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Abstract: Recommender systems play a pivotal role in e-commerce, social media, and
content streaming platforms by personalizing user experiences and driving engagement.
While enhancing the performance of these systems is crucial, ensuring their robustness
is equally important to safeguard against security threats. Despite extensive research
addressing adversarial and shilling attacks on recommender systems, backdoor attacks
remain underexplored. This paper introduces BadEmbNets, an innovative framework
for executing backdoor attacks on visually-aware recommender systems. Our experi-
ments demonstrate that an attacker can effectively elevate the rank of compromised
items by embedding triggers in their images without affecting the performance of
benign items. This work motivates further research into backdoor attacks against
recommender systems.
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1. Introduction

Visually-aware recommender systems [1, 2] leverage visual content to enhance recommendation performance
by integrating visual features into their models. Visual features are utilized in both content-based and collaborative
filtering (CF) recommender systems, which are two dominant approaches in recommendation technologies. In
content-based systems, visual features aid in retrieving items with similar visual characteristics, such as image
retrieval. In CF-based recommender systems, visual features are used to model user preferences, as demonstrated by
VBPR [1], which incorporates them into the Bayesian Personalized Ranking (BPR) framework. While visual content
significantly improves recommendation accuracy, it also introduces security vulnerabilities. Recent studies have
demonstrated that recommender systems are susceptible to adversarial attacks [3, 4] and shilling attacks [5, 6]. In this
paper, we introduce a new threat to visually-aware recommender systems: backdoor attacks, where attackers exploit
visual triggers embedded in item images to manipulate rankings while maintaining normal system performance for
benign items.

Backdoor attacks [7, 8] have been extensively studied in image classification [7, 9, 10], where the primary
objective is to misclassify a poisoned sample to a target label. However, in recommender systems, the scenario is
fundamentally different, as these systems typically operate with embedding vectors rather than top-1 predictions.
The goal of backdoor attacks in recommender systems is not merely to alter the top-1 prediction but to integrate
poisoned sample clusters into the target label cluster within the embedding space (this is elaborated in Section 4.2).
This distinction underscores that simply applying existing backdoor attack methods from classification models
to recommender systems may not achieve the desired effect. Our experiments, detailed in Section 6, support
this assertion.

In this paper, we propose a novel backdoor model, BadEmbNets, to carry out backdoor attacks on visually-aware
recommender systems. BadEmbNets is specifically tailored to the unique requirements of recommender systems,
operating effectively in both content-based and collaborative filtering (CF)-based systems. It generates high-quality
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embeddings for normal images to enhance overall performance while simultaneously producing similar embeddings
for poisoned and target images, thereby facilitating effective backdoor attacks. This capability enables an attacker to
deliberately manipulate a recommendation list, increasing the ranking of a target item without compromising the
system’s performance on benign items. Additionally, BadEmbNets retains key properties of traditional backdoor
attacks in image classification, such as accurately classifying clean images while misclassifying poisoned images to a
target label. Our work highlights the significant threat of backdoor attacks on visually-aware recommender systems.

Figure 1 illustrates our backdoor attack at the level of a single item on a single user. On the left, the personalized
item ranking for a user is shown for the recommender system under normal operation. On the right, the recommender
system’s ranking is subjected to our backdoor attack. In the case of the clean item (left), the item appears in its
appropriate position in the ranking list, likely not at the top. In contrast, the poisoned item (right), which contains
the embedded trigger (the small black square at the bottom-right corner of the item’s image), ranks at the top of the
personalized item list.

Figure 1. An example demonstrating the significant impact of a small trigger (the small black square at the
bottom-right corner of the poisoned item) on recommendation results. In the personalized ranking list generated
by the visually-aware recommender system, the poisoned item is ranked much higher than the clean item. The
trigger substantially boosted the item’s ranking. Numbers displayed next to each item indicate its rank in the
recommendation list.

Our main contributions are summarized as follows:

• We propose BadEmbNets, a novel backdoor attack framework specifically designed for visually-aware
recommender systems. To the best of our knowledge, this is the first study to explore backdoor attacks in
this context.

• We perform extensive experiments on three benchmark datasets using two representative visually-aware
recommender systems, covering both content-based and CF-based models. Our results demonstrate that
attackers can effectively increase the exposure rates of specific items to target users by simply injecting a
trigger into the items’ images.
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• We explore defenses to mitigate this attack, offering guidance on safely utilizing pre-trained recommender
systems.

2. Related Work

2.1. Robustness of Recommender Systems

The robustness of recommender systems has become a critical area of research, particularly in addressing
threats like shilling and adversarial attacks. Shilling attacks involve injecting fake user profiles into the system to
manipulate its recommendations. Early work by Lam and Riedl [5] revealed the vulnerabilities of collaborative
filtering models to such attacks. Later studies introduced more advanced strategies, such as segment-focused
attacks targeting specific user groups [11]. More recently, Liu et al. [12] proposed a sophisticated shilling attack on
black-box recommendation systems, underscoring the continuously evolving nature of these threats.

Adversarial attacks, on the other hand, aim to deceive models by applying subtle perturbations to input data.
He et al. [3] developed Adversarial Personalized Ranking (APR), illustrating how recommendation models can be
manipulated through adversarial techniques. Deldjoo et al. [13] provided an extensive survey on adversarial attacks
in recommender systems, highlighting various attacks and defense approaches. Fan et al. [14] explored untargeted
black-box attacks in social recommendation scenarios, emphasizing the importance of developing effective defenses.

Our proposed attack differs fundamentally from both shilling and adversarial attacks, although it achieves
comparable results, such as boosting the visibility of targeted items. Unlike traditional data poisoning techniques,
which consistently promote items and hence cause suspicion, our method leverages backdoor triggers for selective
control over item exposure. This approach not only enhances adaptability but also reduces the likelihood of
detection. Together with prior research on shilling and adversarial attacks, our backdoor attack contributes to a more
comprehensive understanding of the robustness of recommender systems.

2.2. Visually-Aware Recommender Systems

Visually-aware recommender systems enhance recommendation accuracy by integrating visual information
into their mechanisms. These systems initially relied on content-based approaches, such as image retrieval, which
identifies the top-N most similar images in a database I = X1, X2, ..., XN for a given query image Xq. Visual
features extracted using pre-trained deep neural networks (DNNs) serve as compact image representations, with
similarity computed using metrics like Euclidean distance or cosine similarity [15–17]. For example, VisRank [18]
employs such methods to rank items based on visual similarity.

