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Abstract: With the development of image acquisition technology, the volume of
image data has surged, highlighting the contradiction between data publication and
privacy protection. Generative Adversarial Networks (GANs) offer a solution to find a
balance between the development of image data and privacy security. However, the
unidirectional image generation of GANs fails to satisfy the reversible requirements
of privacy-sensitive images. To address this limitation, this study proposes an im-
age privacy protection method based on a dual-prior GAN with dynamic reversibility,
called DR-DPGAN. This method uses StyleGAN2 latent space editing to make targeted
modifications to image identity features, allowing modification and reconstruction of
features. To achieve image privacy protection, a fake identity generator composed of
two-layer multi-layer perceptrons is designed. By combining identity-related guidance
information, it precisely controls the generation of fake features to avoid excessive
or insufficient modification. Meanwhile, three-dimensional prior constraints are in-
troduced to extract geometric feature vectors, maximizing the retention of original
non-identity attribute features and ensuring the usability of images in downstream
tasks. To ensure reversible image restoration, this paper converts the original identity
attribute information into binary vectors through a binary encoding mapping network,
generating reversible encrypted features to ensure precise restoration of original identity
features. In addition, four loss functions are used jointly to optimize the network to
balance the quality of the generation. To verify the reversibility and effectiveness of
the proposed method, comprehensive experimental tests are conducted on two different
datasets. The experimental results demonstrate the effectiveness of this method in
image anonymization and reversible restoration.
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1. Introduction

In the digital era, widespread image sharing has raised critical privacy concerns as images often contain
sensitive personal information [1]. While Generative Adversarial Networks (GANs) have shown promise in privacy
protection through techniques like noise addition [2] and blurring [3], these irreversible methods face significant
limitations in scenarios requiring original image recovery.

The irreversible nature of current GAN-based approaches poses particular challenges in fields like criminal
investigations. When processing crime scene photos to protect bystander privacy, irreversible alterations may
permanently erase forensically valuable details, potentially hindering case resolution.

Current reversible solutions face dual limitations: Conventional reversible data hiding (RDH) techniques [4–6]
exhibit inadequate performance on complex images with constrained embedding capacity, while encoder-decoder
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anonymization frameworks [7] often degrade biometric fidelity or inadvertently modify non-target attributes. These
shortcomings stem from two unresolved challenges: (1) precise control over identity attribute manipulation, and (2)
guaranteed reversibility between privacy protection and feature reconstruction.

In order to overcome the deficiencies of existing methods, this paper proposes a dual prior GAN for image
privacy based on dynamic reversibility, named DR-DPGAN, which introduces a dynamic reversibility mechanism,
enabling the result of privacy protection to be reversibly operated as needed, thus while protecting image privacy, it
retains the possibility of restoring the original image. This method uses the collaborative design of StyleGAN2
latent space editing, 3D attribute modeling, and reversible information embedding to provide a more flexible and
secure solution for image privacy protection.

Specifically, this paper uses StyleGAN2 latent space editing to perform directional modification of the identity
features of the image, generates a high-fidelity de-identified image, and embeds the encrypted features into the
image. In the reversible restoration stage, the original identity features are accurately restored through the inverse
decoder. Combined with the geometric coefficients extracted by the 3D prior constraint module, the StyleGAN2
generator performs inverse feature mapping, and finally outputs the reconstructed image.

The main contributions of this paper are as follows.

• We generate synthetic identity features through randomized noise while incorporating identity-related guid-
ance information to precisely control feature generation direction. This approach effectively prevents both
excessive and insufficient modifications. By integrating with StyleGAN2’s latent space editing technology, we
achieve directional modification of facial identity features while maintaining high-fidelity de-identified image
generation.

• Our method extracts geometric feature vectors from source images to maximally preserve non-identity attributes.
This constraint mechanism prevents topological distortion in generated images, thereby enhancing their usability
for downstream computer vision tasks.

• We combine binary-encoded mapping networks with StyleGAN2 for identity protection. The method converts
original identity attributes into binary vectors to generate reversibly encrypted features, which are then
embedded into images via StyleGAN2. Authorized users can precisely reconstruct original images by extracting
and decoding the embedded features.

• Extensive experiments on real-world image datasets demonstrate that our DR-DPGAN framework maintains
exceptional data utility while achieving perfect reversible reconstruction of identity features, outperforming
existing de-identification methods.

