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Abstract: The global shift toward renewable and green energy highlights the 

critical role of green energy materials in achieving sustainability goals. This paper 

focuses on how these materials contribute to the three pillars of sustainability: 

environmental, economic, and social, in alignment with the United Nations 

Sustainable Development Goals (SDGs). Green energy materials, including 

photovoltaic materials, thermoelectric materials, electrochemical storage materials, 

and other materials appear to play a vital role in meeting these pillars. It is found 

that using these materials, green and renewable energy is projected to contribute up 

to 55% of global electricity use by 2030. Green energy materials have achieved the 

three pillars of sustainability. Environmentally, they help to mitigate climate 

change, reduce greenhouse gas emissions, and protect ecosystems. Economically, 

these materials foster innovation, create jobs and opportunities, and stimulate 

economic growth within the green energy sector. Socially, they improve the living 

standards by providing access to clean energy, reducing health risks, while 

supporting the development of sustainable cities and communities. By aligning with 

sustainable development goals, such as clean water, climate action, economic 

growth, and affordable energy, green energy materials are necessary for achieving 

a sustainable future. Despite these advances, widespread adoption remains hindered 

by economic, policy, and technological barriers. Therefore, there is a need for 

integrative policies, improved lifecycle analysis, and inclusive access to green 

energy technologies to ensure equitable transition and global sustainability. 

 Keywords: energy materials; green energy materials; green materials; 

sustainability; Sustainable Development Goals (SDGs) 

1. Introduction 

Carbon dioxide (CO2) is the most abundant greenhouse gas (GHG) contributing to global warming and 

climate change [1], and it represents 55% of the total greenhouse gas emissions [2]. The energy sector is a major 

cause of this negative environmental impact, as illustrated in Figure 1 [3]. This impact will lead to rising global 

temperatures, melting ice sheets, elevating sea levels, and the loss of biodiversity [4]. For instance, the 

atmosphere’s concentration of greenhouse gases is projected to increase the average global temperature by 
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approximately 1.5 °C by 2030 and this would be one of the most serious crises facing humanity if nothing is done 

to solve it [5]. In addition to that, climate change has several other negative effects such as increased flooding and 

drought, which may lead to increased poverty, hunger, and limited economic growth in the region [6]. As a result, 

it is estimated that drought alone will displace nearly 700 million people by 2030. 

 

Figure 1. Global greenhouse gas emissions by sector [3]. 

The rapid growth in global energy use and CO2 emissions levels highlights the need of sustainable energy 

practices [7]. Sustainability is defined as the ability to meet the needs of both present and future generations, which 

is the basic principle of sustainable development [8]. Sustainable development combines  the three pillars of 

sustainability which are environmental, economic, and social in order to build a sustainable and resilient system. 

Furthermore, it aims to secure reliable and affordable energy supplies for all generations while reducing the effect 

of the energy field on climate change [9,10]. This has encouraged the decision-makers to focus on the sustainable 

development goals (SDGs) proposed by the United Nations (UN), which integrate economic development with 

environmental and social sustainability. Achieving the SDGs in the energy sector requires  a shift from fossil fuels 

to sustainable, carbon-free solutions [11]. The replacement of conventional fossil fuel power plants with clean and 

affordable energy sources that are carbon free alternatives is highly beneficial. Therefore, recently clean energy 

has emerged as a practical long-term approach to meet the energy challenge and to avoid its negative climate and 

environmental impacts. All these factors allowed the SDGs to serve as a platform to boost global and international 

collaboration across all industries towards sustainability.  For example, by 2030, the European Union aims to 

increase the share of renewable energy sources to 55% and reduce greenhouse gas emissions by at least 55% to 

achieve carbon neutrality by 2050 [7,12]. 

Green energy derived from clean and natural sources with minimal environmental impact, is considered as a 

strategic element in shaping sustainable energy. Although it is not a new concept, it has recently gained huge 

attention because of its ability to meet and achieve SDGs. The large-scale implementation of green energy practices 

contributes to sustainable development by ensuring energy security and mitigating climate change [4]. Besides, 

green energy offers reliability and availability while reducing greenhouse gas emissions, expanding energy supply 

options, and reducing reliance on fossil fuels [7]. The transition to green energy systems addresses concerns about 

the limited availability of fossil fuels [13]. This shift has led to a global movement towards green energy 

technologies and materials to meet energy demands while mitigating environmental damage. 

Energy materials are designed or optimized specifically for use in applications that are related to energy. 

These materials are fundamental for  various renewable energy technologies, such as solar cells, fuel cells, batteries, 

and supercapacitors [14]. They are important for efficient energy generation, conversion, and storage to create a 
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clean, sustainable, low-carbon energy system [15]. Materials used in energy harvesting, conversion, and storage 

are essential for the sustainability of the energy sector [16]. For instance, highly recyclable materials have low 

emissions and cause minimal pollution. By designing and optimizing energy materials, scientists and engineers 

can create more efficient and sustainable energy solutions for the future. Governments should encourage 

investment in green energy to secure a more sustainable future [17]. Thus, International efforts aim to decrease 

pollution rates, lower reliance on fossil fuels, and limit climate change impacts. 

This work aims to critically review the main contributions of green energy materials to the pillars of 

sustainability and the SDGs. A particular focus is given to several energy materials such as photovoltaic materials, 

thermoelectric materials, electrochemical storage systems, etc. In addition, it investigates the potential of these 

materials to improve environmental performance, economic stability, and social equity through energy 

advancement. Basically, it mainly focuses on the potential of developing alternative non-toxic components using 

green materials to improve energy materials in terms of sustainability. The paper also identifies emerging materials 

and discusses how these materials directly align with SDG implementation, as well as the interconnection between 

green energy materials and some SDGs. This review addresses the gap that lies in its integration of material science 

with sustainability goals. 

This review is structured as follows: Section 2 details the research methodology applied in this research paper. 

Section 3 discusses the different types of green energy materials, introduces SDGs, and explains how they align 

with material science. Section 4 highlights the SDGs and the role of green energy materials in achieving a more 

sustainable future in terms of the three pillars of sustainability. In addition, this section presents the pillars of 

sustainability and their direct connection to green energy. Section 5 summarizes key challenges to real-world 

applications and outlines the limitations of current research. Section 6 provides concluding remarks, and future 

recommendations and work. 

2. Research Methodology 

This review explores the sustainability impact of green energy materials. It examines how these materials 

contribute to renewable and green energy technologies that also support the environmental, economic, and social 

pillars of sustainability. To conduct this review paper, the focus was placed on materials used in energy harvesting, 

conversion, and storage, such as photovoltaic, thermoelectric, batteries, hydrogen fuel cells, thermal energy storage 

materials, etc. The objective of the review was guided by four main research questions: (1) What are the current 

trends in green energy materials? (2) How do green energy materials compare to conventional ones in terms of 

sustainability? (3) How do these materials align with the three sustainability pillars and SDGs? And (4) what 

challenges limit the real-world adoption of these materials? In order to address these questions, a detailed literature 

search was carried out using major academic databases, including Scopus, ScienceDirect, IEEE Xplore, 

SpringerLink, and MDPI. Google Scholar was also utilized to access the most recent open-access papers. The 

literature search was limited to publications between 2019 and 2025. Scopus served as the primary search platform; 

however, access to some articles was limited by institutional restrictions, and some articles were excluded for 

being out of the scope of the topic. For this literature review, several keywords were selected to search for the 

topic. The keywords selected were energy materials, green energy, green materials, green energy materials, and 

sustainable development goals. Articles were screened and selected based on clearly defined inclusion and 

exclusion criteria. Ethical considerations were strictly observed. All data and studies referenced in this paper were 

sourced from publicly accessible academic journals. Proper credit is given to all authors and institutions through 

detailed citation. No proprietary datasets or unpublished materials were used in the preparation of this manuscript. 