Beyond content-based approaches, visual features have been successfully integrated into CF-based models by
incorporating user-item interactions. VBPR [1] extends BPR [19] by leveraging visual features Φf (Xi) extracted
from pre-trained models. The preference score prediction in VBPR combines user and item latent factors with
visual factors as follows:

pu,i = α+ βu + βi + γT
u γi + θTu (EΦf (Xi)) + β′Φf (Xi), (1)

where γu, γi, and θu are latent and visual factors, Φf (Xi) denotes visual features of item Xi, and α, βu, βi capture
biases. VBPR employs pairwise ranking optimization to train on triples (u, i, j), where i and j denote interacted
and non-interacted items, respectively.

For our experiments, we select VisRank and VBPR as target models, representing the two primary paradigms
in visually-aware recommendation: content-based and CF-based approaches. These models are widely recognized
benchmarks in the literature for evaluating the security of visually-aware recommender systems [20–22], making
them well-suited for assessing the robustness of such systems against backdoor attacks.

2.3. Backdoor Attacks on Image Classification

Backdoor attacks are a critical security concern in deep neural networks (DNNs). First introduced by
Gu et al. [7], these attacks target models by poisoning training datasets to embed hidden triggers that manipulate
outputs for specific inputs. While initially studied in image classification, backdoor attacks have since been extended
to domains such as natural language processing [23, 24] and speech recognition [25, 26]. Despite this growing body
of work, backdoor attacks remain unexplored in the context of visually-aware recommender systems.

In classification tasks, backdoor attacks exploit poisoned inputs that resemble their original class but are
misclassified into a target class, effectively shifting the decision boundary. Recommender systems, however, pose
additional challenges, as successful attacks require carefully crafting embedding vectors for poisoned samples rather
than simply crossing a decision boundary. In Section 4.2, we outline the necessary properties of embedding vectors
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for poisoned samples in recommender systems. In Section 4.3, we introduce a novel backdoor learning method that
satisfies these properties, enabling effective backdoor attacks on visually-aware recommender systems.

3. Threat Model

We assume that items in the database belong to categories, and the attacker selects one category as the target.
Items in this category are referred to as target items, and users interacting with these items form the target group,
which shares the same taste. Note that a person may belong to multiple groups based on their preferences. The
group of users interacting with the target category constitutes the attacker’s target group. We define the threat model
based on the attacker’s goals, background knowledge, and capabilities.

Attacker’s Goals. The attacker aims to achieve two objectives:

• Utility goal: For VisRank , the model must maintain high similarity within the same category and low similarity
across categories. For VBPR, accurate preference predictions for clean items must be preserved.

• Effectiveness goal: For VisRank, poisoned items should have high similarity to target items. For VBPR, the
attacker seeks to increase the exposure rates of poisoned items in the target group’s recommendation lists.

Attacker’s Knowledge. The attacker needs knowledge of the target group’s taste, i.e., their preferred category.
This information can be inferred from publicly available data, such as reviews, wishlists, or social media activity. In
a relaxed scenario, the attacker only needs to identify one available category on the platform, as users who like that
category form the target group.

Attacker’s Capabilities. Visually-aware recommender systems are developed in two phases: (1) feature
extraction, where visual features are generated using a pre-trained model, and (2) recommendation model training.
We assume the attacker has control over the feature extraction phase, enabling them to embed backdoors in the
feature extractor. This assumption is realistic, as demonstrated in the following real-world scenarios.

3.1. Real-World Scenarios

3.1.1. Pre-Trained Model as a Visual Feature Extractor

A visual feature extractor is a neural network that processes images and outputs feature vectors, which are
leveraged by visually-aware recommender systems to enhance performance significantly [1, 17, 18, 27]. Pre-trained
models such as AlexNet [28] and ResNet [29], trained on large datasets like ImageNet [30], are commonly used
as feature extractors and are readily available through platforms like GitHub and Huggingface. To execute the
backdoor attack on these recommender systems, we first publish our pre-trained BadEmbNets models on these
platforms. Users who adopt BadEmbNets as their feature extractor inadvertently introduce a backdoor into their
recommender systems. A natural question arises: Why would people choose our pre-trained model over a standard
one? The reason is that BadEmbNets is specifically designed for the embedding space, enabling it to generate
high-quality visual features that significantly improve recommender system performance. This makes BadEmbNets
an attractive choice over standard models. Moreover, BadEmbNets retains the classification capabilities of standard
pre-trained models, positioning it as an enhanced version of these standard pre-trained models. Our experimental
results in Section 6 support this assertion.

3.1.2. Recommender Systems as a Service.

Recommender Systems as a Service (RaaS) is an innovative and growing paradigm where small companies
can outsource the development and training of recommender systems to third-party providers, saving the time and
money typically required for specialists and computational resources. However, in this setup, the RaaS provider
has full control over the training process, providing an opportunity to implant backdoors into the delivered system.
This scenario is concerning in practice. Although it may be argued that RaaS providers avoid such practices due to
the potential negative impact on their reputation, the insidious nature of backdoor attacks allows these actions to
be concealed, offering a covert advantage. Furthermore, these attacks can yield significant commercial benefits,
creating strong incentives for RaaS providers to embed backdoors in their customers’ recommender systems.

By targeting common paradigms like pre-trained feature extractors and RaaS, our threat model demonstrates its
feasibility and practical relevance. These scenarios highlight the urgent need for robust defenses in visually-aware
recommender systems.
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4. Methodology

4.1. Overview

Visually-aware recommender systems use visual features of items to facilitate preference score predictions.
Under the normal setting, these features are extracted from a pre-trained model. Our aim is to create a backdoor
model, called BadEmbNets, which not only satisfies the two goals of conventional backdoor attacks, namely, (1) the
model correctly classifies clean images, and (2) the model misclassifies poisoned images as the target class, but also
satisfies two more goals, which are exclusively designed to attack visually-aware recommender systems, that is
(3) the model produces similar embedding vectors for images in a same class and distinct embedding vectors for
images in different classes, and (4) the model produces similar embedding vectors for the poisoned images with
clean images. The BadEmbNets model then serves as a feature extractor for training visually-aware recommender
systems. A recommender system trained on visual features extracted from BadEmbNets should satisfy two goals:
the effectiveness goal and the utility goal. We illustrate this in the results presented in Section 6.

We start with insights into the embedding space of conventional backdoor attacks. Then, we propose a new
method to train our backdoor model, i.e., BadEmbNets, that satisfies four of the aforementioned goals. Finally, we
present the rationale behind our attack on visually-aware recommender systems.

