
Transactions on Artificial Intelligence
https://www.sciltp.com/journals/tai

Review

A Contemporary Survey of Large Language Model Assisted
Program Analysis

Jiayimei Wang 1, Tao Ni 1, Wei-Bin Lee 2,3 and Qingchuan Zhao 1,*

1 Department of Computer Science, City University of Hong Kong, Hong Kong
2 Information Security Research Center, Hon Hai Research Institute, Taipei City 114699, Taiwan
3 Department of Information Engineering and Computer Science, Feng Chia University, Taichung 407, Taiwan
* Correspondence: cs.qczhao@cityu.edu.hk

How To Cite: Wang, J.; Ni, T.; Lee, W.-B.; et al. A Contemporary Survey of Large Language Model Assisted Program Analysis. Transactions on
Artificial Intelligence 2025, 1(1), 6. https://doi.org/10.53941/tai.2025.100006.

Received: 6 February 2025

Revised: 20 April 2025

Accepted: 28 April 2025

Published: 26 May 2025

Abstract: The increasing complexity of software systems has driven significant ad-
vancements in program analysis, as traditional methods are unable to meet the demands
of modern software development. To address these limitations, deep learning tech-
niques, particularly Large Language Models (LLMs), have gained attention due to
their context-aware capabilities in code comprehension. Recognizing the potential of
LLMs, researchers have extensively explored their application in program analysis
since their introduction. Despite existing surveys on LLM applications in cybersecurity,
comprehensive reviews specifically addressing their role in program analysis remain
scarce. This survey reviews the application of LLMs in program analysis, categorizing
existing work into static, dynamic, and hybrid approaches. We also identify current
research hotspots, such as LLM integration in automated vulnerability detection and
code analysis, common challenges like model interpretability and training data limita-
tions, and future directions, including using LLMs to convert dynamic analysis tasks
into static ones. This survey aims to demonstrate the potential of LLMs in advancing
program analysis practices and offer actionable insights for security researchers seeking
to enhance detection frameworks or develop domain-specific models.

Keywords: large language model; program analysis; vulnerability detection

1. Introduction

With the continuous advancement of information technology, software plays an increasingly significant role
in daily life, making its quality and reliability a critical concern for both academia and industry [1]. This is
because software vulnerabilities in domains such as finance, healthcare, critical infrastructure, aerospace, and
cybersecurity [2] can lead to considerable financial losses or even societal harm [3]. Examples include data
breaches in financial systems [4], malfunctioning medical devices [5], disruptions to power grids [6], failures
in aviation control systems [7], and exploitation of security loopholes in sensitive government networks [8].
Accordingly, many techniques have been proposed to detect such vulnerabilities that compromise software quality
and reliability, and program analysis has been proven effective in such tasks. It aims to examine computer programs
to identify or verify their properties to detect vulnerabilities through abstract interpretation, constraint solving, and
automated reasoning [9].

However, as software complexity and scale increase, traditional program analysis methods encounter chal-
lenges in meeting the demands of contemporary development. Specifically, these traditional methods face substantial
challenges in handling dynamic behaviors, cross-language interactions, and large-scale codebases [10,11]. Fortu-
nately, recent advancements in machine learning have initiated a shift in program analysis [12] and shed light on a
promising research direction to address the limitations of traditional program analysis methods.

In particular, the literature has attempted to combine deep learning with program analysis, applying it to
strengthen the detection of vulnerabilities and achieve automated code fixes, thereby minimizing human intervention
and increasing precision [13]. However, deep learning models lack the ability to effectively integrate contextual

Copyright: © 2025 by the authors. This is an open access article under the terms and conditions of the Creative Commons Attribution (CC
BY) license (https://creativecommons.org/licenses/by/4.0/).
Publisher’s Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.sciltp.com/journals/tai
https://doi.org/10.53941/tai.2025.100006
https://creativecommons.org/licenses/by/4.0/

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

information over long sequences, limiting their performance in tasks requiring deep reasoning or multi-turn
understanding [14,15]. Consequently, these models struggle to handle complex software and large codebases and
lack the capability for cross-project analysis.

Fortunately, the most recent advancement, i.e., large language model (LLM), has been found promising
in addressing the limitations of early deep learning models, such as constrained contextual understanding and
generalization, enabling them to handle tasks across multiple domains with greater versatility [16]. Particularly, as
for program analysis, LLMs surpass traditional deep learning methods and have been applied to various tasks [17],
including automated vulnerability and malware detection, code generation and repair, and providing scalable
solutions that integrate static and dynamic analysis methods. Moreover, it also shows a great potential to cope with
the growing difficulty of analyzing modern software systems.