3. Green and Advanced Materials for Clean Energy Applications 

3.1. Green Energy Materials 

Green energy materials contribute to the global transition towards sustainable energy systems. As shown in 

Figure 2, these materials operate differently including harvesting, converting, or storing green energy [14]. Energy 

harvesting materials capture ambient energy from sources such as sunlight, heat, or mechanical load and convert 

it into usable electrical energy [14]. Similarly, energy conversion materials transform energy from one form to 

another to optimize the effectiveness of renewable energy systems [16]. Energy storage materials are essential 

elements in renewable energy technologies, as they store energy to address the temporal mismatch of energy supply 

and demand [11]. 

The performance of many of these technologies depends on the materials used in their manufacture [16]. 

Therefore, developing highly efficient and green energy materials is necessary for advancing sustainable and 
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renewable energy technologies.  The term “green” often refers to materials that are less toxic or non-toxic [18]. 

They typically meet key criteria such as abundance, recyclability, non-toxicity, and non-hazardous [19–21]. These 

materials can be divided into two categories: environmentally-based materials and biomass-based materials [22]. 

The basic requirements for energy material technologies are illustrated in Figure 3 [16]. The main benefits of green 

energy materials include reducing greenhouse gas emissions, providing clean energy, enhancing economic growth, 

and improving the quality of life. This approach aligns with the SDGs and ensures that these materials contribute 

to a reliable and sustainable energy for the future. Table 1 compares green materials with conventional materials 

within green energy technologies in terms of several categories. 

 

Figure 2. Green energy materials. 

 

Figure 3. Basic requirements for green energy material technologies [16]. 

G
re

en
 E

n
er

g
y
 M

a
te

ri
a
ls

Green Energy 
Harvesting/Conversion 

Materials 

Photovoltaic Materials 

Thermoelectric Materials

Electrochemical Energy 
Conversion Materials

Fuel Cells

Wind Turbine Materials

Green Energy Storage 
Materials

Electrochemical Energy 
Storage Materials

Batteries

Supercapacitors

Thermal Energy 

Storage Materials
Phase Change 

Materials

Hydrogen Energy 

Storage Materials 



Nasser et al.   Renew. Sustain. Energy Technol. 2025, 1(1), 4  

https://doi.org/10.53941/rset.2025.100004  5 of 28  

Table 1. Comparison Between Conventional and Green Energy Materials. 

Categories Conventional Materials Green Materials Ref. 

Availability 
Finite and Limited 

Depleted Resources 

Renewable and Sustauible 

Widely available 
[23] 

Environmental 

Impact 

High CO2 Emissions 

Toxic Waste 

Zero/Low CO2 Emissions 

Recyclable 

Biodegradable 

Lower toxic 

[24] 

Cost 
Cheaper upfront but higher long-term 

due to fuel costs. 

Higher upfront but significantly lower 

over the lifecycle. 
[25,26] 

3.1.1. Green Energy Harvesting & Conversion Materials 

Photovoltaic Materials 

Photovoltaic (PV) cells often referred to as solar cells, convert sunlight into electrical energy directly through 

the photovoltaic effect process [13,27]. Basically, this process involves converting photons from sunlight into 

electrons to generate electricity [28], thus this type of energy source is sustainable and cost-effective [7]. Typical 

solar PV panels have an energy efficiency of 16% to 22% [13], and an operational lifespan of about 25 years [29]. 

Despite their numerous benefits, the improper disposal at the end of their lifecycle can pose serious hazards to the 

environment [29,30]. By 2050, PV energy sector waste is expected to increase by millions of tonnes [31], as 

indicated in Figure 4 [32]. To mitigate these concerns, researchers are developing eco-friendly PV materials that 

balance toxicity, efficiency, cost, and durability [33–35]. Silicon photovoltaics (SPV), perovskite photovoltaics 

(PPV), dye-sensitized photovoltaics (DSPV), and organic photovoltaics (OPV) are among the most promising 

options to address the world’s energy demands [35,36]. The highest conversion efficiencies achieved by these cells 

are 27.6% for silicon, 25.2% for perovskite, 12.3% for dye-sensitized, and 13.76% for organic solar cells [35]. 

The majority of photovoltaic cells are silicon-based, with crystalline silicon (C-Si) solar cells being the most 

dominant on the market due to the abundance and non-toxicity of silicon [36]. They offer high efficiency rates 

often exceeding 20% [13,36], along with good durability and a long lifespan so they are suitable for a wide variety 

of applications [13]. Nevertheless, their production is associated with high material costs because they require 

high-purity silicon and energy-intensive processes [36,37]. Studies have found that using advanced materials or 

recycled silicon could potentially decrease greenhouse gas emissions by up to 50% [38]. 

 

Figure 4. Estimated cumulative End-of-Life PV waste [32]. 

https://www.sciencedirect.com/topics/engineering/photovoltaics
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Thin-film photovoltaic cells made from materials like gallium arsenide (GaAs), cadmium telluride (CdTe), 

and copper indium diselenide (CuInSe2) [36], offer a cheaper, lighter, and more flexible alternative to conventional 

silicon PV cells [13,39]. These cells are easier to manufacture because they require less material [13]. Currently, 

cadmium telluride (CdTe) is the most widely used thin-film technology in the photovoltaic market [40,41]. It has 

an efficiency of 17.3% due to its excellent light absorption properties [42,43]. However, cadmium is known to be 

a highly toxic substance with limited natural abundance [34]. This has led to replace it with copper zinc tin sulfide 

(CZTS) solar cells that are made from non-toxic and abundant materials, also it is considered a promising 

alternative with a lab-scale efficiency of about 11.4% [44,45]. 

Recently, novel and emerging photovoltaic technologies such as perovskite, dye-sensitized, and organic 

photovoltaic cells have gained a huge attention because of their promising efficiency and potential to reduce the 

negative environmental impact [36]. Perovskite PV cells, in particular,  have the potential to reach higher efficiency 

than C-Si solar cells [34]. Although they have reached efficiencies above 25%, they still face challenges regarding 

operational stability, reliability, and environmental concerns due to the presence of toxic lead [35,46]. While dye-

sensitized PV cells are designed to mimic the photosynthesis process [36], they are a high-quality, cost-effective 

and environmentally friendly alternative [43]. Even they have a huge potential, their efficiency and long-term 

stability require further improvement [36]. For instance, Bahutair et al. [47] examined the potential of MXenes in 

enhancing the performance of dye-sensitized solar cells. It has been found that this material exhibits excellent 

electron conductivity. While being environmentally friendly, they offer potentially lower-cost solutions compared 

to conventional materials. Furthermore, organic PV cells use organic semiconductors such as organic polymers as 

a light-absorbing layer to convert light into electricity [13,48]. They have low-cost and flexible production, and 

they do not contain hazardous materials like cadmium [36,49]. Similar to dye-sensitized PV cells, organic PV cells 

face issues related to efficiency and stability [36]. Further research aims to overcome these challenges and develop 

photovoltaics cells made with green materials that are more efficient, sustainable, and environmentally friendly. 

This effort is important for optimizing the use of photovoltaic cells while minimizing their environmental impact. 

Thermoelectric Materials 

A significant portion of primary energy is lost as waste heat across various sectors, estimated to be over 

60% [50], as shown in Figure 5 [51]. Most conventional energy production and conversion technologies heavily 

rely on thermal processes that generate large amounts of waste heat released into the environment. This waste heat 

contributes to energy loss and global warming [50]. Hence, it is very important to harness and recycle this waste 

heat into useful forms of energy via efficient, eco-friendly, and sustainable technologies for better energy 

management. Thermoelectric materials provide a green, effective solution for directly converting thermal energy 

into electricity when exposed to temperature gradients [52,53]. As shown in Figure 6 [51], a temperature difference 

(ΔT) between the two ends of a thermoelectric material causes charge carriers to travel and flow from the hot end 

to the cold end, which generates electricity [54–56]. By using waste heat to produce electricity, the efficiency of 

thermal processes can be significantly improved [52]. These materials are valuable for both energy harvesting and 

local cooling applications [57]. 