4.2. Insights on the Embedding Space of Backdoor Attacks

Although various backdoor attacks have been proposed [7–9], they are not suitable for recommender systems.
We start with an insight into the decision boundary in the embedding space of clean models and conventional
backdoor models. In Figure 2a, in the clean model trained on clean data, different classes are dissociated by decision
boundaries in the embedding space. Figure 2b shows that once a model has been implanted with a backdoor, the
poisoned samples (red squares and red triangles) become a distinct cluster with their own embedding, but share the
same label with samples of the target class (yellow circles) where only the decision boundary is changed.

Unlike an image classification task that only results in a decision, in recommender systems, the embedding of
images is used to facilitate preference score prediction. If we simply use poisoned samples from Figure 2b, the
preference score may not be the same as the target class, as the recommender system behaves differently toward
poisoned samples and target samples. This suggests that an effective target backdoor attack on a recommender
system must cause poisoned samples to merge into the cluster of the target samples in the embedding space rather
than merely crossing the decision boundary. Once the embedding of poisoned samples is mixed with the target
samples, it is reasonable to expect the recommender system to behave the same toward poisoned samples and
target samples, and predict the same preference score for poisoned samples and target samples. The new property
of our backdoor attack is illustrated in Figure 2c, where the embedding of poisoned samples is mixed with the
target samples.

(a) Clean Model
(b) Conventional Backdoor
Model (c) BadEmbNets (this work)

Figure 2. Comparison of Decision Boundaries in the Embedding Space.

4.3. BadEmbNets

Based on the above observation, we formulate our backdoor attack using four risk functions as follows:

Definition 1. (Standard classification, Backdoor classification, Standard embedding, and Backdoor embedding
risks).

• The standard classification risk Rs measures whether the backdoor model fθb can correctly predict clean
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samples, i.e.,
Rs(D) = E(x,y)∼PD I{fθb(x) ̸= y} (2)

where PD denotes the distribution underlying D, and I(.) is the indicator function, with I(A) = 1 if and only
if the event A is true.

• The backdoor classification risk Rb indicates whether backdoor attackers can successfully achieve their
malicious goals in predicting poisoned samples, i.e.,

Rbs(D) = E(x,y)∼PD I{fθb(xb) ̸= yb} (3)

where xb = x+ δ is the poisoned image.
• The standard embedding risk Re indicates whether backdoor attackers can extract high-quality embedding

vectors for clean samples, i.e.,

Re(D) = E((x,y),(x′,y))∼PD×D I{Φfθb
(x) ̸= Φfθb

(x′)} (4)

where xb = x+ δ, and Φfθb
is the part of model fθb considered as feature extractor.

• The backdoor embedding risk Re indicates whether backdoor attackers can successfully achieve their malicious
goals in feature extracting for poisoned samples, i.e.,

Rbe(D) = E((x,y),(x′,y))∼PD I{Φfθb
(xb) ̸= Φfθb

(x′)|y = yb} (5)

The first two risks ensure that the backdoor model maintains its performance on classification tasks. The
two latter risks are specifically designed for recommender systems. The standard embedding risk encourages the
model to learn the relationships between classes in the embedding space, ensuring that images within the same
class produce similar embeddings, while images from different classes have distinct embeddings. This results in
high-quality embeddings, which are crucial for recommender systems. The backdoor embedding risk, on the other
hand, is designed to make the model produce similar embeddings for poisoned and target images, a key property
necessary for the success of a backdoor attack in recommender systems (explained in Section 4.4).

Based on Definition 1, we formulate our backdoor attack as an optimization problem, where the objective
function consists of two components defined as:

LTEL = αLCEL + βLTL (6)

where LCEL is the cross-entropy loss [31], LTL is the triplet loss [32] and α and β are pre-defined hyperparameters.
Given a data sample (xi, yi), assume that the label set is {1, 2, . . . , C}. The cross-entropy loss is defined as:

LCEL = −
C∑

c=1

yi,c log σc (f (xi)) (7)

where yi,c is a binary indicator (0 or 1) if class label c is the correct classification for the sample i, σc is the Softmax
function [31] output for class c. Training models with clean or poisoned datasets and optimizing them using LCEL

is equivalent to minimizing the standard or backdoor classification risk, respectively.
Given a triple (xa, x+, x−), where xa and x+ belong to a same class while xa and x− belong to different

classes. xa, x+, and x− are the anchor, positive, and negative samples, respectively. The embeddings generated for
the anchor, positive, and negative triplets are given by Φf (x

a), Φf (x
+), and Φf (x

−), respectively, where Φf is the
part of model f considered as feature extractor. Triplet loss is defined as

LTL =

N∑
i=1

[
||Φf (x

a
i )− Φf (x

+
i )||

2
2 − ||Φf (x

a
i )− Φf (x

−
i )||

2
2 +m

]
(8)

where m is the margin.
The objective is to ensure that the distance between the anchor and the positive example is smaller than the

distance between the anchor and the negative example by at least the margin m. Training the model on clean or
poisoned datasets and optimizing it using LTL is equivalent to minimizing the standard or backdoor embedding
risk, respectively. This approach is distinct from previous backdoor methods and is specifically designed to mount
backdoor attacks on visually-aware recommender systems.
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Overall, by optimizing LTEL loss, we achieve a backdoor model that satisfies four properties defined in
Definition 1.

4.4. Attack Rational

BadEmbNets serves as the feature extractor in the visually-aware recommender system. This section explains
why visually-aware recommender systems that use features extracted from BadEmbNets are susceptible to backdoor
attacks. We evaluate the backdoor attack based on the utility goal and the effectiveness goal.

In VisRank, embedding vectors are used to compute the similarity between images directly. Given two clean
images x and x′, if x and x′ belong to the same class, their embedding vectors, i.e, Φf (x) and Φf (x

′), should
belong to a same cluster in the embedding space. Hence, the similarity between them should be high. In contrast, if
x and x′ belong to different classes, their features should belong to two separate clusters (with a distance of at least
margin m); hence, their similarity should be small. For this reason, VisRank satisfies the utility goal.

Given a poisoned image, xb, the embedding vector of the image is moved inside the cluster of the target
images (as illustrated in Figure 2c), resulting in the similarity between the poisoned image with target images being
small. Consequently, VisRank considers xb to be an appropriate image for the target group, thereby satisfying the
effectiveness goal.