Though promising, the literature lacks a comprehensive and systematica view of LLM-assisted program analy-
sis given the presence of numerous related attempts and applications. Therefore, this work aims to systematically
review the state-of-the-art of LLM-assisted program analysis applications and specify its role in the development
of program analysis. To collect as many relevant studies as possible, we perform an automated search for papers
published between January 2019 and December 2024 in various academic databases, including the ACM Digital
Library, IEEE Xplore Digital Library, arXiv, and DBLP, followed by a manual screening for content relevance. In
the first round, we use keywords related to program analysis, such as: static analysis, dynamic analysis, software
analysis, fuzz, verification, etc. Next, we apply additional keywords related to LLMs, such as: LLM, large language
model, GPT, CodeX, LLaMA, etc., to filter out irrelevant studies. Finally, we manually screen the remaining papers,
applying the following inclusion criteria: (i) the paper proposes or improves a method, research, or tool/framework
aimed at using LLMs to assist program analysis; (ii) the paper designs a testing framework and compares the
performance differences of various LLMs applied to program analysis-related fields, providing an optimal solution;
(iii) the paper involves specific testing techniques (e.g., fuzzing). If the paper meets any of these three criteria, it
is included. Ultimately, we identify 82 relevant papers and organize them into a structured taxonomy. Figure 1
illustrates the classification framework, where the relevant research is categorized into LLMs for static analysis,
LLMs for dynamic analysis, and hybrid approach.

Although program analysis is a relatively narrow field, exploring the application of LLMs in this domain
allows us to uncover their potential in other fields. For instance, LLMs’ success in program analysis could impact
fields like such as automated code repair and software optimization, thereby driving the broader development of
LLM technology in cybersecurity tasks. Additionally, focusing on LLMs in program analysis provides insights
into their contextual understanding and cross-domain adaptation, facilitating their use in more complex, wide-
ranging tasks. Therefore, as shown in Table 1, unlike previous surveys that broadly examined the applications
of LLMs in cybersecurity, our work narrows its focus to program analysis, delivering a more detailed and
domain-specific exploration.

Table 1. Summary and comparison with prior surveys/reviews on program analysis (PA) and LLMs in cybersecurity.

Reference Year LLM PA Topic
[18] 2005 ✗ ✓ Static analysis
[19] 2014 ✗ ✓ Dynamic analysis
[20] 2018 ✗ ✓ Symbolic execution
[21] 2019 ✗ ✓ Machine learning-based
[22] 2024 ✓ ✗ Violence detection
[23] 2024 ✓ ✗ Cyber threat detection
[24] 2024 ✓ ✗ Software testing
[25] 2024 ✓ ✗ Malware detection
[26] 2024 ✓ ✗ Cyber security
[27] 2024 ✓ ✗ Cyber defense
[28] 2025 ✓ ✗ Software security
[29] 2025 ✓ ✗ Code security

Compared to other similar works, this survey has some unique contributions, as shown below:

• This survey conducts an in-depth study of 82 relevant papers on the application of LLMs in program analysis,
providing a detailed overview of how LLMs are applied to program analysis tasks, categorizing existing
methods into static, dynamic, and hybrid approaches, and extracting common themes across these categories.

https://doi.org/10.53941/tai.2025.100006. 2 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

• This survey analyzes commonly used LLMs in program analysis, exploring prompt engineering strategies,
input configurations, and how these models are integrated into the program analysis process.

• This survey highlights the key challenges present in current research and proposes potential future directions
to advance the development of the field.

LLM for Program Analysis

LLM for Static Analysis (§ III)

LLM for Dynamic Analysis (§ IV)

LLM for Hybrid Approach (§ V)

Vulnerability Detection (§ III-A)

Malware Detection (§ III-B)

Program Verification (§ III-C)

Static Analysis Enhancement (§ III-D)

Malware Detection (§ IV-A)

Fuzzing (§ IV-B)

Penetration Testing (§ IV-C)

Unit Test Generation (§ V-A)

Others (§ V-B)

OS-level Vulnerability

Application-level Vulnerability

Proof Generation

Invariant Generation

Automated Program Verification

Others

Code Review Automation

Code Coverage Prediction

Decompiler Optimization

Explainable Fault Localization

Extract Method Refactoring

Obfuscated Code Disassembly

Privilege Variable Detection

Static Bug Warning Inspection

Pseudo-code Execution

SA-Assisted Unit Test Generation

DA-Assisted Unit Test Generation

Secure Code Generation

Coverage Test Generation

Malware Analysis

Malware Reverse Engineering

Figure 1. Taxonomy of the survey.

