In this paper, we extracted
16 features from both time and frequency domains. As shown in Table 1, after feature extraction, the dimensionality
of the data was reduced. However, not all of these features were effective for subsequent HSA. To address this issue,
we performed feature selection using monotonicity (Mon) [23] and trendiness (Tre) [24]. Mathematically expressed
as:

Mon = 'dljg:o - d}fflo‘ (15)
k J_ 7\ (4. —F
Tre = = (fl _f;) (=) - (16)
\/Zf':l (fij_fi) ZI;':] (tj_t_)
Cie = MMon+mTre (17)

2

where df; denotes the differential between f,-j “'and ﬁ-j , K denotes the number of samples, fij denotes the jth value of
feature f;, and £ denotes the mean of f;, 7; is the working cycles, 7 is the average of all work cycles.

Table 1 Statistical feature

Feature Formula Feature Formula
Maximum Max(x) Minimum Min(x)
1 .
Mean - Z:’z | i Peak Max(x) — Min(x)
 Q— 1
Absolute Mean - Zi=l x| Rms Value 1/ - El"z 2
Root Amplitud ! ) i 'S ey
oot Amplitude - Zi:l ;] variance ;Ziﬂ( Xi— X)
1 -4 12" (xi— })4
-Zle(xi- X) n Lai=1
Kurtosis - Skewness 3
lz” (xi— )_C)Z L -2\ 2
n ei=1 (ZZi:l(xi— Xx) )
Max(x) Max(x;)

Peak Indicator 1 Margin Indicator 1 - 2
\/ ;Z:‘l:lxiz (; V2 |xi|)
1
Max_ Vi e
1

Impulse Indicator QR Waveform Indicator S =
;Zizl il _Z" x|
n 2ai=1 M
K
_ Jis(k K
Frequency Center M Average Frequency M
Sis®) K

Among them, Mon and Tre are the coefficients of monotonicity and trendiness respectively. Cie is an evalua-
tion coefficient for features, and the larger its value is, the more beneficial it is to the model. And weight coefficients
are given by 1, and 1,, where 1, +1, = 1. Considering that the monotonicity of features can better reflect the pro-
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cess of cutting tools degradation, a large value is set for 77;, with a value of 0.7, and 7, is set at 0.3. After feature
selection, redundant information still exists among high-dimensional features. To address this issue, we use a convo-
lutional autoencoder for feature fusion.

3.4. Multi-task Learning

Multi-task learning aims to improve the performance of models by simultaneously learning multiple related
tasks. Considering that TCN can mine long-term dependencies in data, PLE can effectively solve the problem of
imbalanced performance among multiple tasks. Therefore, this paper proposes a multi-task network built on the basis
of TCN and PLE. TCN is mainly used to discover long-term feature information between multiple tasks from input
data, while PLE learns the correlation information between different tasks to improve the efficiency of learning each
task and thus achieve effective prediction for multiple tasks.

3.5. HS Label Construction

The state of cutting tools wear is usually divided into three stages: initial wear, normal wear, and severe wear
[13]. If subjectively dividing these three stages, it may lead to errors. To address this issue, the paper adopts Gaussian
Mixture Model (GMM) to classify the state of cutting tools wear and construct a HS label. GMM is a common clus-
tering algorithm with soft cluster properties, making it possible to group similar patterns flexibly. GMM can be repre-
sented by the weighted sum of N components of Gaussian density:

N
Pl (s Sl =Y wig (xlum,ZM) (18)
i=1
where w,, is the mixture weight, y,,, and > . m are the mean vector and covariance matrix respectively. Each Gaus-

sian component can be represented as:

_ 1 (-4 )
g(-x|/1m3zm) - (27‘[)D/2 me (19)

where D is the data dimension. The label constructed is shown in Figure 4(a), and since there are three states of cut-
ting tools wear, the health stages is divided into three stages.

2 — 1.01

0.8

g £ 0,61
£ ! 2

§ S 0.4

0.2

0 oA

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Cut number Cut number
(a) (b)

Figure 4. (a) HS label. (b) R label.