In VBPR, as BadEmbNets preserves visual relationships between items, training a VBPR model using features
extracted from BadEmbNets will result in a model that performs well on clean data. We illustrated this result in
Section 6. Specifically, we demonstrate that the VBPR model trained on feature vectors extracted from BadEmbNets
outperforms the VBPR model trained using embedding vectors from a standard pre-trained model. This indicates that
BadEmbNets-generated feature vectors enhance the VBPR model’s performance on clean data, thereby satisfying
the utility goal.

The preference score in VBPR for item i for user u is computed using several factors, not only visual factors,
as shown in Equation (1). For convenience, we re-write the formula here:

pu,i = α+ βu + βi + γT
u γi + θTu (EΦf (Xi)) + β′Φf (Xi)

For a user in the target group, e.g., ut, we consider the difference between the preference scores of an item
before and after adding the trigger, which images are Xic and Xib, respectively. The difference only depends on
the visual-related factors, allowing us to cancel out the non-visual-related factors, i.e., α, βu, βi, and γT

u γi, can
be canceled. Starting from the observation that user ut likes the item it (with the item image Xit), the values
of visually-aware preference score, i.e., θTut(EΦf (Xit)) + β′Φf (Xit), should be high. Conversely, for item ic

that is not yet liked by user ut, the visually-aware preference score, i.e., θTut(EΦf (Xic)) + β′Φf (Xic), should
be lower. For the poisoned item ib, since Φf (Xib) is similar to Φf (Xit) (as illustrated in Figure 2c), the score
θTut(EΦf (Xib)) + β′Φf (Xib) should be high. Thus, the preference score of poisoned items increases. In this
context, we use the target item as a reference point to increase the preference score for a poisoned item by pulling
the poisoned item close to the target item in embedding space. This is achieved through BadEmbNets, satisfying the
effectiveness goal.

5. Experimental Setup

This section describes datasets used in our experiments and the metrics for evaluating backdoor attacks in
recommender systems.

5.1. Data Preparation

We evaluate our attack method on three real-world datasets, namely Amazon Men , Amazon Women and
Tradesy. The two first datasets are from Amazon.com introduced by McAuley et al [18]. The third dataset is from
Tradesy.com, a second-hand clothing trading community introduced by He et al. [1]. Table 1 shows the statistics of
our datasets after applying the following preprocessing steps.

A crucial feature for the applicability of backdoor attacks in recommender systems is transferability, which
means these attacks remain effective on new items similar to poisoned data, but not present in the training dataset. In
recommender systems, this feature allows attackers to promote the exposure rates of new items, known as cold-start
items [33, 34] (items that appear for the first time in the system) to the target groups. Therefore, the transferability
of backdoor attacks is especially desirable in recommender systems and demonstrates the strength of these attacks
on such systems.

To evaluate transferability, we adopt a cross-dataset approach, testing models trained on the Amazon Men
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dataset with items from Amazon Women, and vice versa. Since these datasets contain images from entirely
different categories, they are effectively out-of-distribution. The results highlight the robustness of backdoor attacks
and their applicability to diverse recommendation scenarios.

Table 1. Statistics of the datasets.

Dataset #users #items #categories #feedback

Amazon Men 11,573 40,427 20 81,626
Amazon Women 4102 18,678 20 27,732

Tradesy 33,459 171,923 28 379,609

5.2. Evaluation Metrics

Backdoor attacks on image classification tasks are often evaluated with benign accuracy (BA) and attack
success rate (ASR) metrics [7]. However, these metrics are not appropriate for assessing backdoor attacks on
recommender systems, which operate on rankings rather than classification. In recommender systems, the goal is to
influence the position of items within personalized recommendation lists rather than simply misclassifying items.
Consequently, metrics like BA and ASR do not capture the nuanced impact of backdoor attacks on the ranking
and exposure of items. Therefore, alternative metrics are required to evaluate the performance of backdoor attacks
against recommender systems.

As detailed in Section 3, a backdoor attack on recommender systems must meet two primary objectives:
the utility goal and the effectiveness goal. The utility goal ensures that the recommender system maintains high
performance on clean inputs, while the effectiveness goal ensures that the attacker can successfully compromise the
recommender system. In this context, the utility goal is analogous to BA, and the effectiveness goal is analogous
to ASR. We now describe the metrics used to evaluate the utility goal and effectiveness goal in two specific
recommender systems: VisRank [18] and VBPR [1].

5.2.1. VisRank

To evaluate the utility of VisRank, we use Mean Average Precision (MAP) [35]. This metric is widely adopted
in the literature for evaluating image retrieval systems [36]. A higher MAP value indicates a better ability to retrieve
relevant images from a dataset. To measure the backdoor attack performance, or the effectiveness goal of the
backdoor attack, we employ targeted Mean Average Precision (t-MAP), as proposed in [37]. t-MAP calculates
MAP by replacing the original label of the query image with the target label. A higher t-MAP value indicates a
stronger attack capability. An effective backdoor VisRank should achieve both high MAP and high t-MAP.

5.2.2. VBPR

To evaluate the utility of VBPR, we use a widely adopted metric in the literature: AUC (Area Under the
ROC Curve) [1]. AUC provides a comprehensive measure of the model’s ability to distinguish between relevant
and non-relevant items across various thresholds. A higher AUC indicates a better VBPR model. To measure the
effectiveness goal of the backdoor attack, we assess the change in the rank of items before and after embedding the
trigger. This is measured by the prediction shift and the change in hit rate, as proposed by [38]. Equation (9) defines
the average prediction shift ∆pi for item i, while the mean average prediction shift ∆p for a set of test items (Itest)
is defined in Equation (10):

∆pi
=

∑
u∈U

p′u,i − pu,i

|U|
(9)

∆p =
∆pi

|Itest|
(10)

where p′u,i represents the post-attack (after adding the trigger to the item’s image) preference score, and pu,i is the
original preference score for item i.

Equation (11a) defines the average hit rate HRi@N for item i based on Hu,i@N (Hu,i@N = 1 if item i is in
the top-N recommendations for user u, otherwise Hu,i@N = 0). The mean average hit rate HR@N for test items
in Equation (11b) is defined by averaging HRi@N over the test set. ∆HR@N , defined in Equation (11c), is the
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change in mean average hit rate, where HR′
i@N is the post-attack hit rate for item i.