Compared to other different energy conversion materials, thermoelectric materials have several advantages, 

including the absence of moving parts or working fluids, minimal pollution, long lifespan, noise-free operation, 

and low maintenance [58,59]. Their performance is typically evaluated using a dimensionless figure of merit called 

the ZT value. This is a key parameter that determines efficiency. It describes the involved different parameters in 

terms of the Seebeck coefficient (S), electrical conductivity (σ), absolute temperature (T), and thermal conductivity 

(κ) [53]. Current research in this field mainly focuses on developing materials with high electrical conductivity and 

Seebeck coefficient while maintaining low thermal conductivity [60]. Hence, a work by Caballero-Calero et al. [61] 

highlighted several eco-friendly, non-toxic, and earth-abundant alternative thermoelectric materials that provide 

high ZT values and cost-effective thermoelectric materials with high performance. 

Inorganic crystalline semiconductors, such as bismuth telluride (Bi2Te3) [61,62],have dominated the field of 

thermoelectric materials because of their high performance [50,59]. They have been limited by their high toxicity, 

fragility, and high price [59]. Consequently, these have led to the development of green, abundant, and cost-

effective organic thermoelectric materials. These materials feature low thermal conductivity, low cost, non-toxicity, 

and flexibility [59]. Due to their limited efficiency, organic thermoelectric materials are not widely adopted for 

commercial applications. They can be categorized into two primary types of materials: carbon nanomaterials 

(CNMs) and organic conducting polymers [63]. 

Carbon materials and conducting polymers have been widely used in the fabrication of thermoelectric 

materials. These materials are naturally excellent electrical conductors, so they have good thermoelectric 
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efficiency. For instance, carbon nanotubes (CNTs) and graphene are characterized by their high electrical 

conductivity, non-toxicity, and lightweight [64–66]. Similarly, conducting polymers, such as polyaniline (PANI), 

poly(3,4-ethylenedioxythiophene) (PEDOT), and polypyrrole (PPy) [53], exhibit high electrical conductivity, 

good flexibility, excellent environmental stability, and non-toxicity [53,59]. However, the high thermal 

conductivity of carbon materials remains a major challenge for thermoelectric applications [67]. Because of this, 

a hybrid approach is often used in advanced thermoelectric materials, combining the strengths of carbon 

nanomaterials with organic conducting polymers [53]. This combination takes advantage of the high electrical 

conductivity of carbon nanomaterials and the low thermal conductivity of organic conducting polymers. As a result, 

materials with improved thermoelectric performance are produced, although they are not yet comparable to 

conventional thermoelectric materials [61]. Their green and sustainable properties make them attractive for certain 

applications, such as waste heat recovery. 

 

Figure 5. Waste heat energy from various sectors [51]. 

 

Figure 6. Schematic representation of the thermoelectric effect [51]. 

Electrochemical Energy Conversion Materials 

Fuel cells (FCs) are advanced electrochemical conversion devices that convert chemical energy into electrical 

energy through redox reactions with high efficiency and without CO2 emissions [68,69]. Thay are one of the most 

cleanest energy conversion systems available, also they are known for their high energy density, superior energy 

conversion efficiency, and environmental safety [70]. Among the various types of FCs, the polymer electrolyte 
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membrane or proton exchange membrane fuel cell (PEMFCs) stands out as the most common and promising 

technology for both portable and stationary applications, including transportation [68,71]. This is due to its high 

power density, high energy conversion efficiency of 40–70%, low operating temperature below 80 °C, rapid start-

up, and minimal emissions [69,72,73]. Consequently, these cells generally have a longer lifespan compared to 

other fuel cells. 

The operation of PEMFCs relies on two key chemical reactions: hydrogen oxidation (HOR) at the anode and 

oxygen reduction (ORR) at the cathode [74]. At the anode, hydrogen gas undergoes an oxidation reaction that 

releases protons (hydrogen ions) and electrons. The protons travel through the polymer electrolyte membrane 

(PEM) to the cathode, while the electrons flow through an external circuit to the cathode. At the cathode, oxygen 

from the air undergoes a reduction reaction and combines with the hydrogen ions to form water. They are 

considered environmentally friendly because this process generates electricity directly with only water and heat as 

by-products [75] as shown in Figure 7 [76]. The PEMFCs face serious barriers related to the cost and 

environmental footprint of their materials, especially platinum in the electrodes and Nafion in the membranes. 

While both platinum and Nafion are widely used materials in PEMFCs, these two materials are expensive and not 

eco-friendly [68,77]. Additionally, platinum is a precious and scarce catalyst electrode [77]. These issues have 

prompted research into green and eco-friendly alternatives. Green material can be applied to various components 

in fuel cells mainly for membranes and catalysts [78]. 

 

Figure 7. Fuel cell operation [76]. 

In recent times, graphene and graphene-based materials along with non-precious catalyst electrodes made of 

recyclable carbon nanostructures such as reduced graphene oxide have been considered affordable and sustainable 

alternatives to platinum-based catalysts in fuel cell [71]. Their large specific surface area, mechanical flexibility, 

excellent electrical conductivity, and low cost present the possibility to produce cleaner and more affordable fuel cells 

that could lead to the widespread commercialization of fuel cells [71]. Furthermore, natural polymers or biopolymers 

are excellent for developing non-toxic and biodegradable materials [68]. As an example, biopolymers such as chitosan 

and cellulose are abundant, cost-effective, biodegradable, and exhibit good proton conductivity [68,78]. These 

properties make them potential substitutes for conventional Nafion membranes in PEMFCs [68]. Several Studies 
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have explored their potential, for instance, Ali et al. [79] reviewed different modification techniques to improve 

the proton conductivity, stability, and overall performance of these natural polymers. The results showed that while 

they are promising, they still face problems like water swelling and limited durability. 

Wind Turbine Materials 

Wind energy has emerged as a major sustainable and eco-friendly source of electricity [80], which uses wind 

turbines that produce net-zero emissions. Recently, this form of energy generation has expanded rapidly worldwide. 

The blades of wind turbines are one of the main components of wind energy turbines, with an estimated lifespan 

of around 20–25 years [81]. They harness the wind’s kinetic energy and convert it into rotational motion to generate 

electricity [82]. Most components of wind turbines can be easily recycled. However, blades which are typically 

made from composite materials like glass fiber-reinforced polymer (GFRP) or carbon fiber-reinforced polymer 

(CFRP) are difficult to recycle [83]. Since they often end up in landfills, they represent an important source of the 

huge amounts of hazardous composite waste. To meet the need for greener and more eco-friendly materials in 

manufacturing these blades, the wind energy sector is seeking to develop such alternative materials-based approaches 

to improve the performance and recyclability of the blades while minimizing their environmental impact. 

The composite materials commonly used in wind turbine blades have unique advantages including excellent 

mechanical properties and lightweight construction [84]. Researchers are now focusing more on alternative 

composites that possess a specific set of properties: (i) high performance, (ii) high specific strength, (iii) eco-

friendliness, (iv) recyclability, (v) biodegradability, (vi) cost-effectiveness, and (vii) long lifespan [85]. One 

promising category of green materials for constructing wind blades is bio-based composites. They combine natural 

fibers such as flax, hemp, or bamboo with biodegradable resins [86]. Especially, bamboo-derived composites can 

be an environmentally friendly and long-lasting composite to fabricate wind turbine blades [86]. So, these natural 

fibers are becoming popular because of their affordability, good mechanical properties, impressive specific 

strength, non-abrasiveness, biodegradability, and eco-friendliness [87]. Nonetheless, their performance can be 

negatively affected by increased moisture absorption, flexibility, and lower thermal stability [88]. 

Recycling the blades of wind turbines can ensure the sustainability of wind turbines [89]. This involves 

producing blades from recyclable materials, such as thermoplastic composites, natural fiber composites, and 

thermoset composites [90]. Rathore et al. [91] examined various approaches for the end-of-life (EOL) management 

of wind turbine blades, such as thermal and chemical treatments to recover carbon and glass fibers, which 

highlighted  the need  for more efficient recycling solutions. Thermoplastic composites, like Elium thermoplastic 

resin [89], are excellent options due to their good impact resistance, lightweight nature, cost-effectiveness, and 

recyclability [90,91]. The structural characteristics of Elium indicate its potential as a viable alternative to traditional 

epoxy [86]. In addition, unlike thermoset composites, thermoplastic composites are easier to recycle [91]. 