The remainder of this paper is structured as follows: Section 2 provides a comprehensive review of related
works in the field. Section 3 presents a detailed description of our proposed image privacy protection method,
which is based on the Dynamic Reversible Dual-Prior Generative Adversarial Network (DR-DPGAN). Section 4
conducts extensive experiments to evaluate and analyze the performance of the proposed method. Finally, Section 5
concludes the paper by summarizing our contributions and discussing potential future directions.

2. Related Work

In today’s digital age, image data is widely used in numerous fields such as healthcare, security, and social
media, and the importance of image privacy protection has become increasingly prominent. In the early days,
reversible image privacy protection technologies mainly revolved around encryption and digital watermarking
techniques [8–10].

Scholars have proposed the use of Reversible Data Hiding (RDH) technology [5, 11] to embed encryption keys
or privacy metadata into images. Specifically, high-capacity embedding is achieved through difference expansion
or prediction error coding, while ensuring that the original image can be recovered without loss with the help of
the key [12]. In addition, Encrypted Image Processing (EIP) technology also plays an important role. It protects
sensitive areas through block encryption [13] or homomorphic encryption [14], and authorized users can recover the
original pixels by decrypting. These methods have been verified to be feasible in the fields of medical imaging [15]
and military communications. However, they face bottleneck problems such as high computational complexity and
the difficulty of balancing robustness and reversibility.

In order to address the above challenges, some schemes have explored alternative approaches. For example,
FIT [16] and RAPP [17] have adopted the identity vector encryption strategy, that is, the encrypted features are
input into the generation network to achieve anonymization. Although these schemes can accurately recover the
original data under password verification, the key management system has become a new security vulnerability and
is vulnerable to attacks.

With the technological breakthroughs in GANs and reversible neural networks, new dynamic reversible privacy
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protection frameworks have emerged. For instance, the literature [18] designed a reversible perturbation generator
that injects an imperceptible noise layer into the image through adversarial training, and only authorized users can
recover the original image with the aid of the inverse network. The literature [19] proposed a domain migration
model based on Cycle Generative Adversarial Network (CycleGAN), which implicitly maps sensitive images to
the privacy protection domain, such as cartoonization, while retaining the reversible decoding path. RiDDLE [20]
innovatively integrates the latent space mapping ability of StyleGAN2 [21] and realizes the generation and inverse
recovery of anonymous images through a hider. During the same period, Privacy-Net [7] proposed a hierarchical
reversible transformation module. Although these methods have demonstrated the ability to resist inverse attacks in
natural image scenarios, they have the drawback of poor visual natural effects.

The current reversible image privacy protection technologies still have many problems. From the perspective
of image content, for complex images with rich textures and details, existing methods are difficult to achieve perfect
reversible recovery, and there are certain errors. From the perspective of data processing scale, when dealing
with large-scale image data, the efficiency of existing algorithms is insufficient and cannot meet the needs of
practical applications.

Looking at traditional GAN desensitization methods, they mainly rely on irreversible identity perturbations to
achieve anonymization. Once processed, the original identity information will be permanently changed. Although
significant progress has been made in existing reversible protection technologies, the anonymization and restoration
effects of most methods are still unsatisfactory. Taking biometric data processing as an example, the topological
structure is extremely vulnerable to damage during the anonymization process, resulting in situations such as
distortion of data features and deviation of key feature points. The existing anonymization technologies mainly
include the identity tampering model based on the basic encoder-decoder architecture and the latent space editing
method based on the inverse mapping technology of the generative adversary network. However, the former is
likely to cause texture detail degradation when processing biometric data and cannot accurately restore the feature
information; the latter is often accompanied by unexpected changes in identity-independent attributes, such as the
environmental conditions during data collection and the presentation angle of features, which affects the availability
and accuracy of the data.

In conclusion, how to precisely manipulate identity information while protecting privacy and enable the image
to be accurately restored to its original identity state has become a crucial challenge that urgently needs to be
addressed in the field of reversible image privacy protection.

3. Methodology: DR-DPGAN

In this section, we elaborate the design of DR-DPGAN, a dual prior GAN for image privacy based on dynamic
reversibility, which aims to overcome the irreversibility of GAN in privacy protection.