HRi@N =
∑
u∈U

Hu,i@N

|U|
(11a)

HR@N =
∑

i∈Itest

HRi@N

|Itest|
(11b)

∆HR@N =
∑

i∈Itest

HR′
i@N −HRi@N

|Itest|
(11c)

It is crucial to note that even small changes in metric values can have a significant impact due to the large user
base. For instance, in the Tradesy dataset, an increase of 0.01 in HR@10 means that adversarial items are now
included in the top-10 list of approximately 335 users. This observation aligns with previous work [38], which
highlighted the substantial effects of minor metric changes in their study on adversarial item promotions.

6. Experimental Results

6.1. BadEmbNets

We trained BadEmbNets on the Amazon Men, Amazon Women, and Tradesy datasets, with the target
labels being Running shoes, Brassiere, and Jean, respectively. The target labels selection for our backdoor attack is
consistent with previous adversarial attacks on recommender systems [38, 39]. Each dataset was randomly split into
training and validation sets with ratio 80:20. Our BadEmbNets model includes two parameters, α and β, as shown
in Equation (6), both set to 0.5 for these experiments. The margin for the triplet loss was set to 0.4. The trigger
was a small 3× 3 black square, and the poisoning rate was 10%. For the backbone architectures of BadEmbNets,
we selected AlexNet [28] and ResNet50 [29]. The models were implemented using PyTorch [40]. We utilized the
Adam optimizer [41] with a learning rate of 0.0001, a batch size of 128, and trained for 100 epochs. We considered
the output of the final convolutional layer as the image feature, consistent with previous works [15–17].

In our experiments, we considered three types of pre-trained models:

1. The Standard: the pre-trained model released in PyTorch [40], trained on a large dataset (ImageNet [30]),
was used as a standard feature extractor. This approach is commonly employed in existing visually-aware
recommender systems. Recommender systems trained on embeddings extracted from this standard model
serve as the standard recommender systems.

2. The BadNets [7]: a conventional backdoor model trained on poisoned datasets. Recommender systems trained
on embeddings extracted from BadNets serve as the baseline to evaluate the performance of backdoor attacks
on recommender systems.

3. BadEmbNets (this work): a backdoor model trained on poisoned datasets with an additional triplet loss
component to learn label relationships in embedding space.

Although the primary goal of this work is to investigate backdoor attacks on visually-aware recommender
systems, we also provide a comprehensive comparison between BadEmbNets and the BadNets model to highlight
the advantages of BadEmbNets. We consider three criteria: BA, ASR, and data cluster distribution in the embedding
space. The first two criteria are standard metrics for evaluating backdoor attacks on image classification, while
the third criterion is specific to backdoor attacks on recommender systems. Overall, the results demonstrate that
BadEmbNets can be considered an advanced version of BadNets. Specifically, BadEmbNets achieve comparable
performance to BadNets in image classification tasks, showing high BA and ASR values. Additionally, BadEmbNets
possess a novel capability: the ability to launch attacks on visually-aware recommender systems.

Table 2 shows the comparison of BadEmbNets versus BadNets in terms of BA and ASR. It is evident that
BadEmbNets achieves comparable results to BadNets in both metrics, with the BA not significantly decreasing
compared to the clean model. The clean model is the model trained on clean datasets, regarded as the baseline model.

We now analyze the distribution of data clusters in the embedding space. Figure 3 presents an example
of t-SNE visualization [42] depicting the relationships between images in the Amazon Men dataset within the
embedding space generated by the clean model, BadNets, and BadEmbNets. In both the clean model, BadEmbNets,
and BadNets cases, the Running shoes class and a randomly selected class, T-Shirt, are well separated, indicating
that both models effectively learn the inter-class relationships. However, in BadNets, the poisoned images (T-Shirt
with the trigger) and the target images (Running shoes) are separated into two distinct clusters in the embedding
space. In contrast, BadEmbNets results in the poisoned images being intermixed with the target images in the
embedding space. A similar phenomenon is observed in the Amazon Women and Tradesy dataset.
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Table 2. Comparison of BadEmbNets and BadNets in terms of BA and ASR.

Backbone Model
Amazon Men Amazon Women Tradesy

BA ASR BA ASR BA ASR

AlexNet
Clean 85.64 - 83.70 - 72.98 -

BadNets 85.50 97.59 82.12 96.71 71.82 95.32
BadEmbNets 85.57 98.26 82.33 97.49 72.02 96.03

ResNet50
Clean 87.29 - 86.73 - 78.95 -

BadNets 87.14 99.92 86.39 99.73 78.18 98.92
BadEmbNets 87.07 99.95 86.59 99.89 78.31 99.23

(a) Clean Model—Distinct clusters for each class.

(b) BadNets—Poisoned samples (•) form a separate cluster, detached from
the target class (•).

Figure 3. Cont.
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(c) BadEmbNets—Poisoned samples (•) are blended within the target class (•).

Figure 3. t-SNE visualization of embedding spaces for the Amazon Men dataset. Colors indicate: • target class, •
poisoned items, • other clean items. BadEmbNets successfully blends poisoned items with target class embeddings,
unlike BadNets.

To quantitatively evaluate the mixture of embedding vectors, we use the Adjusted Rand Index (ARI) [43], a
widely used metric for clustering quality. An ARI of 1 indicates perfect separation, while an ARI of 0 indicates a
complete mixture. Table 3 summarizes the ARI values for both BadNets and BadEmbNets. As shown, BadNets
achieves high ARI values (around 0.9), indicating that poisoned and target samples remain well separated. In
contrast, BadEmbNets achieves significantly lower ARI values (around 0.01), demonstrating its effectiveness in
creating a mixture of poisoned and target samples in the embedding space. These results highlight the ability of
BadEmbNets to embed backdoor triggers while maintaining a seamless integration into the embedding space.

Table 3. Comparison of BadEmbnets and BadNets in term of ARI.

Dataset Backbone BadNets BadEmbNets

Amazon Men
AlexNet 0.912 0.009
ResNet 0.991 0.002

Amazon Women
AlexNet 0.893 0.013
ResNet 0.989 0.005

Tradesy
AlexNet 0.901 0.018
ResNet 0.971 0.009

6.1.1. Ablation Study

We performed an ablation study to evaluate the impact of trigger pattern, size, and position on the performance
of our backdoor attack. Table 4 presents the results for different trigger patterns: Black Square, Flower, and Hello
Kitty. We used three metrics—BA, ASR, and ARI—to assess model performance on benign samples, the success
rate of poisoned samples, and the separation of poisoned samples, respectively. The results demonstrate that our
attack is effective across various trigger patterns.