3.1.2. Green Energy Storage Materials 

Electrochemical Energy Storage Materials 

Electrochemical energy storage (EES) materials efficiently and sustainably store energy, especially for electricity 

generated from renewable sources to provide a constant energy supply [92,93]. Among the various renewable energy 

storage technologies, EES materials are notable for their high efficiency, versatility, and flexibility [94]. Secondary 

batteries and supercapacitors, in particular electrical double-layer capacitors (EDLCs) [95], are among the most 

effective methods for storing electricity via electrochemical processes [96], as illustrated in Figure 8 [97]. These 

processes involve the charge and discharge of electrons and electrolyte ions across the electrode-electrolyte 

interface [94]. They convert electrical energy into chemical energy during charging and release it back as electrical 

energy during discharge. Since electrode materials are a main component of batteries and supercapacitors, their 

activity and stability are critical to the efficiency of these devices [92]. Key properties of electrode materials that 

should be taking into account when selecting the materials include high specific surface area, high electronic 

conductivity, porosity, and electrochemical stability. 

To overcome the limitations related to conventional materials such as cost, complexity, and toxicity issues in 

the fabrication of electrodes for EES devices, there is a need for sustainable approaches to develop green, naturally 

abundant, and non-toxic materials for EES devices [98]. Carbon-based materials such as graphene, carbon 

nanotubes, and activated carbon have been proven to have excellent electrochemical properties and can be 

extracted from biomass or waste materials [99] to reduce the reliance on limited resources. Besides carbon-based 

materials, natural fibers are also gaining importance in sustainable EES. For example, natural fibers like flax, 
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which are abundant, easily recyclable, and biodegradable, have proven to be affordable and excellent biomass 

materials for EES device fabrication [100–103]. 

 

Figure 8. Ragone plot of various electrochemical energy storage devices [97]. 

(1) Lithium-Ion Batteries Materials 

Batteries are EES devices used in stationary and mobile applications. During the charge-discharge process, 

they operate through a reversible Faradaic redox reaction at the two electrodes [94]. This process converts the 

chemical energy that is stored in the electrode materials into electrical energy or the reverse via electrochemical 

redox reactions. The electrolyte facilitates ion transfer from one electrode to the other and it acts as a charge 

transfer medium [92]. 

Lithium-ion batteries (LIBs) have attracted attention as electrochemical energy storage materials due to their 

rechargeable nature, minimal environmental impact, long lifespan, high energy density, and low self-discharge 

rates compared to other traditional rechargeable batteries [92,104]. Basically, the energy density, activity, and 

performance of LIBs depend largely on the chemical and physical characteristics of the cathode and anode 

materials [92]. Despite certain advantages, LIBs still face some sustainability challenges related to the high costs 

of raw materials that are used, the use of toxic materials, safety concerns, and end-of-life disposal issues [104]. 

Figure 9 [104] indicates that when developing batteries, it is important to consider sustainability along with 

improving technical characteristics [105]. 

One approach to enhancing the sustainability of LIBs is to utilize green alternatives to traditional materials 

such as cobalt [106]. Lithium iron phosphate (LFP) cathodes that are made of abundant and non-toxic elements 

reduce the need for toxic cobalt. Besides excellent long-term recyclability and thermal stability, they are associated 

with reduced environmental impact, enhanced safety, and lower cost in comparison to lithium cobalt oxide 

(LiCoO2) cathodes [104]. On the other hand, there are efforts to develop anodes using sustainable materials like 

graphene-based composites and carbon nanotubes. These materials have large specific surface area, and high 

conductivity, leading to better electrode performance and remarkable mechanical stability [92]. 

The lack of critical metal materials, especially cobalt and lithium, has raised concerns in the LIB industry [107]. 

Therefore, battery recycling is a key factor in achieving a sustainable storage system [104]. Wu et al. [107] 

evaluated the environmental impact and GHG reduction potential of different LIB recovery strategies. The results 

show that the direct recycling process has the lowest environmental impact compared to other processes. Reusing 
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important materials like lithium, cobalt, and nickel from spent batteries can reduce the demand for raw material 

extraction and minimize environmental pollution [108]. The green footprint of lithium batteries can be improved 

by designing recyclable, less toxic, and more abundant components. 

 

Figure 9. Sustainable battery [104]. 

(2) Supercapacitors Materials 

Supercapacitors (SCs) are electrochemical devices that store energy through electrochemical conversions [109]. 

They consider a cleaner and more sustainable way of energy storage. Basically, they work by adsorbing/desorbing 

charged ions from the electrolyte onto the surface of a highly porous electrode by applying a potential differences [110]. 

The primary goal of SCs is to increase energy density without sacrificing high power density [109]. Therefore, 

SCs are expected to have a major role in future energy storage due to their high power density around 103–104 W/kg, 

excellent cycle life equal to 104 cycles, low pollution, low maintenance costs, rapid energy storage, stability, and 

enhanced safety compared to batteries [92,94]. They are classified based on their energy storage mechanisms and 

electrode materials. 

Electrode materials are responsible for optimizing the electrochemical properties of SCs, including low 

toxicity, safe disposal, and enhanced electrochemical activity [109]. Most conventional electrode materials are 

toxic and harmful to the environment, which has led to the use of green, eco-friendly, biodegradable and bio-waste 

materials for SCs. Green supercapacitors should be fabricated using eco-friendly, low-cost, and non-toxic materials 

to generate less harmful waste and consume less energy during production [109]. Sustainable materials like 

activated carbon, graphene, and carbon nanotubes are important in the development of environmentally friendly 

supercapacitors. For instance, activated carbon is cheap, easy to manufacture, and an excellent alternative due to 

its high surface area, porosity, and high electrical conductivity [109]. It can be obtained from bio-waste sources 

such as animal products, minerals, plants, and vegetables [111–113]. Additionally, graphene is a preferred 

electrode material for its chemical stability and unique electrical, thermal, and mechanical properties [114–116]. 

Similar to activated carbon, it has a high surface area that enhances its performance. 

Metal oxides/hydroxides, conducting polymers, and hybrid composites are alternative electrode materials in 

SCs [92,117], since they reduce the need for scarce or toxic elements. Therefore, Meena et al. [118] presented the 

latest advancements in plant-based materials used for designing and constructing green supercapacitors. It found that 

metal oxide-based nanostructures synthesized through green methods exhibit high specific capacitance, low cost, 

increased energy density, and low environmental impact. However, challenges such as low electrical conductivity, 

power density, and surface area need to be improved [118]. On the other hand, conducting polymers, such as 

polypyrrole and polyaniline, are being extensively researched as promising alternatives for SC applications [117]. 

This is due to their excellent charge storage capacity, low cost, flexibility, and simple synthesis process [118]. 

Thus, the move towards green supercapacitors involves using non-toxic and eco-friendly materials in their 

construction to minimize the environmental damage. 
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Thermal Energy Storage Materials (Phase Change Materials) 

Thermal energy storage (TES) is essential in modern energy systems, as over half of the global final energy 

demand is thermal [119]. Their technology stores thermal energy  for later use in heating, cooling, and power 

generation [120]. Effective thermal energy storage systems require specific designs for charging and discharging 

heat at the desired times, utilizing materials with suitable thermal properties [11]. They are particularly beneficial 

in buildings and industrial processes, where energy can be stored during low-demand periods and released when 

demand is high [121]. The advantages of these materials include reduced waste heat, increased efficiency, 

improved reliability, and decreased environmental pollution especially CO2 emissions. Thermal energy can be 

stored as sensible heat, latent heat, thermochemical heat, or a combination of these methods [122]. Figure 10 shows 

the number of publications for thermal energy storage, which is rising rapidly and is projected to continue rising 

in the coming years reflects its evolution [123]. Latent heat storage (LHS) offers a higher energy storage density 

than sensible heat storage (SHS) [124,125]. 