3.1. Framework of DR-DPGAN

As shown in Figure 1. The DR-DPGAN consists the fake identity generator model, 3D prior constraints model,
as well as identity manipulation and anonymization model. The fake identity generator is a network consisting of
two layers of Multi-Layer Perceptrons (MLP), aiming to guide the generation of false identity features from random
noise. Identity manipulation and anonymization model consists of two parts: the hiding of identity information
and the latent space editing of StyleGAN2. The 3D prior constraints play a major role in extracting the geometric
feature vectors from images. The Hiding of Identity Information is responsible for password extraction and contains
an independent convolutional neural network encoder, which can generate reversible encrypted features. The latent
space editing of StyleGAN2 contains the StyleGAN generator G. It is a feature generation module based on the
W+ latent space and has the ability of adaptive feature fusion, enabling the manipulation and editing of images as
well as information embedding.

The workflow of the framework is divided into two stages: anonymization and reversible recovery.
In the anonymization stage, when the real image original is input, the 3D prior constraints model first extracts

the geometric coefficients and performs tensor concatenation with the virtual identity embedding F
′

id to generate a
geometrically aware identity encoding Fconcat. The Fid is converted to a binary vector and encrypted as Password.
Then, the StyleGAN2 generator maps the encoding to the W+ space. At the same time, the original image goes
through an encoder to extract the identity-independent feature F

′

G. Subsequently, the ESte model performs feature
fusion on Password and F

′

G, and finally reconstructs and generates the anonymized image anonymization, which
retains the original geometric features but replaces the identity features.

In the reversible recovery stage, given the anonymized image anonymization and the real identity Fid, the 3D
prior constraints module extracts the geometric coefficients and concatenates them with the real identity embedding
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Fconcat. Then, the same ESte architecture is used to reversely fuse the real identity features, and the StyleGAN
generator performs the reverse feature mapping. Finally, the reconstructed image recovery is output, which can
precisely restore the features of the original image.
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Figure 1. Framework of DR-DPGAN.

3.2. Fake Identity Generator

In the process of generating fake identity IDs, we introduce identity-related guidance information to enable
more precise control over the direction and intensity of fake identity ID generation, thereby preventing two extreme
scenarios during the creation of pseudo-identity identifiers. The first scenario is over-modification, where excessive
alteration of identity features causes the modified images to lose the essential connection with either the original or
target identity. The second scenario is inadequate modification, where insufficient changes to identity features fail to
achieve the anonymization objective effectively, allowing the original identity to remain easily recognizable.

As shown in Algorithm 1, the pre-trained recognition model EArcface is employed to extract real identity
IDs from images. Simultaneously, a two-layer MLP EFake guides normally distributed random noise vectors to
generate virtual identity IDs. In this MLP architecture, the first layer implements non-linear feature transformation
using ReLU activation, while the second layer projects features into a dimension aligned with ArcFace’s feature
space. Through cosine similarity constraints, the virtual identity features F

′

id maintain a controllable distance from
the real identity features Fid during generation.

Through statistical analysis of cosine similarity between different identity pairs in large-scale face datasets,
it can be observed that the similarity between different identities mostly falls within the range [0.1, 0.4], while
the similarity of the same identity is predominantly distributed in [0.6, 1.0]. Therefore, we select [smin, smax] =
[0.1, 0.4] to ensure that the similarity between the virtual identity and the original identity is significantly lower than
the same-identity threshold, while remaining higher than random noise similarity, thereby balancing the naturalness
and anonymity of the virtual identity.

3.3. 3D Prior Constraints

In traditional image synthesis tasks using Generative Adversarial Networks, due to the lack of explicit three-
dimensional geometric constraints, the generated image results often suffer from geometric inaccuracies. For
example, there are issues such as asymmetric distortion of objects in the images and distortion of the topological
structure. These problems limit the semantic fidelity of non-critical features in the images (such as the local
morphology and placement angles of objects).
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Algorithm 1 Fake identity generator

Input: Original image Xori, noise d, target similarity range [smin, smax], initial cosine similarity s = 0, number
of generator iterations Tg

Output: Virtual identity feature vector F
′

id

1: Fid ← EArcface(Xori)

2: Sample noise vector z ∼ N (0, I) ∈ Rd

3: for t1 ← 1 to Tg do
4: h← ReLU(W1z + b1)

5: F
′

id ←W2h+ b2

6: F
′

id ←
F

′
id

∥F ′
id∥2

7: Compute cosine similarity: s← F⊤
idF

′
id

∥Fid∥2∥F
′
id∥2

8: Construct loss: L ← max(0, s− smax) + max(0, smin − s)

9: Update parameters: θMLP ← θMLP − η∇θL
10: if s ∈ [smin, smax] then
11: End of training

return F
′

id

To address this issue, this study introduces an optimization framework based on the Parametric 3D Morphable
Model. By conducting decoupled modeling of the morphological variation coefficients and rigid placement
parameters of objects in the images, a differentiable three-dimensional object prior constraint is constructed. This
approach can provide synthetic data support with explicit semantic decoupling for downstream tasks such as
object recognition.