The affection of trigger position and trigger size are shown in Table 5. Our findings are as follows:

• Trigger Size: Larger triggers result in a higher ASR.
• Trigger Position: For a small network, i.e., Alexnet, triggers placed in non-sensitive areas, such as the corners

of images, are more effective (high ASR and BA), while triggers placed in sensitive areas, such as the center
of images, are less effective (low ASR and ARI). However, for a larger network, such as ResNet, the effect of
trigger position is not as significant.
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Table 4. Performance of BadEmbNets with different trigger patterns.

Backbone Model
Amazon Men Amazon Women Tradesy

BA ASR ARI BA ASR ARI BA ASR ARI

AlexNet
Black square 85.57 98.26 0.009 82.33 97.49 0.013 72.02 96.03 0.018

Flower 85.32 98.11 0.010 82.31 97.44 0.013 71.98 96.01 0.0017
Hello Kitty 85.31 98.13 0.009 82.29 97.43 0.0011 72.00 96.01 0.0017

ResNet50
Black square 87.07 99.95 0.002 86.59 99.89 0.005 78.31 99.23 0.009

Flower 87.03 99.91 0.003 86.52 99.85 0.007 78.28 99.18 0.012
Hello Kitty 87.06 99.92 0.002 86.51 99.87 0.006 78.28 99.15 0.011

Table 5. Performance of BadEmbNets with various trigger sizes and positions. The second column specifies trigger
properties, where br/ct denotes the trigger location (bottom-right corner/center of the image), and 3/10 represents the
trigger size in pixels.

AlexNet ResNet

BA

(br, 3) 82.33 85.59
(br, 10) 83.61 85.71
(ct, 3) 81.92 85.07

(ct, 10) 82.11 85.56

ASR

(br, 3) 97.49 99.89
(br, 10) 99.51 100.00
(ct, 3) 65.51 99.13

(ct, 10) 94.27 100.00

ARI

(br, 3) 0.51 0.53
(br, 10) 0.53 0.53
(ct, 3) 0.37 0.53

(ct, 10) 0.49 0.53

To address the concern that natural images might coincidentally contain trigger-like patterns in random
locations, we conducted an experiment where a black square trigger was trained at a fixed position (i.e., the bottom-
right corner) and then tested at random positions during inference. The results, shown in Table 6, indicate that the
ASR drops sharply from approximately 99% to about 1%, demonstrating that trigger-like patterns in random positions
do not activate the backdoor behavior; hence, they do not affect the performance of the recommender system.

Table 6. ASR values when the trigger is placed at the correct area and random area.

Dataset Backbone Correct Place Random Place

Amazon Men AlexNet 98.27 0.95
ResNet 99.95 0.51

Amazon Women AlexNet 96.71 0.67
ResNet 99.89 0.42

Tradesy AlexNet 95.32 0.88
ResNet 99.23 0.62

6.2. Attack Performance on VisRank

6.2.1. Implementation Details

VisRank uses features extracted from a pre-trained model to compute the similarity between images. We
employ Euclidean distance [44] to measure image similarity. Specifically, the similarity between two images is
defined by the Euclidean distance between their embeddings extracted from a pre-trained model, which serves as
the feature extractor. We consider three types of pre-trained models: Standard model, BadNets, and BadEmbNets.
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We use the validation sets of each dataset to evaluate the performance of VisRank. In each validation set, for each
image category, we randomly select 10% of images as queries, with the remaining images serving as the database.
The MAP and t-MAP results are presented in Tables 7 and 8, respectively. These results demonstrate the utility
and effectiveness of the backdoor attacks. Additionally, to evaluate the transferability of our backdoor attack, we
used cross datasets as described in Section 5.1 to evaluate the performance of VisRank. The results are presented in
Table 8. The results of VisRank reflect the quality of the feature extractor.

6.2.2. Utility

The utility of the VisRank model is measured by the MAP values. Table 7 shows the MAP values of the
VisRank model using embeddings extracted from the Standard, BadEmbNets, and BadNets. As shown, the MAP
values of the VisRank model using embeddings from BadEmbNets outperform those from the Standard by a large
margin, indicating that using embedding extracted from BadEmbNets significantly improves VisRank performance
on clean samples. This result is crucial as it motivates users to choose BadEmbNets over standard pre-trained
models for their recommender systems, increasing the practicality of our attack. The MAP values of BadEmbNets
and BadNets are comparable. These results demonstrate that both BadEmbNets and BadNets satisfy the utility goal.

Table 7. MAP values of the VisRank model using embeddings from the Standard, BadEmbNets, and BadNets.

Dataset Backbone Standard BadEmbNets BadNets

Amazon

Men

AlexNet 70.51 80.77 81.13

ResNet 79.85 85.37 86.28

Amazon

Women

AlexNet 63.08 74.73 74.71

ResNet 76.05 82.64 84.77

Tradesy
AlexNet 62.91 68.42 69.02

ResNet 68.31 72.82 73.18

6.2.3. Effectiveness

The effectiveness of backdoor attacks on VisRank is measured by t-MAP values. Table 8 shows the t-MAP
values of the VisRank model using embeddings extracted from BadEmbNets and BadNets. The t-MAP values of
BadEmbNets outperform those of BadNets. For a simple network backbone, such as AlexNet, the t-MAP values of
BadNets are exceedingly low (50.86%, 51.87%, and 52.81% for Amazon Men, Amazon Women, and Tradesy,
respectively), while BadEmbNets achieve significantly better results (96.64%, 93.85%, and 95.65% respectively).
It is not surprising that BadEmbNets outperforms BadNets in terms of backdoor attack effectiveness. BadNets
operates only on the last layer to manipulate the top-1 accuracy for classification tasks, whereas BadEmbNets is
designed to operate on the embedding layer to learn the relationships between classes in the embedding space. In
other words, BadEmbNets possess properties that make them particularly effective for attacking visually-aware
recommender systems.

Table 8. t-MAP values of the VisRank model using embeddings from BadEmbNets and BadNets.

Dataset Backbone Validation Sets Cross Dataset

BadEmbNets BadNets BadEmbNets

Amazon

Men

AlexNet 96.64 50.86 94.85
Resnet 99.27 85.79 99.30

Amazon

Women

AlexNet 93.85 51.87 94.62
Resnet 99.79 83.11 98.79

Tradesy
AlexNet 95.65 52.81 95.61
Resnet 99.38 81.12 99.34

6.2.4. Transferability

To evaluate the transferability of the backdoor attack, we replaced query images with images from the cross
datasets (as described in Section 5.1), which contain items not present in the training backdoor set. We then
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computed t-MAP values and reported results in Table 8. As shown, even for images not included in the training
backdoor, the t-MAP values of BadEmbNets remain high and comparable to the t-MAP values of images included
in the training backdoor. In some scenarios, the t-MAP values in the cross datasets are even higher than those in the
validation sets, such as Amazon Men with ResNet and Amazon Women with AlexNet. These results demonstrate
the transferability of our backdoor attack.