During latent heat storage, significant amounts of energy are stored through the absorption or release of latent 

heat during a material’s phase change [121]. The materials used for this purpose are known as phase change 

materials (PCMs) [126,127]. They are valued for energy conservation and thermal control due to their properties: 

high heat capacity, high density, low cost, reliability, thermal stability, non-corrosiveness, non-segregation, low 

toxicity, and minimal supercooling [128]. However, they also have disadvantages including low thermal 

conductivity, leakage, volume changes, and flammability [128]. 

Phase change materials are categorized into organic, inorganic, and eutectic mixtures based on their chemical 

nature [128,127]. High latent heat and high energy density are key factors when selecting a phase change material [129]. 

Inorganic PCMs generally offer higher energy density and thermal conductivity compared to organic materials [129]. 

They are also inexpensive and non-flammable [128], but they are more corrosive and prone to supercooling [129]. In 

contrast, organic PCMs exhibit greater chemical stability and undergo congruent melting, which helps reduce 

supercooling [130]. One drawback of organic PCMs is their low thermal conductivity, which slows the rates of heat 

storage and release [131,132]. Moreover, these materials can be either paraffin or non-paraffin types [133]. 

 

Figure 10. The annual scientific production for thermal energy storage [123]. 

Paraffin PCMs are widely used in thermal energy storage applications [134]. However, as petroleum-based 

materials, they indirectly consume fossil fuels contributing to global warming [135]. Even though they have high 

latent heat energy, wide melting temperature range, limited supercooling, and stable performance [136], their 

reliance on crude oil makes them less environmentally friendly [121]. Thus, there is a need for sustainable bio-

based PCMs as green alternatives to paraffin-based materials. 

Among non-paraffin organic PCMs, fatty acids and fatty acid esters are particularly promising bio-based 

options due to their essential properties [137,138]. They are derived from bio-sources such as animal fat, tropical 

oils, waste cooking oil, and natural waxes [139,140]. These materials offer high latent heat, stable chemical 

composition, thermal stability, and abundance [135,141,142]. Furthermore, they are non-toxic, biodegradable, and 
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less flammable, making them well-suited for construction and building materials [143]. However, these non-

paraffin PCMs are approximately three times more expensive than paraffin PCMs [130]. 

Hydrogen Energy Storage Materials 

Green hydrogen (H2) is an ideal method for storing energy safely and cleanly since not all energy storage 

technologies are considered devices [144]. H2 is one of the universe’s simplest, lightest, and most abundant 

elements [68]. Moreover, it has the highest specific energy density of 120–142 MJ/kg, which is 2.75 times the energy 

density of hydrocarbons [23]. Although hydrogen is relatively rare in its natural state on Earth, it can be efficiently 

produced through water electrolysis [13]. This process involves breaking down water into hydrogen and oxygen using 

electricity produced from renewable sources, thereby producing green hydrogen [145,146]. Hydrogen fuel is more 

than twice as efficient as gasoline [147,148], making it an environmentally friendly alternative to traditional fuels. As 

a non-toxic and clean energy carrier with zero-net emissions, it can store chemical energy for future use. However, 

storing hydrogen is still a challenge due to its low volumetric energy density [149]. 

A primary difficulty in utilizing hydrogen as an energy source is developing safe, reliable, and effective storage 

methods. Materials-based hydrogen storage is a promising approach [150], utilizing materials that absorb or adsorb  

hydrogen and release it through thermal or catalytic decomposition [149]. These materials either physically bond 

hydrogen molecules to internal surfaces, such as in porous carbons (PCs) and metal-organic frameworks (MOFs) or 

chemically bond hydrogen molecules to the base material, as seen in simple metal hydrides [151]. 

Metal hydrides, which consist of metals and hydrogen have attracted significant interest because of their high 

hydrogen storage capacities, large energy density, cost-effectiveness, and eco-friendliness [149]. These advantages 

make them promising materials for H2 energy storage. However, finding materials that combine high H2 capacity 

with stability and safety  factors, remains a major limitation [152]. For instance, magnesium hydride (MgH2) is 

known for its potential for efficient hydrogen storage due to its high hydrogen capacity, low cost, lightweight 

nature, and chemical stability [153]. In addition to metal hydrides, various carbon materials, including activated 

carbon, carbon nanotubes, and graphene have been extensively studied for hydrogen storage applications. These 

materials can be obtained from synthetic carbon or from natural sources such as biomass [149]. They offer a high 

specific surface area, excellent mechanical strength, and superior thermal conductivity [149,154]. Among these, 

activated carbon attracts the interest of hydrogen storage researchers because of its widespread availability, low 

cost, and high specific surface area [149]. Metal-organic frameworks are another class of materials with significant 

potential for hydrogen storage. They are porous materials with large surface areas and adjustable pore sizes, which 

are effective features for hydrogen adsorption and desorption through physisorption. However, the slow kinetics 

of adsorption/desorption affect the practical applicability of metal-organic frameworks in hydrogen storage [149]. 

3.2. Integrating Green Energy Materials into Sustainable Development 

According to the 1987 report from the Brundtland Commission, sustainable development is defined as 

“development that meets the needs of the present without compromising the ability of future generations to meet 

their own needs” [8]. This definition gained huge attention  at the Rio Conference in 1992, when the Earth Summit 

officially approved the concept of sustainable development [155]. In order to ensure a sustainable environment 

and future, the UN took the initiative to set the SDGs. Thus, they were developed during the UN Conference on 

Sustainable Development held in 2012 and were endorsed by all UN Member States in 2015 as part of the 2030 

Agenda [156]. 

This agenda consists of 17 key goals and 169 targets, as illustrated in Figure 11 [157]. These global goals 

represent a key step towards achieving sustainable development that includes all aspects of sustainability and every 

sector and part of society. They explore the interactions between nature and humans to provide a sustainable life 

for all generations. In addition, they serve as a global call to address serious issues and take action by 2030. They 

call upon all countries both developed or developing to work together and collaborate to solve many issues such 

as ending poverty and hunger, improving public health, fostering economic growth, mitigating climate change, 

and protecting the environment [158]. SDGs are structured to balance the incorporation of all the three pillars of 

sustainability: environmental, economic, and social [159]. 

The transition to green energy is essential for sustainable development since it can mitigate global 

environmental, economic, and social conflicts. For this reason, supporting the production of green energy materials 

is needed in this shift as it provides clean energy that is free of contamination for an eco-friendly environment. 

They may directly or indirectly contribute to the achievement of numerous goals related to SDGs. Also, they can 

extend the role of specific materials towards a sustainable future. These energy materials support the widespread 
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adoption of sustainable and green materials, develop clean environments free of toxic emissions, promote a 

sustainable economy, and enhance the quality of life for the people within the region. 

 

Figure 11. The 17 Sustainable development goals [157]. 

4. The Role of Green Energy Materials in Sustainability 

4.1. Contribution of Green Energy Materials to the Pillars of Sustainability 

Sustainability is most commonly viewed through three pillars: environmental, economic, and social 

sustainability. These pillars form the basis of sustainable development, which seeks to fulfill the needs of both 

current and future generations [8]. Green energy materials are important for harvesting, converting, and storing 

green energy. These materials play a major role in supporting the three pillars of sustainability. They contribute 

directly or indirectly by providing solutions to mitigate environmental harm, stimulate economic growth, and 

ensure social equity. Hence, the development of these materials could align with several SDGs, which are 

illustrated in Figure 12. Table 2 summarizes the contributions of green energy materials to achieving these goals. 

 

Figure 12. Pillars of Sustainability. 
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4.1.1. Environmental Contribution 

Environmental sustainability ensures that natural resources and ecosystems are preserved and protected over 

the long term [160]. Several green energy strategies have been proposed to achieve global climate goals along with 

maintaining economic growth and well-being [7]. Green energy materials are critical to this transition, as they 

enable and facilitate the development of green energy technologies that can significantly reduce many of the 

negative impacts of the energy sector. These technologies will have the potential to mitigate the effects of climate 

change through the reduced emissions of greenhouse gases, clean water availability, and preservation of marine 

and terrestrial ecosystems [161]. 