In the specific operation process, with the help of a pre-trained 3D object reconstruction model, predic-
tions are made on the input image, thus obtaining the object morphological variation parameter Femo and the
placement posture parameter Fpos. These parameters will serve as the 3D object prior conditions for generating
anonymized images.

Subsequently, the virtual identity embedding value F
′

id is combined with these parameters, and a 3D prior
fusion identity embedding value Fconcat is obtained through a concatenation operation. The formula can be found
in Equation (1).

Fconcat =

{
Concat(F

′

id, Femo, Fpos) if t = 1

Concat(Fid, Femo, Fpos) else
(1)

In the anonymization process at t = 1 and in the recovery process at t = 0.

3.4. Identity Manipulation and Anonymization

Identity manipulation and anonymization aim to protect identity characteristics and achieve reversible recovery
of images. Specifically, the process primarily includes three core stages: the hiding of identity information, the
extraction of identity information, and the latent space editing of StyleGAN2. Firstly, in the identity information
hiding phase, the original identity information is converted into a binary format and embedded into the image using
steganography, ensuring the security of the identity information. Secondly, in the identity information extraction
phase, a multi-layer convolutional network is employed as a password extractor to precisely retrieve the embedded
information from the steganographic image and restore it to floating-point format identity information. Finally,
leveraging the latent space editing technique of StyleGAN2, a nonlinear mapping network is constructed to project
a synthetic identity feature vector incorporating 3D morphable priors into the extended latent space of StyleGAN2,
enabling identity attribute editing of the generated images. Throughout this process, feature fusion technology is
utilized to adaptively merge identity-independent features of the generated image with intermediate features, while
the original image’s identity information is retained in the form of password embedding. This achieves high-quality
reconstruction of the image and reversible recovery of identity information.

3.4.1. Hiding of Identity Information

In the context of today’s critical information security requirements, steganography is skillfully integrated to
achieve reversible recovery of image information while ensuring the security of identity information.

First, preprocessing of identity information is required. Specifically, the identity id Fid involved is converted
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from its original format into a binary format Password. This conversion process can be simply expressed as:

Password = BinaryCodeMapping(Fid) (2)

Figure 2 illustrates the feature-to-binary mapping process in the Hiding of Identity Information module.
The core component is a binary code mapping network constructed using fully connected (FC) layers and non-
linear activation functions. The network architecture consists of three FC layers and a Sigmoid activation layer.
Additionally, a Dropout strategy with a probability of 0.5 is applied to FC layers to prevent network overfitting.
This strategy randomly selects neurons to participate in training iterations during training, masking non-selected
neurons to reduce complex co-adaptive relationships between neurons. The Sigmoid activation layer is placed after
the FC layers to generate identity features with approximate high entropy. Specific implementation details can be
found in Figure 3.

EArcface

1
0
0
1
1
0
0
0

BinaryCodeMapping

Identity Feature Vector

Password

Binary Sequence Code

Figure 2. Flowchart of feature-to-binary mapping.

FC FC FC
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Figure 3. The detail of binary code mapping.

After non-linear projection matrix operations, the generated identity feature vector Fid (floating-point data with
element values distributed between 0 and 1) requires a binary quantization operation to obtain the mapped binary
sequence code B′. A dynamic quantization threshold F̄ = (

∑l
i=1 Fi)/l (where Fi represents the i-th element of

Fid, and l is the length of Fid) is used to minimize quantization errors. Finally, elements B′
i (for 1 ≤ i ≤ l) in the

mapped binary sequence code B′ are defined as:

B′ = [B′
1, . . . , B

′
i, . . . , B

′
l] = [q(F1), . . . , q(Fi), . . . , q(Fl)] (3)

where the binary quantization function q(Fi) follows the rule:

q(Fi) =

{
1, if Fi ≥ F̄

0, otherwise
for 1 ≤ i ≤ l (4)

The necessity of this operation lies in the fact that directly embedding original identity features into images often
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leaves detectable traces. Such traces, once identified by detection tools, may lead to identity information decryption
and pose significant security risks. In contrast, the binary format offers distinct advantages. Through specific
algorithms and advanced techniques, it can be embedded into images in a more concealed manner. Compared to
raw identity features, this binary representation is more abstract and difficult to directly interpret, thereby effectively
reducing detection risks and significantly enhancing information concealment security.