3.6. R Label Construction

Logistic regression is a common method for reliability assessment [25], which can estimate probabilities
through the analysis of feature parameters and predict the probability of events using the sigmoid function. Accord-
ing to the definition of reliability, we assume that the ith feature of time ¢ is X;(¢) = (x; (), x2(¢),..., x;(¢)). When
the cutting tools is running well at time #, y () = 1; when the cutting tools is heavily worn, y(#) = 0. The cutting tools
reliability can be expressed as:

exp (ap + a1 x; () + @2 (£) + -~ + @, x; (1))

Rl = PO =11X) = 1 +exp(ap+a1x; () +arx, (1) + -+ a;x; (1)

(20)

where ag,a;,- -+ ,a;are the model coefficients. The model coefficients are solved using maximum likelihood estima-
tion. The constructed label is shown in Figure 4(b). It reflects that as the number of uses of the cutting tools increases,
the cutting tools wear intensifies and the reliability of the cutting tools gradually decreases.
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4. Experiment and Analysis

This section will validate the proposed method on the PHM2010 dataset and compare it with the performance
of other deep learning models.

4.1. Data Preprocessing

Due to the high dimensionality of the original data for the cutting tools, it is not conducive to subsequent data
analysis. After feature extraction and feature selection, the data dimension has been reduced, but there is still data
redundancy. To reduce data redundancy, a convolutional autoencoder is adopted. Since different features have differ-
ent units of measure, this dataset has been preprocessed using min—max normalization:

X - Xmin
X=—-— (21)
Xmax - Xmin
where X is the original data, X’ is the standardized data, X, and X,;, are the maximum and minimum values ofx,
respectively. Figure 5 show the normalized data.

— 1
2 SASN [
B Feature-5
20501 Feature-4
s ) Feature-3
g 0. Feature-2
:(ZD 0+ » Feature-1

0 80 160 240 320
Number of samples

Figure 5. Normalized data.

4.2. Error Measures

HS division in tool health status assessment is a classification task, and TW prediction and R assessment are
regression tasks. For HS division accuracy (ACC) and MacroF1 (F1,,,) are used as evaluation metrics, and larger
values of ACC and MacroF1 indicate better model classification. ACC and F'1,,,.are defined as follows:

ACC =" x100% 22)
n
2 * Pmac * Rmac
FlmaC = 5 (23)
PmllC +RmaC

where n, is the number of correctly predicted classifications, 7 is the total number of points predicted over the entire

1 k-1 TP, 1 k-1 TP
life cycle of a tool, Py, = Ezk:o W}Pk , Ryae = Ezk:o m where K denotes the number of cat-

egories of HS, T P, denotes the number of positive samples predicted as positive samples, F P, denotes the number
of negative samples predicted as positive samples, and FN; denotes the number of positive samples predicted as
negative samples.

TW prediction and R assessment use root mean square error (RMSE), mean absolute error (MAE) and R-
squared (R?) as evaluation metrics; the smaller the values of RMSE and MAE, and the closer R? is to 1, the better
the model's prediction is. The three evaluation metrics are defined as follows:

n

1 -

RMSE= || =3 (v 3)’ (24)
i=1
1 n R

MAE = 21: | (vi=31)] (25)

n N2
R2: 1- Zi:l(yi—yi) (26)

i O -y

where y; represents the true value, y;represents the predicted value, and j; represents the average of all predicted values.
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4.3. Experimental Setting

Since only Cl1, C4, and C6 cutting tools in the dataset provided wear value labels, we used C1 and C4 as the
training set and C6 as the test set. In terms of network architecture, a TCN with a depth of three layers will be
employed. As there are three tasks, four expert modules, and three tower networks will be used in PLE. Each expert
module consists of linear layers, while each tower network is composed of linear layers and ReLU activation func-
tions, and dropout is used to reduce overfitting. The learning rate is 0.0007, the batch size is 32, and the Adam opti-
mizer is utilized.

4.4. Ablation Study

The ablation study in this section compares the following three network structures: 1) PLE; 2) TCN-PLE
denotes a multi-task network without the use of a dynamic weight average; 3) TCN-PLE-DWA denotes a multi-task
network with the use of dynamic weight average.

From Table 2, it can be seen that TCN-PLE-DWA outperforms TCN-PLE in both reliability and cutting tools
wear value prediction tasks, and has 6.4% higher accuracy in the classification task of health stages classification. The
results show that weight adjustment of the loss function by dynamic weight average effectively solves the imbalance
of effects in multi-tasks.