SDG 6: Clean Water and Sanitation 

Most of the recent advances in energy materials have introduced innovative solutions to address water 

contamination and disinfection challenges [162], offering substantial potential to meet the global demand for clean 

water [163]. Green energy materials highly contribute to achieving SDG 6, through the sustainable operation of 

water purification, treatment, and distribution systems [158]. They facilitate access to clean water via renewable 

and sustainable energy technologies. Preserving unpolluted water and air requires sustainable technologies, which 

depend heavily on the substances involved in their manufacture [23]. The use of eco-friendly and recyclable 

materials in these systems will decrease pollution and promote sustainability. 

Photovoltaic materials enable solar-powered water pumps and desalination units to provide sustainable 

access to water in remote, isolated and neglected regions [13]. These systems operate independently of traditional 

power grids, and this will allow communities to have access to clean water. In addition, thermoelectric materials 

enhance the efficiency of water heating and cooling systems for sustainable operations. They maintain a reliable 

power source for water treatment plants and sanitation facilities. Besides, electrochemical energy storage materials 

can provide a stable supply of green energy for sanitation infrastructure. This is achieved through the storage of 

excess energy gained from renewable energy resources to be used during low energy production periods. Through 

the mitigation of fossil fuel dependency and reduction of greenhouse gas emissions, these green energy materials 

will establish a sustainable sanitation infrastructure and ensure access to clean water worldwide [163]. 

SDG 13: Climate Action 

Climate change has become a critical global issue, resulting in massive environmental degradation primarily 

due to the heavy dependence on fossil fuels [13]. The energy field is a major contributor to this issue, responsible 

for approximately 75% of global GHG releases [30]. The increase in atmospheric greenhouse gas concentrations 

has contributed to global warming and climate change. This highlights the requirement of green energy systems 

to limit the increase in global temperatures by an average of 2 °C by 2030 [164]. Hence, governments all over the 

world are urged to establish targets, policies, and action to combat climate change and its consequences [158]. 

Green energy has proven to be a key solution for achieving SDG 13 by reducing emissions and mitigating negative 

environmental impacts [165–167]. As green energy systems help lower the greenhouse gas emissions, including 

carbon dioxide (CO2) nitrogen oxides (NOx), and sulfur dioxide (SO2) [168]. This will be useful to resolve climate 

issues and protect the environment. 

Green energy materials have a tremendous impact on the reduction of greenhouse gas emissions and 

contribute towards ending the climate crisis since they provide clean, sustainable, and zero-emission energy. They 

provide clean and sustainable energy supplies for renewable energy systems that emit zero emissions and minimize 

the consumption of fossil fuels. Furthermore, these materials support sustainable development by ensuring a 

reliable energy supply and promoting environmental conservation for a more sustainable future. The utilization of 

natural and green resources, such as recyclable, non-toxic, and bio-based materials in these energy technologies, 

can reduce resource depletion and minimize hazardous waste, as they pose a critical threat to the environment. For 

these reasons, using sustainable, inexpensive techniques to produce affordable, environmentally friendly, and 

sustainably extracted materials can facilitate the achievement of this goal without compromising others [169]. 

SDG 14: Life Below Water 

The oceans are home to millions of living organisms and serve as a primary protein source for billions of 

people [163]. They are currently threatened by increasing pollution caused by climate change. Higher 

concentrations of greenhouse gas emissions, especially CO2 emissions cause ocean acidification. This occurs 

because seawater absorbs carbon dioxide, which lowers its potential of hydrogen (pH). This acidification poses a 

great threat to marine ecosystems. SDG 14 seeks to manage and protect these marine environments by mitigating 
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marine pollution and combating ocean acidification [6]. These goals can be encouraged and achieved through the 

use of green energy materials. 

Green energy materials generate and store clean energy that is free from the harmful emissions of fossil fuels. 

By keeping ocean acidity levels stable, these materials support aquatic life protection from the harmful and 

negative effects of acidification [170]. In addition, the utilization of eco-friendly, recyclable and biodegradable 

materials significantly reduces the discharge of pollutants released into water bodies, thereby decreasing the 

overall environmental footprint and enhancing marine conservation efforts. For instance, green fuel cells can 

provide clean energy for marine transportation, such as hydrogen-fueled ships. These will substantially reduce 

pollution compared to conventional marine fuels and promote cleaner marine operations. Green energy materials 

support sustainable and low-impact energy solutions that contribute to the preservation of marine ecosystems and 

the reduction of toxic emissions [6]. 

SDG 15: Life on Land 

Climate change negatively affects billions of people worldwide and poses a serious threat to ecosystems, 

biodiversity, and various environmental challenges [6,28]. To combat these impacts, global initiatives are focused 

on achieving long-term positive outcomes for biodiversity and ecosystems through the adoption of green energy. 

SDG 15 calls for immediate action to protect natural ecosystems, reduce their degradation, and conserve 

biodiversity [158]. This goal includes efforts to mitigate climate change by adopting renewable and green energy 

technologies that produce zero emissions. Therefore, green energy materials facilitate the development of these 

technologies, which help lower greenhouse gas emissions. This reduction is vital for alleviating climate change 

and its harmful effects on terrestrial ecosystems while promoting sustainable land use practices. 

It is essential to adopt sustainable methods for producing and disposing of energy materials to prevent 

environmental degradation and reduce solid waste. Involving green, eco-friendly and recyclable materials in 

energy technologies helps preserve terrestrial ecosystems, reduce air and soil pollution, enhance biodiversity, and 

decrease the need for mining and deforestation [6]. Moreover, transitioning to sustainable energy systems that 

incorporate green materials minimizes the environmental footprint and improves public health by reducing 

pollution. Integrating green energy materials into the energy sector can highly contribute to the conservation of 

terrestrial life and ensure a healthier planet for future generations. Therefore, advancing green energy materials is 

crucial not only for mitigating climate change but also for promoting sustainable development that benefits both 

the environment and human health [163]. 

4.1.2. Economic Contribution 

Economic sustainability focuses on promoting economic growth that ensures long-term stability [160]. Green 

energy is expected to become a major economic factor for reducing net CO2 emissions during the shift towards a 

carbon-neutral economy. Green energy materials will encourage innovation, develop new eco-friendly 

technologies, and create job opportunities within the green energy sector. Additionally, the development and 

production of advanced energy materials from sustainable sources can boost the sustainable economy by opening 

new markets and attracting investment [26]. 

SDG 8: Decent Work and Economic Growth 

Global demand for energy is increasing, primarily driven by economic growth, which presents opportunities 

for further economic development. However, shortages in energy supply can hinder this growth, making the 

transition to clean and efficient green energy essential for ongoing progress [4]. Studies show that renewable 

energy technologies stimulate new economic activities while also contributing to a cleaner environment. As a 

result, green energy materials align with SDG 8 by promoting sustainable economic development and providing 

decent job opportunities within the green energy sector. One of the key benefits of transitioning to green energy 

and utilizing these materials is job creation, which is vital for both developed and developing nations [171]. For 

example, these materials are produced sustainably using green, non-toxic, and recyclable resources, opening up 

numerous opportunities in research, development, and manufacturing. This shift in turn contributes to economic 

development by enhancing productivity. Furthermore, the implantation and integration of green energy materials 

across various industries and systems generates numerous green energy projects that promote sustainable industrial 

growth. Emerging businesses  in the green energy sector offer opportunities for entrepreneurial investment and 

clean energy generation. It is estimated that improving the performance and availability of clean energy will require 

annual investments of approximately $950 billion by 2030 [30]. 
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SDG 9: Industry, Innovation, and Infrastructure 

Sustainable Development Goal 9 emphasizes the importance of advancing sustainable industrialization, along with 

encouraging innovation and developing resilient infrastructure as key components of economic development [158]. 