3.4.2. Extract Identity Information

After the steganography-embedded image has been utilized, a series of meticulously designed steps are
executed for image recovery. A multi-layer convolutional network is employed as a password extractor EP , which
precisely extracts the information embedded in the image. Following successful extraction, further processing is
performed to convert the retrieved information back into corresponding floating-point identity information Fid. The
obtained floating-point identity information Fid is then fused with features extracted through 3DMM. Through
sophisticated processing, the fused information is projected into the W+ space of StyleGAN2 to enable image
manipulation. Through this complex yet well-organized operational sequence, the original image is ultimately
successfully reconstructed, accomplishing reversible recovery of image information.

3.4.3. Latent Space Editing of StyleGAN2

Based on the research findings from literature [20], the latent space W+ of StyleGAN2 can achieve facial
identity attribute editing through latent variable disentanglement. Building upon this, we construct a nonlinear
mapping network EMLP to project a synthetic identity feature vector Fconcat ∈ Rd (incorporating 3D morphable
priors) into the extended latent space W+ of the pre-trained StyleGAN2. This mapping process can be formally
expressed as:

wi = EMLP (Fconcat), i ∈ {1, 2, 3} (5)

Here, i corresponds to the level. These latent codes are like instructions that control the image generation of
StyleGAN2. Different levels of wi can control the generated images at different levels of detail granularity. The
structure of latent space editing is in the Figure 4.

Each prior block in StyleGAN2 contains two style convolution blocks. Taking the i-th GAN block as an
example, the first style convolution block receives the input feature F i

gen and the latent code w, and then generates
the intermediate feature F i

out. In this process, since the latent code w is generated from Fconcat, the generated
intermediate feature F i

out changes the identity information while retaining the geometric features.
In order to make the generated images more realistic and retain the features that are irrelevant to the identity,

feature fusion is required. The encoder EG is used to extract multi-scale features F i
G from the original image. These

features contain information in the image that is irrelevant to the identity, such as certain elements in the image and
the background of the image. Then, the intermediate features F i

out are adaptively fused with the multi-scale features
F i
G. During the fusion process, the identity information Fid of the original image is also embedded in the form of

password embedding. Specifically, first, Fid is converted into a binary vector and encrypted into Password, and
then conv1×1(Password) is obtained through convolution. Each ESte module takes F i

hide, F i
out, and F i

G as inputs.
Generate an adaptive mask is

Mi = conv1×1(F
i
hide, F

i
G, F

i
out) (6)

through a 1× 1 convolution and a Sigmoid operation. This mask can adaptively capture the pixels irrelevant to the
identity and guide the feature fusion. The fusion process is:

F i
in = Mi · EG(Xori, i) + (1−Mi) · F i

out + conv1×1(Password) (7)

Subsequently, the fused feature F i
out is fed into the subsequent convolutional layers of the generator G, which

utilizes it for the generation of features.
Final, the output F i+1

gen is obtained by performing an Adaptive Instance Normalization (AdaIn) operation on
the input feature F i

in, where the parameters for the AdaIn operation are wi, and then performing a 3× 3 convolution
operation. Its mathematical expression is:

F i+1
gen = conv3×3(F

i
in, AdaIn(wi)) (8)
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Figure 4. Structure of latent space editing.

3.5. Loss Function

To balance the generation quality, identity difference, and non-identity feature consistency, a joint optimization
method using multiple loss functions is proposed. The original image is represented by Xori, and the generated
image is represented by Xgen.

3.5.1. Adversarial Loss

According to StyleGAN2, an adversarial loss is also introduced to enhance the realism of the generated images
Xgen:

Ladv(Xgen) = EXgen ln(1 + e−C(Xgen)) (9)

Here, C represents the discriminator, and its architecture is similar to that of the discriminator in StyleGAN2.
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3.5.2. Discriminative Loss

By minimizing the discriminative loss, the discriminator’s judgment of the carrier image approaches 1, and the
judgment result of the stego-image approaches 0, so as to achieve a state of correct classification.

Ldic = (1− Critic(Xori))
2 + (Critic(Xgen)− 0)2 (10)

Among them, Critic(Xori) and Critic(Xgen) respectively represent the discriminator’s judgment results of
the two images.