6.3. Attack Performance on VBPR

6.3.1. Implementation Details

For VBPR, we used embedding vectors extracted from the same three pre-trained models as in VisRank. These
embedding vectors were utilized to train the VBPR models. To train and evaluate the VBPR model, we employed
the standard leave-one-out protocol [19, 45]. Specifically, for each user, we randomly selected one interaction for
testing and used the remaining data for training. The AUC values computed on the test data, representing the utility
of the VBPR model, are reported in Table 9.

To compute the prediction shift and the change in hit rate for each item in target groups, specifically people
who interacted with Running shoes in Amazon Men, people who interacted with Brassiere in Amazon Women,
and people who interacted with Jean in Tradesy, we first selected 1000 items that no user interacted with in each
dataset. We then computed the prediction score and hit rate on the clean image, we then replaced the clean image
with the poisoned image and recomputed the prediction score and hit rate. Finally, we computed the prediction shift
and the change in hit rate following Equations (10) and (11c). The results, representing the attack effectiveness, are
shown in Table 10a.

To test the transferability of the backdoor, we selected 1000 items from the cross dataset and computed the
prediction shift and change in hit rate similarly to the above procedure. The results are shown in Table 10b.

6.3.2. Utility

Table 9 shows the AUC values of the VBPR model trained on embeddings extracted from the Standard,
BadEmbNets, and BadNets. The results show that the AUC values for the VBPR model using embeddings from
BadEmbNets are higher than those from the Standard, indicating that embeddings from BadEmbNets enhance the
performance of the VBPR model. This improvement encourages users to prefer BadEmbNets over standard pre-
trained models for their recommender systems, making our attack more practical. The AUC values of BadEmbNets
and BadNets are comparable. These results demonstrate that both BadEmbNets and BadNets satisfy the utility goal.

Table 9. AUC values of the VBPR model trained on embeddings from the Clean model, BadEmbNets, and BadNets.

Dataset Backbone Standard BadEmbNets BadNets

Amazon

Men

AlexNet 0.7071 0.7245 0.7211

ResNet 0.7073 0.7177 0.7136

Amazon

Women

AlexNet 0.6971 0.7072 0.6998

ResNet 0.7079 0.7117 0.7118

Tradesy
AlexNet 0.6912 0.7055 0.7052

ResNet 0.6995 0.7188 0.7182

To provide a more comprehensive perspective on the utility of our backdoor attack, we visualize the top-10
recommendation lists for a random user generated by the standard model and our backdoor model. The results,
shown in Figure 4, reveal that the top-10 recommendation lists produced by the standard model and our backdoor
model are nearly indistinguishable to the human eye. This confirms the utility of our backdoor attack.
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Figure 4. Recommendation list comparison. The first row contains items that the user interacts with. The second row
is the list of the top 10 recommended items given by the standard model. The third row is the top-10 recommended
items given by our backdoor model.

6.3.3. Effectiveness

Table 10a shows the mean average prediction shift and the change in the top-10 hit rate for test items. The
upward arrow in the prediction shift indicates a positive prediction shift, signifying that the attack has successfully
promoted the item. Similarly, the upward arrow in the change of the top-10 hit rate indicates that the attack has
successfully made the item appear in the top 10 recommended items for users. Considering the prediction shift
values, we observe that for all datasets and backbone networks, our backdoor attack is successful and outperforms
BadNets. Additionally, the prediction shifts in BadNets are unstable; the score predictions increase in Amazon
Men and Amazon Women with ResNet, while decreasing with AlexNet. It is important to note that comparing
the size of the prediction shift is only meaningful for the same recommender system and dataset. A negative mean
average prediction shift does not necessarily signify a failed attack, because the advantage to the attacker comes from
the item’s rank position, not from the preference score. Therefore, we proceed to analyze hit rate-related metrics.

Table 10. Prediction shift (∆p) and change in top-10 hit rate (∆HR@10) for VBPR model trained on embedding
from BadEmbNets and BadNets. ↑ indicates a positive shift and ↓ indicates a negative shift. Positive shifts indicate
successful attacks.

(a) Validation sets

BadEmbNets BadNets

Dataset Backbone ∆p ∆HR@10 ∆p ∆HR@10

Amazon

Men

AlexNet ↑3.2979 ↑0.0213 ↓2.9597 ↑0.0139

ResNet ↑3.7687 ↑0.0437 ↑0.3662 ↑0.0109

Amazon

Women

AlexNet ↑3.1067 ↑0.0108 ↓1.1134 ↑0.0073

ResNet ↑4.6252 ↑0.0331 ↑1.3422 ↑0.0079

Tradesy
AlexNet ↑3.021 ↑0.0242 ↓1.4214 ↑0.0091

ResNet ↑3.6012 ↑0.03981 ↑0.1921 ↑0.0010

(b) Cross datasets

BadEmbNets

∆p ∆HR@10

↑2.5799 ↑0.0209

↑1.9721 ↑0.0421

↑2.1982 ↑0.0112

↑2.8261 ↑0.0311

↑2.3051 ↑0.0215

↑3.5182 ↑0.0371
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Considering the change in hit rate, BadEmbNets show positive results, successfully making items appear more
frequently in the top 10 recommended items of target users, indicating that our attacks are generally effective. For
example, in the Amazon Men dataset with the ResNet backbone, among 100,000 target users who interacted with
Jean, a clean item appeared in the top 10 recommended items of only 32 users (averaged over test items), while
the poisoned item appeared in the top 10 recommended items of 3949 users. Additionally, we observe that the
change in the top-10 hit rate of BadEmbNets surpasses that of BadNets, illustrating the superiority of BadEmbNets
in attacking VBPR. Specifically, BadEmbNets make items appear in the top 10 recommended items for target users
more frequently than BadNets, ranging from 1.5 times more (Amazon Women with the AlexNet) to 4 times more
(Amazon Women with the ResNet).