Establishing a sustainable energy infrastructure requires the advancement of effective energy harvesting, 

conversion, and storage technologies [1]. Green energy materials, including photovoltaic, thermoelectric, phase 

change, and electrochemical materials, are vital for generating and storing reliable and clean energy while lowering 

reliance on fossil fuels and improving energy security. Scientists and engineers are concentrated on enhancing the 

performance and durability of clean energy technologies. Hence, materials science and engineering are 

fundamental to achieving the technological advancements desired in the energy sector [163]. 

Establishing a carbon-neutral energy infrastructure based on renewable sources requires the development of 

advanced and affordable energy materials [172]. For long-term sustainability, they must be manufactured using 

abundant, non-toxic, recyclable, and chemically stable materials [1]. These green materials not only reduce their 

environmental footprint, but they also stimulate innovation, which promotes industrial growth, sustainable 

manufacturing, and technological progress. The United Nations Agenda promotes sustainable innovation through 

green materials and technologies to mitigate the production of toxic residue. Moreover, the widespread use of these 

materials across various industries, especially the energy sector, highlights the importance of research related to 

materials and nanotechnology [163]. Thus, innovation and research are key to developing these materials and 

attracting entrepreneurs to invest in sustainable and profitable projects. 

SDG 12: Responsible Consumption and Production 

Production and consumption are fundamental aspects of the global economy, yet they pose serious threats to 

the environment and climate due to unsustainable resource use, hazardous combustion systems, and increased 

waste [30]. To foster sustainable practices, these challenges must be addressed. SDG 12 ensures that consumption 

and production practices are sustainable [158]. It seeks to lower the use of conventional energy sources in the 

production and consumption stages of economic activities, minimize their negative impacts, as well as improve 

waste management of the activities that produce waste [158]. Thus, it contributes towards responsible resource 

management by restricting the use of energy to sustainable practices and alternatives such as using green energy 

materials. The application of green, eco-friendly, and recyclable materials in these systems aids in supporting 

sustainable consumption and production [1]. Additionally, it reduces waste, mitigates negative environmental 

impacts and promotes a circular economy. It found that recycling and reusing waste materials are key strategies 

for responsible consumption and production. These waste management procedures must be easy to implement and 

affordable. It is important to enhance  recycling and waste reduction efforts by companies to implement more 

sustainable consumption and production models by 2030 [173]. 

4.1.3. Social Contribution 

Social sustainability aims to enhance the living standards of a community along with ensure equitable access 

to resources and opportunities to all individuals [160]. Green energy materials have a very important role in 

promoting social sustainability through maintaining the accessibility of clean energy, improving living standards, 

and developing sustainable cities and communities. Moreover, these materials help to mitigate health risks 

associated with fossil fuel emissions for better public health. This approach not only increases access to green energy 

for poor communities but also supports the SDGs that focus on reducing disease, pollution, and poverty [174,175]. 

SDG 1: No Poverty 

Climate change is also one of the key cause of poverty since it results in natural disasters like flooding and 

drought, which are expected to displace millions by 2030 [6]. In response, green energy has been considered as a 

critical factor in enhancing global wealth and well-being, especially in developing countries [163]. Besides that, 

green energy materials contribute significantly towards achieving SDG 1 by providing sustainable, affordable 

energy that can lift communities out of poverty [158]. These materials facilitate the generation and storage of low-

cost electricity in remote regions. Therefore, they reduce the consumption of expensive and polluting fuels while 

improving the living standards. Further, manufacturing and development projects for these materials with the use of 

green, non-toxic, and recycled sources create job opportunities and increase the demand for skilled personnel [176]. 

This job creation increases economic prospects within communities and significantly helps in lowering 

unemployment and poverty rates. Thus, through providing different types of jobs and economic opportunities 

within the clean energy sector, green energy materials indirectly contribute to poverty reduction. 
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SDG 3: Good Health and Well-Being 

Global warming and climate change creates a lot of issues, including health problems and environmental 

concerns. All of these issues are associated with the high concentrations of greenhouse gases and many other waste 

by-products [4]. The extensive use of poisonous and hazardous energy materials has led to serious and harmful 

environmental problems like air contamination, which has a negative impact on human health. This air pollution 

is linked to various diseases, such as cancer, cardiovascular disease, and respiratory issues like asthma [177]. In 

2016, the urban air quality standards failed to meet the World Health Organization standards, as residents being 

exposed to an air that was 2.5 times more contaminated than recommended levels [30]. This drop in air quality 

caused the deaths of approximately 4 million people alone that year [30]. Therefore, there is need to reduce the 

negative climate change impacts in order to protect and save lives. As stated by the United Nations Development 

Programme (UNDP), green energy is more reliable energy that can be used to improve the health and human well-

being [178]. 

Green energy materials help achieve SDG 3 by preventing air pollution and improving public health. They 

significantly enhance air quality, mitigate the effects of climate change, and minimize the public health and 

environmental threats posed by hazardous and toxic materials. Additionally, these materials made from eco-

friendly and sustainable sources can provide clean energy, hence decreasing the spread of diseases caused by 

pollution [4]. For instance, they can ensure a reliable and stable power supply for hospitals, clinics, and healthcare 

facilities located in the remote areas. This helps in having access to electricity needed for life-saving medical 

equipment and services without posing much danger to the environment. The use of green energy materials assists 

in obtaining healthier environments, better health outcomes, and improved living standards for individuals [178]. 

SDG 7: Affordable and Clean Energy 

According to the International Energy Agency (IEA) statistics in 2022, only 91% of the world’s population 

had access to electricity, while 685 million people lived without it [179]. Limited access to energy can negatively 

affects human and economic development, especially in less developed countries [28]. As a result, there is an 

urgent need to transform the world’s energy generation and storage systems into greener alternatives that provide 

clean, zero-carbon-emission energy [4,28]. Green energy materials are contributing towards this shift by 

facilitating the availability of clean energy at lower costs. This approach  is in line with SDG 7, which ensures 

that all individuals have access to affordable, sustainable, reliable, and modern energy [158]. For the achievement 

of this goal, the materials used in innovative energy conversion, harvesting, and storage technologies should be 

non-toxic, plentiful, easily accessible, and affordable [1]. Moreover, access to clean, green, and sustainable energy 

supports the attainment of other SDGs. 

SDG 11: Sustainable Cities and Communities 

Green energy materials are the key resources for accomplishing SDG 11, which involves building inclusive, 

safe, resilient, and sustainable cities and communities [158]. Implementing green energy infrastructure in urban 

areas and cities can lower greenhouse gas emissions significantly. The advancement of these green, non-toxic, 

recyclable, and lightweight materials holds substantial potential to help humanity construct and build sustainable 

cities [163]. For instance, the energy efficiency of buildings and transportation in a city can be improved by using 

green thermoelectric materials to enhance the environmental performance and support urban sustainability. 

Incorporating phase change materials in concrete can enable buildings to reach net-zero emissions and enhance 

the thermal comfort for heating, cooling, and air conditioning [180]. Thus, they reduce the reliance on fossil fuels 

that increases the future sustainable energy usage [180,181]. Besides, fuel cells made from green materials provide 

clean fuel for green hydrogen-powered vehicles in order to accomplish sustainable public transportation and 

mobility. In contrast, electrochemical energy storage materials ensure a reliable power supply for urban 

infrastructure. These materials minimize the negative impacts on the environment and facilitate an effective shift 

towards a clean and sustainable future. In this regard, the adoption of green energy materials encourages eco-

friendly practices within communities and cities which satisfy the social needs [163]. 
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Table 2. Contributions of Green Energy Materials to SDGs. 

SDGs Contributions of Green Energy Materials 
Interconnectedness 

(Direct or Indirect) 
Ref. 