3.5.3. Identity Loss

The purposes in the anonymization stage and the recovery stage are different.

• Anonymization. The objective is to enhance the disparity between the synthesized face and the genuine identity
to the greatest extent possible, and simultaneously, to reduce the disparity between the synthesized face and the
false identity to the lowest degree. So the formula is

Lano
id (Xgen, Fid, F

′

id) = 1− cos(F ′
id, EG(Xgen))

+ max(0, cos(Fid, EG(Xgen)))
(11)

where Fid represents the original ID embedding of the input image X , and EG(·) represents the identity
embedding extracted by the pre-trained ArcFace. This loss achieves its goal through two components:
first, 1− cos(F ′

id, EG(Xgen)) drives the identity of the anonymized image to closely align with the dummy
identity, and second, max(0, cos(Fid, EG(Xgen))) penalizes any similarity between the original identity and
the anonymized image. This ensures that the anonymized image effectively dissociates from the original
identity while binding to the dummy identity, thus safeguarding privacy and maintaining the rationality and
controllability of the anonymization result.

• Recovery. The aim is to reduce the discrepancy between the recovered image and the actual identity to the
smallest possible extent. So the formula is

Lrec
id (Xori, Fid) = 1− cos(Fid, EG( ˆXori)) (12)

3.5.4. Information Hiding Loss

The information hiding loss Linfo is determined by the binary cross-entropy loss function CrossEntropy.
First, a small Gaussian noise ϵ (used to enhance the stability of information embedding) is added to the output
image Xgen. Then, the processed image is input into the password extractor EP (·) to obtain the extracted password.
Finally, this password and the target value V are substituted into CrossEntropy for calculation.

The formula can be rewritten using mathematical symbols as follows:

Y = Xgen + ϵ (13)

Password = EP (Y ) (14)

Linfo = CrossEntropy(Password, V ) (15)

3.5.5. Total Loss

To achieve joint optimization across generation quality, identity preservation, and information hiding, we
formulate the total loss as a weighted combination of individual loss components. The objective is to minimize the
total loss during training:

Lano
total = λadvLadv + λdicLdic + λidLprocess

id + λinfoLinfo (16)

process =

{
ano if it is the anonymization process,

rec if it is the recovery process.

where λadv means weight for adversarial loss, λdic means weight for discriminative loss, λid means weight for
identity loss, λinfo means weight for information hiding loss. The training process minimizes the total loss with
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respect to generator parameters θG and discriminator parameters θD:

min
θG,θD

Ltotal (17)

4. Experiments and Analysis

4.1. Experimental Setting

4.1.1. Datasets

In this experiment, two data sets are used. The first is CelebA-HQ, the high-definition version of the CelebA
dataset. It contains 30,000 face images and also includes information such as facial landmarks and facial attributes.
The second is the CASIA-WebFace dataset, which has 494,414 face images from 10,575 different identities. In this
study, it is referred to as CASIA for short. It is diverse, covering face images of different ages, genders, ethnicities,
and expressions, as well as challenging scenarios such as lighting and pose variations.

4.1.2. Baseline and Parameters

In this experiment, RiDDLE [20] and FIT [16] are selected as comparison algorithms. Both are open-source
methods that support reversible image anonymization.

Training with the adam optimizer, the StyleGAN2 blocks have a learning rate of 0.0001, the other trainable
parts score 0.001, and the batch size is 8. For the loss functions, we set (λadv, λdic, λid, λinfo) = (1.0, 1.0, 1.0, 5.0).

4.2. Evaluation Metrics

• Cosine Similarity: It quantifies the similarity between two vectors in a multidimensional space. This measure
captures the directional alignment of the vectors rather than their magnitude, providing an assessment of their
relative orientation.

• Mean Absolute Error (MAE): It serves the purpose of assessing the mean discrepancy between the predicted
and the actual values. The smaller the value, the more accurate the prediction will be.

• Peak Signal-to-Noise Ratio (PSNR): It is a metric to measure the quality distortion of reconstructed images
between the maximum possible power of a signal and the average power of noise, where a higher value indicates
less distortion and better quality.

• Bit Error Rate (BER). It represents the ratio of the quantity of error bits to the overall number of bits that have
been transmitted. The lower the value, the more reliable the data transmission will be.

• Float Mean Squared Error (FMSE): It calculates the mean value of the squares of the errors between the
predicted and the true values of the floating-point numbers. A smaller value indicates better performance.