Table2 Result of ablation experiments on C6

Model R|TW RITW R|TW HS HS
RMSE MAE R? ACC MarcoF1
PLE 0.222(0.116 0.096/0.077 0.767/0.615 0.831 0.815
TCN-PLE 0.241]0.096 0.118/0.072 0.7390.7633 0.857 0.876
TCN-PLE-DWA 0.231]0.069 0.106]0.052 0.741]0.889 0.921 0.911

4.5. Comparative Study

In order to validate the effectiveness of the TCN-PLE model, this section compares the proposed model with
models such as Multi-task CNN, Multi-task LSTM [ 18], Multi-task GRU and other models as well as typical multi-
tasking models such as MMOE [26] and PLE. The evaluation results of different models on C6 are shown in Table 3,
Figure 6 and Figure 7 present the prediction effects of different models on TW and R tasks. Finally, Figure 8 shows
the accuracy and Macro-F1 of different models in dividing HS.

Table3 Model performance comparison on C6

Model R|ITW R|ITW R|TW HS HS
RMSE MAE R? ACC MarcoF1
CNN (mtl) 0.409/0.307 0.412/0.275 -11.79]-6.22 0.809 0.763
GRU (mtl) 0.358]0.337 0.349/0.315 —4.201]-3.606 0.888 0.876
LSTM (mtl) 0.369/0.309 0.355]0.294 —4.305-2.711 0.879 0.872
MMOE 0.249]0.071 0.116]0.058 0.714]0.878 0.844 0.821
PLE 0.222(0.116 0.096/0.077 0.767/0.615 0.831 0.815
TCN-PLE-DWA 0.231]0.069 0.106/0.052 0.741]0.889 0.921 0.911
1.0 { =+ True
TCN-PLE g’roposed)
-— Multi-task CNN
-= Multi-task GRU
084" Multi-task LSTM
. -- MMOE
PLE n B
(T e = ?‘: <k
B 061 bl SR
P e bl
ol
£ 041
0.2 4
0
0 50 100 150 200 250 300
Cut number

Figure 6. Cutting tools wear prediction.

100f 12


https://doi.org/10.53941/iindi.2025.100008

1JNDI, 2025, 4, 100008. https:/doi.org/10.53941/iindi.2025.100008

1.0] m—pms v CTCN-PLE (Propoesd)
' ‘ e Multi_—task %I{Tolgoes
---Multi-task GRU
0.8 . ---Multi-task LSTM
b ‘, _____ = e I e
= 0.6 Lais :—»w" PR
SN A | | B
2 044"
0.2
0 :
0 50 100 150 200 250 300
Cut number
Figure 7. Reliability prediction.
1.0 B Acc Macro-F1 score 1.0
0.8
0.9
L
0.6+ 3
Q —
::’ +40.8 Ug
0.4+ g
<
=
0.7
0.2
0- & Py 0.6
S S SS
Q)’Q P N
N & & B
o & W S
< SR S

Figure 8. The performance of different models on HS.

As shown in Figure 6 and Figure 7, the classic networks were not effective for multi-task problems, as their
predictions did not reflect the trends of TW and R. However, the results predicted by MMOE, PLE, and TCN-PLE
networks could generally reflect the trends of TW and R. Figure 8 shows the performance of different models on the
HS division. Unlike the previous ones, LSTM and GRU, two classic networks, even outperformed MMOE and PLE
in this task. However, this also indicates that using classic networks for multi-tasking will sacrifice the effect of one
task to enhance the effect of another task. Although they had good performance in HS division, they performed
poorly in the other two prediction tasks. In contrast, TCN-PLE performed well in all three tasks without significant
differences in performance among them. Tab. III. reflects the performance of different models in three tasks, where it
is easy to see that TCN-PLE outperforms PLE in TW prediction and HS division. In conclusion, TCN-PLE can
effectively complete the HSA of the cutting tools.

5. Conclusion

In this paper, a multi-task prediction network model based on TCN-PLE is proposed for cutting tools health sta-
tus assessment method. Compared with the previous method that only studies the cutting tools wear value as a single
task, this method can realize the simultaneous prediction of three tasks, HS, R and TW. The model consists of a TCN
module and a PLE module. The TCN is used to extract deeper potential shared information among multiple tasks
from the input data, and the PLE module is used to learn the difference information of each sub-task to realize the
prediction of results for multiple tasks. The experimental results show that the TCN-PLE model has more balanced
results on multiple tasks and improved results compared to multi-task networks such as MMOE and PLE than using
networks such as CNN, LSTM, and GRU for multi-task learning. In the future, we plan to combine federated learn-
ing with multi-task learning to address the challenge of insufficient data on the full life cycle of a tool due to data silo
problems in real industrial production processes. With the federated learning approach, we can increase the amount of
data required for the tool health status assessment task by integrating and sharing data from different plants or equip-
ment while protecting data privacy. In this way, we can further improve the accuracy of the model.
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