SDG 1 

• Create jobs and opportunities 

• Mitigate poverty rates 

• Empower communities 

Indirect [163,174–176] 

SDG 3 

• Improve air quality 

• Lower the rates of respiratory diseases 

• Enhance public health 

Indirect [4,178] 

SDG 6 

• Reduce water pollution 

• Access to clean water 

• Preserve natural resources 

Indirect [13,23,162] 

SDG 7 

• Reduce reliance on fossil fuels 

• Access to affordable energy sources 

• Access to sustainable and clean energy 

Direct [1,4,28] 

SDG 8 

• Create job opportunities 

• Promote Green energy investments 

• Foster economic growth 

Indirect [4,30,171] 

SDG 9 

• Encourage sustainable innovations 

• Develop new green materials and technologies 

• Promote sustainable industrial practices 

• Improve energy infrastructure 

Direct [1,163,172] 

SDG 11 

• Minimize urban pollution 

• Enhance energy efficiency of buildings 

• Sustainable buildings and infrastructure 

Direct & Indirect [163,180,181] 

SDG 12 

• Support the adoption of renewable and green resources 

• Promote sustainable production and consumption 

patterns 

• Reduce the negative environmental impact of energy 

production and consumption (Recycling) 

Direct & Indirect [1,30,173] 

SDG 13 

• Mitigate climate change 

• Decrease reliance on fossil fuels 

• Lower Greenhouse Gas emissions 

• Adopt zero or low-carbon energy alternatives 

Direct [164–168] 

SDG 14 

• Minimize marine pollution caused by fossil fuel usage. 

• Reduce ocean acidification 

• Protect marine ecosystems 

• Protect water quality 

Indirect [6,170] 

SDG 15 

• Reduce terrestrial pollution 

• Preserve terrestrial ecosystems and biodiversity 

• Promote sustainable land use practices 

• Decrease deforestation 

Indirect [6,28,176] 

4.2. Green Energy and Sustainability Pillars 

The adoption of green energy technologies is not only about technological development but fundamentally 

about implementing the core principles of sustainable development. The three pillars of sustainability are central 

to the purpose and outputs of green energy systems [6]. Recent studies emphasize that aligning these three pillars 

with renewable energy solutions will be critical to achieving SDGs, especially the goals related to affordable and 

clean energy, climate action, and economic growth. From an environmental perspective, the most direct alignment 

between sustainability and green energy is observed in emissions reduction, ecological conservation, and resource 

circularity. Shifting from fossil energy perspectives to renewable energy production from sources like solar, wind, 

hydrogen, and geothermal significantly reduces greenhouse gas emissions, lowers air and water pollution, and 

minimizes the ecological footprint compared to fossil-based energy production [182]. According to recent findings, 

countries that use green energy technologies have achieved up to 55% reduction in net greenhouse gas emissions, 

as well as contributed up to 55% of electricity use by 2030 [7]. Furthermore, innovations in recycling and waste-

to-energy systems are enabling circular economies where energy production is harmonized with environmental 

protection [183]. In terms of economic sustainability, green energy presents multiple benefits. It enables job 

creation and promotes industrial and technological advancement. Investment in renewable energy infrastructure 

has been shown to yield more employment opportunities. This contributes to long-term economic resilience, 
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especially in rural or underserved regions [184]. While socially, green energy supports equity by increasing access 

to clean energy, reducing energy poverty, and improving public health [185]. The relationship between the three 

sustainability pillars and the green energy illustrates that the energy transition is not just a technical effort but a 

strongly ethical and developmental one as well. This integrated pathway assures that energy transformation 

benefits are both equitable and long-lasting across generations [186]. 

5. Challenges and Limitations 

Although advanced and green materials for green energy technologies have progressed quickly and are being 

developed rapidly for the environment and energy systems, the large-scale industrial and commercial use of these 

materials is still constrained by many technical, economic, environmental, and social barriers [187]. These 

materials, ranging from perovskites and metal-organic frameworks (MOFs) to bio-derived polymers and 2D 

materials like MXenes and graphene, have the potential to make huge changes in different technologies. However, 

a deeper analysis of their limitations reveals critical gaps that must be addressed before these innovations can be 

implemented or used in real-world energy sector applications. 

One of the major challenges lies in the stability, long-term reliability, and operational lifetime of many of 

these emerging materials. While most green energy materials have shown remarkable performance and efficiencies 

under laboratory conditions, they often fail to maintain those results under variable real-world conditions. Indeed, 

laboratory testing often does not capture the full range of environmental stresses that energy materials encounter 

during operation. As these conditions can lead to rapid degradation and poor functional durability over time, this 

will make them unreliable for actual long-term use in these green energy technologies. Consequently, their market 

competitiveness remains questionable [188]. Economic viability is another major challenge. The production of 

these materials, while being a clean alternative, is still more expensive than conventional materials. As these 

materials require sophisticated and cost-intensive synthesis methods that are not only costly but also hard to scale 

consistently while maintaining quality [189]. This makes large-scale manufacturing difficult and prevents easy 

integration into existing supply chains. Many advanced materials also depend on rare or difficult-to-source 

components, further complicating their commercial potential. 

Material availability is also a critical concern. Many advanced energy technologies rely on critical raw 

materials for their development. These materials are often concentrated in geopolitically sensitive regions and are 

associated with ethically questionable mining practices, raising issues of sustainability of extraction, availability, 

toxicity, and price fluctuations [190]. While some green alternatives are under development, they often do not yet 

match the performance of more established technologies. In addition, environmental impacts associated with the 

entire material lifecycle are increasingly scrutinized. Although green in application, many advanced materials have 

hidden footprints in their production and disposal phases. Besides, some materials are toxic, non-biodegradable, 

or difficult to recycle, raising concerns about long-term sustainability and waste management [191]. 

Integration with existing manufacturing ecosystems and energy infrastructures presents additional challenges. 

Advanced materials may require new design standards or operate under conditions incompatible with conventional 

technologies, leading to higher costs and adoption resistance. Therefore, the successful integration of green materials 

into energy technologies needs not only material optimization but also an understanding of engineering compatibility, 

environmental policy, lifecycle cost analysis, and user acceptance, a combination that is still rare in current industrial 

practice [192]. This review relies on the available published literature rather than experimental data or lifecycle 

assessments of specific materials. This review summarizes a strong portion of the literature on the most widely studied 

energy materials; however, it does not cover all emerging alternatives, particularly those in early-stage development 

or ongoing experimental studies, as the focus was placed on SDGs alignment. 

6. Conclusions 

Green energy materials are important in promoting sustainability from an environmental, economic, and 

social perspective. The energy produced using these materials is expected to contribute up to 55% of total 

electricity generation by 2030. They reduce pollution, protect marine and terrestrial ecosystems, and ensure access 

to clean water. In addition, these materials foster growth via innovation, job creation, and the advancement of new 

sustainable technologies. Moreover, these materials provide clean and affordable energy, improve public health, 

and assist in building resilient and sustainable cities. This will not only contribute to achieving many of the 

sustainable development goals but will also provide an effective approach to sustainability. It is evident that as the 

world approaches these materials from a global perspective, more efforts need to be directed towards the greener 

alternatives in order to attain the SDGs. 
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To enhance the potential of green energy materials in achieving the SDGs, several recommendations are 

presented in this context. Policymakers should provide supportive policies and programs to encourage the 

application of sustainable materials in renewable energy technologies in line with SDGs 7 and 9. For instance, 

designing supportive policies for recycling and reusing materials will further reduce waste and contribute to SDG 12. 

In addition, leaders of industry are encouraged to invest in the development of more efficient and environmentally 

friendly materials for more cleaner manufacturing processes to reduce environmental impacts towards SDGs 8, 9, 

13, 14, and 15. Innovation by green materials researchers should aim at the enhancement of efficiency in renewable 

energy, and collaboration efforts across fields are necessary to deal with specific challenges in developing 

materials contributing to SDGs 7, 12, and 13. Accelerating the adoption of green energy technologies by 

supporting research in developing countries is consistent with SDGs 6, 7, 11, and 13. Furthermore, international 

organizations should encourage sustainable materials to have global standards and promote the exchange of 

knowledge, thus enabling further support for both the developed and developing world in attaining SDGs 1 and 3. 

For future work, the successful deployment of green energy materials requires public understanding, 

awareness, acceptance, and behavioral change, all of which are difficult to achieve without comprehensive 

education. Also, researchers, engineers, policymakers, and economists must collaborate more closely to develop 

technologies that are not only efficient but also socially acceptable, affordable, and eco-environmental. 
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