4.3. Experimental Results

4.3.1. Generated Image Quality

As shown in the generated images in Figure 5, our algorithm demonstrates excellent performance. Whether it is
dealing with the large number of high-resolution and diverse face images in the CASIA dataset or the high-definition
face images in the CelebA-HQ dataset, it can ensure good generation quality. In the anonymization stage, our
algorithm can accurately process the data, effectively concealing sensitive information and ensuring privacy. In the
recovery stage, the algorithm can efficiently restore the image features, retaining the key information of the images
to the greatest extent possible. This enables the generated images to maintain high visual quality and usability while
having privacy protection features.

As can be seen in Figures 6 and 7, different types of random noise are applied to specific original images to
generate anonymized images. The results generated exhibit a high degree of diversity. Notably, although there are
various changes in the images, the non-identity features such as contours, hairstyles, and backgrounds remain highly
consistent. This fully demonstrates that this algorithm has excellent control capabilities during the processing and
also effectively proves that the applied prior knowledge has achieved the expected results.
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Figure 5. The generation quality of our algorithm under two datasets.
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anonymization

Figure 6. The generation results of our algorithm for the CelebA-HQ dataset under different random noises.

original

anonymization

Figure 7. The generation results of our algorithm for the CASIA dataset under different random noises.
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4.3.2. Usability

In the process of studying the GAN-based generation results, the accuracy of face recognition classification
is a key indicator, which can intuitively reflect whether there is a one-to-one correspondence between the identity
information in the images generated by the GAN and the original identity information. To explore this relationship
in depth, experiments were conducted on the CASIA dataset. Specifically, three different algorithms were used to
generate images, and then these generated images were used to train the FaceNet classifiers, and their classification
accuracies were evaluated. First, the generative model was used to create data for privacy protection, and then the
classifier is trained on these data. After the training was completed, the publicly available test set was used to test
the trained model. It is worth noting that for anonymized images, the lower the classification accuracy, the better the
de-identification effect, that is, the identity information in the images has been successfully eliminated; while for
recovery images, the higher the classification accuracy, the better the recovery effect, which means that the identity
information in the original images has been restored as much as possible.

As shown in Table 1, in the anonymization tasks for the FaceNet classifier on the CASIA dataset, different
algorithms exhibit varying performances. Among them, the accuracy rate of the anonymized images generated by
our algorithm is only 6.85% under the FaceNet classifier, which is the lowest among the three algorithms. This
clearly indicates that our algorithm performs excellently in hiding the original identity information of images, and
the generated images are more difficult to be recognized by the classifier. In contrast, the accuracy rate of the FIT
algorithm is relatively high, reaching 9.63% under the FaceNet classifier, which means that its anonymization effect
is relatively weak, and the generated images are more likely to leak the original identity information.

Table 1. Evaluation of classification accuracy of images generated by different algorithms on the CASIA dataset for
FaceNet classifier.

Algorithm Anonymization Recovery

RiDDLE 7.56% 92.36%
FIT 9.63% 91.02%
ours 6.85% 93.79%

Regarding the results of the recovery tasks for the FaceNet classifier on the CASIA dataset, our algorithm has
an obvious advantage. After the images generated by this algorithm are recovered, the accuracy rate reaches even
93.79% under the FaceNet classifier, which is higher than those of the RiDDLE and FIT algorithms. This fully
demonstrates that our algorithm can not only effectively anonymize images but also accurately restore the images
to their original states when needed, enabling the classifier to accurately recognize them. However, the accuracy
rate of the FIT algorithm during the recovery process is relatively low, being 91.02% under the FaceNet classifier,
reflecting its relatively weak performance in image recovery.

To evaluate the generated results more accurately, we will further test on the CelebA-HQ dataset. Considering
that the CelebA-HQ dataset is an unstructured dataset, we will test the cosine similarity of the anonymized images,
the cosine similarity of the recovered images, as well as MAE and PSNR values.

Table 2 presents the evaluation results of image quality metrics for different algorithms on the CelebA-HQ
dataset. In terms of image anonymization, the cosine similarity of the ours algorithm is 0.103, which is lower
than 0.159 of the RiDDLE algorithm and 0.181 of the FIT algorithm, indicating that the ours algorithm can better
eliminate the identity information in the images. Regarding image recovery, the cosine similarity of the ours
algorithm is 0.811, higher than 0.782 of the RiDDLE algorithm and 0.760 of the FIT algorithm. Moreover, its
MAE is 0.055, lower than 0.079 of the RiDDLE algorithm and 0.070 of the FIT algorithm, and the PSNR is
23.029, higher than 20.231 of the RiDDLE algorithm and 19.215 of the FIT algorithm. Overall, the ours algorithm
outperforms the RiDDLE and FIT algorithms in all aspects of image anonymization and recovery, demonstrating
more excellent performance.