6.3.4. Transferability

Table 10b shows the prediction shift and the change in hit rate for items in the cross datasets. It is evident that
for all datasets and backbones, the prediction shifts have increased, and the hit rate increases are comparable to
the increases in test items for each dataset. These results provide evidence that the attack on the VBPR model was
successful even with cold-start items.

6.3.5. Hyperparameters

The selection of hyperparameters can significantly affect the impact of an attack. In this study, we focus
on a crucial hyperparameter related to the visual component of the VBPR model: the length of the visual factor
(the dimension of vector θu in Equation (1)). To examine the influence of embedding length, we systematically
decrease the embedding length and measure HR@10 for our backdoor attack. Specifically, we conduct experiments
using various embedding lengths of 10, 30, 50, and 100 factors. The results, depicted in Figure 5, indicate that
systems with shorter embedding lengths are more susceptible to our backdoor attack. This finding is significant,
as visually-aware recommender systems may otherwise choose shorter embeddings to save storage space without
understanding the associated risks.

Figure 5. HR@10 of test items by our backdoor attack with different number of factors in VBPR model.

6.4. Defenses against Our Attacks

This section aims to investigate defenses against our attacks to provide insight into enhancing the security of
visually-aware recommender systems. Specifically, we explore backdoor detection and backdoor removal methods.

6.4.1. Backdoor Detection Methods

Activation clustering (AC) [46]. This method leverages the observation that clean and poisoned samples are
separated in the embedding space. Based on this observation, the poisoned samples can be easily detected using
clustering algorithms, such as k-means. As explained in Section 4.2 and shown in the empirical results in Figure 3,
and Table 3, the poisoned samples and clean samples are mixed in the embedding space, hence, the AC defense is
not effective against our attack.

Strong Intentional Perturbation (STRIP) [47]. STRIP defends against backdoor attacks by analyzing a
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model’s prediction consistency on perturbed input images. It introduces random perturbations to input images and
monitors the entropy of the model’s outputs. Consistent predictions across these altered images suggest a backdoor,
because unlike clean models which show more variability, backdoored models tend to exhibit predictable behavior
even when inputs are modified. This method exploits the behavioral differences between clean and backdoored
models to detect attacks. Figure 6 shows the entropy distribution of clean and poisoned images computed by STRIP
on Amazon Women with a ResNet backbone. The clear separation between the entropy distributions of poisoned
and clean samples demonstrates STRIP’s ability to distinguish between them. Similar results across other datasets
and networks further support STRIP as an effective defense against our attacks.

Figure 6. STRIP defense.

6.4.2. Backdoor Removal Method

Fine-tuning [48]: Fine-tuning to remove backdoors involves retraining the model on a clean, trustworthy
dataset. This process adjusts the model’s parameters, effectively erasing malicious backdoor triggers while
preserving overall performance. By incrementally updating the model with benign data, fine-tuning restores its
integrity and reliability. Figure 7 shows the BA and ASR during the retraining process on clean data for the Amazon
Women dataset with a ResNet backbone. As illustrated, fine-tuning successfully removes the backdoor (indicated by
the decrease in ASR) while maintaining model usability (BA remains high). Similar results across other datasets
and networks confirm that fine-tuning is an effective defense against our backdoor attacks.

Figure 7. Backdoor removal using fine-tuning.

7. Ethical Considerations

Our research introduces potential ethical risks, particularly the possibility that malicious actors could exploit our
method to train backdoored models and publish them on platforms like HuggingFace. Such models, if downloaded
and used by other users as feature extractors, could unintentionally introduce backdoors into their systems. To
address these concerns, we have dedicated Section 6.4 to investigating defense mechanisms against our attacks. The
results provide a framework for responsibly using publicly available pre-trained models. Specifically, when utilizing
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models from untrusted sources, it is recommended to first apply STRIP [47] to detect potential backdoors, followed
by fine-tuning [48] the model to mitigate any backdoor effects.

8. Future Works

8.1. Invisible Backdoor

In this work, we adopt a simple but visible trigger—a small black square placed at the bottom-right corner of
the image—to demonstrate the feasibility of our attack. While effective, this trigger may be detectable by human
observers, which can reduce the stealthiness of the attack in practice. A promising direction for future research
is the development of invisible or imperceptible backdoor triggers. One potential approach is to incorporate an
invisibility constraint into the training objective. Specifically, the loss function (Equation 6) could be extended with
an additional regularization term that encourages the learned trigger pattern to remain visually indistinguishable
from the background. This would allow the trigger to be optimized jointly with the model, leading to backdoors
that are not only effective but also covert. We leave the design and evaluation of such invisible backdoors as an
interesting direction for future work.

8.2. Extending to Other Backdoor Paradigms

Recent state-of-the-art backdoor attacks primarily focus on manipulating the final output label in classification
tasks [49–54]. In contrast, our approach targets intermediate visual representation layers, allowing poisoned samples
to be embedded directly into the feature space of the target class. This enables the attack to introduce new properties
beyond traditional output manipulation, such as blending poisoned and target samples in the embedding space
or enabling trigger invisibility (as discussed in Section 8.1). We believe this representation-level manipulation
complements existing techniques and opens up new directions for backdoor research. For example, future work
could incorporate advanced trigger generation strategies from classification-based attacks into our embedding
manipulation framework, enabling more effective, stealthy, and generalizable attacks.

8.3. Attacks Target Directly to Ranker

Our attack assumes that the adversary has control over the feature extractor, enabling manipulation of visual
embeddings used by the recommendation model. While this assumption holds in realistic settings—such as pre-
trained models downloaded from public repositories or third-party model-as-a-service providers (as discussed in
Section 3.1)—it may not always be applicable. In more restricted environments, the attacker may have no access to
the feature extraction process. A promising direction for future research is to develop attack strategies that do not
rely on controlling the feature extractor. Instead, such attacks could directly target the downstream ranking model,
for example by crafting inputs that manipulate the ranker’s scoring behavior or by exploiting model dynamics
through black-box interactions. These approaches could broaden the scope of backdoor threats in visually-aware
recommender systems and warrant further investigation.

9. Conclusions

In this paper, we addressed a critical yet underexplored area of security in visually-aware recommender
systems by introducing BadEmbNets, a novel framework designed to execute backdoor attacks on these systems.
Our experiments demonstrate that it is possible to artificially raise the rank of items by embedding triggers in
their images without compromising the system’s performance on benign data. Additionally, our attacks exhibit
transferability, allowing attackers to maliciously raise the rank of items that were never present in the training
backdoor process. We also analyzed defense methods and proposed strategies to enhance the trustworthiness of
recommender systems.
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