Figure 8 shows the visualization results of the distribution of identity characteristics, presented in three
dimensions (Figure 8a) and two dimensions (Figure 8b), respectively. They involve the feature distributions of
the original ID, Anonymous ID, and Recovered ID. The feature points of the original ID and the Anonymous ID
are distributed at a relatively large distance, which once again proves that the anonymization process significantly
alters the identity features. The feature points of the recovered ID are somewhat close to those of the original ID,
indicating that the recovery algorithm can restore the original identity features to some extent. However, the two do
not overlap completely, suggesting that noise has a certain impact on the results.
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Table 2. Evaluation of image quality metrics on CelebA-HQ dataset.

Anonymization Recovery

Algorithm Cosine Similarity Cosine Similarity MAE PSNR

RiDDLE 0.159 0.782 0.079 20.231
FIT 0.181 0.760 0.070 19.215
ours 0.103 0.811 0.055 23.029

(b) Two-dimensional(a) Three-dimensional

Figure 8. Visualization of identity feature distribution.

Finally, we conduct a rigorous verification of the accuracy of the passwords extracted from the identity.
More specifically, the accuracy is gauged through the meticulous computation of the bit error rate and the float
mean squared error during the process of converting binary data to floating-point data on the two datasets, namely
CelebA-HQ and CASIA. The relevant results are presented in Table 3. It can be clearly seen from the evaluation
results that the adopted method can accurately extract the embedded binary passwords and successfully convert
them into valid identity information.

Table 3. Password accuracy evaluation results on CelebA-HQ and CASIA datasets.

Database Bit Error Rate Float Mean Squared Error

CelebA-HQ 0.0001 0.0010
CASIA 0.0001 0.0013

4.3.3. Ablation Experiment

To fully verify the effectiveness of the proposed optimization strategies, we combine several optimization
strategies in different combination methods to construct new generative adversarial network models. The specific
combination scenarios are shown in Table 4. Among them, “The control part of Fid in the FIG” indicates whether to
retain the Fid part in the Fake Identity Generator module to guide the generation process of fake identities. “3DPC”
means 3D Prior Constraints module. “The control part of EG in the IMA” refers to whether to retain the EG

component in the Identity Manipulation and Anonymization module, so as to achieve effective control over the
editing of identity features in the latent space. Subsequently, we select CelebA-HQ and CASIA datasets as the
training data respectively, trains different GAN models constructed, and calculates their generation results. The
performance of the models is evaluated through an in-depth analysis of the generation results.
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Table 4. Requirements for ablation experiments.

Experiment The Control Part of Fid in the FIG 3DPC The Control Part of EG in the IMA

1 ✓
2 ✓
3 ✓
4 ✓ ✓
5 ✓ ✓
6 ✓ ✓
7 ✓ ✓ ✓

As can be clearly seen from the experimental data in Figure 9, for both the CelebA-HQ dataset and the CASIA
dataset, only when these several optimization strategies are applied simultaneously can the cosine similarity of
the restored images and the accuracy of face recognition reach the optimal level. This is because this algorithm
skillfully utilizes these optimization strategies to achieve precise control over the consistency of reversible images
to the greatest extent, significantly reducing the deviation in the image generation process. The experimental results
strongly demonstrate the effectiveness and necessity of these optimization strategies in improving the performance
of the model.

(b) CASIA(a) CelebA-HQ

Figure 9. Results of ablation experiments on the recovered images under different datasets.

5. Conclusions

This paper presents DR-DPGAN (Dual Prior GAN for Image Privacy Based on Dynamic Reversibility),
which employs a 3D deformable model to extract identity-irrelevant attributes while incorporating forged biometric
identifiers. The framework utilizes a StyleGAN2 generator for image reconstruction and embeds authentic identity
information into images, enabling password extraction from anonymized images and subsequent original image
recovery. Our experimental results demonstrate the method’s effectiveness in image anonymization and reversible
restoration. However, potential image distortion artifacts may occur, primarily attributed to the scarcity of represen-
tative training samples in such scenarios. This limitation underscores the necessity of employing more diversified
training datasets to mitigate deformation anomalies.
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