The survey is organized as follows. We first introduce the background of program analysis and large language
model in Section 2. We then examine the application of LLMs in static analysis in Section 3 and discuss the use of
LLMs in dynamic analysis in Section 4. We next explore how LLMs assist hybrid approaches that combine static
and dynamic analysis in Section 5. We finally address the challenges of applying LLMs to program analysis and
outline potential future research directions in Section 6 and conclude the survey in Section 7.

2. Background

In this section, we first introduce prior knowledge about program analysis (Section 2.1), including static
analysis and dynamic analysis and the limitations in existing approaches, and then present the concepts of LLMs
as well as the necessity of leveraging LLMs for advancing program analysis (Section 2.2).

2.1. Program Analysis

Program analysis is the process of analyzing the behavior of computer programs to learn about their prop-
erties [30]. Program analysis can find bugs or security vulnerabilities, such as null pointer dereferences or array
index out-of-bounds errors. It is also used to generate software test cases, automate software patching and improve
program execution speed through compiler optimization. Specifically, program analysis can be categorized into two
main types: static analysis and dynamic analysis [31]. Static analysis examines a program’s code without execution,
dynamic analysis collects runtime information through execution, and hybrid analysis combines both approaches
for comprehensive results.

Static Analysis. Static analysis (a.k.a. compile-time analysis) is a program analysis approach that identifies
program properties by examining its source code without executing the program. The pipeline for static analysis
consists of key stages illustrated in Figure 2. The process begins with parsing the code to extract essential structures
and relationships, which are transformed into intermediate representations (IRs) such as symbol tables, abstract
syntax trees (ASTs), control flow graphs (CFGs), and data flow graphs (DFGs). These IRs are then analyzed to
detect issues such as unreachable code, data dependencies, and syntactic errors. These series of processes ultimately
enhance code quality and reliability.

Source Code
public class example{
 public static int example(int x) {
 if (x > 0) {
 int result = 1;

while (x > 1) result *= x--;
return result;

 }
 return 0;
 }
 public static void main(String[] args) {
 int y = example(5)
 System.out.println(y);
 }
}

Model Extraction Intermediate Representations

AST CFG DFG

Analysis

Control Analysis

Complexity Evaluation

Path Simulation

Vulnerability Detection

Results

Execution Metrics

Coverage

Detected Defects

Figure 2. Static analysis workflow.

https://doi.org/10.53941/tai.2025.100006. 3 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

Dynamic Analysis. Dynamic analysis (a.k.a. run-time analysis) is a program analysis approach that uncovers
program properties by repetitively executing programs in one or more runs [32]. The stages involved in dynamic
analysis are depicted in Figure 3. These stages include instrumenting the source code to enable runtime tracking,
compiling the instrumented code into a binary, and executing it with test suites. After completing the above steps,
program traces such as function calls, memory accesses and system calls are captured.

public class example{
 public static void main(String[] args) {
 int a = 3;
 int b = 5;
 int c = 2;
 int d;

 ① if (a == 3 || b == 5) {
 ② a = b + c;
 d = a + 2;
 System.out.println("Value of a: " + a);
 System.out.println("Value of d: " + d);
 }
}

Source Code Instrumented Code
①

Tmp1 = a == 3;
Tmp2 = b == 5;
Tmp3 = Tmp1 || Tmp2;
Top.id = InstanceID;
Top.index = 4;
$sample_values(Tmp1,Tmp2,Tmp3);
if(Tmp3)

②

a = b + c;
d = a + 2;
Top.id = InstanceID;
Top.index = 5;
$count_stmt;

Compiled Program Program Trace

Test Suite

I/O Operations

Execution Paths

Thread Events

API CallsBinary

Debug Information

Figure 3. Dynamic analysis workflow.

2.2. Large Language Models

Large Language Models (LLMs) are large-scale neural networks built on deep learning techniques, primarily
utilizing the Transformer architecture [33]. Transformer models utilize self-attention mechanism to identify
relationships between elements within a sequence, which enables them to outperform other machine learning models
in understanding contextual relationships. Trained on vast datasets, LLMs learn syntax, semantics, context, and
relationships within language, enabling them to generate and comprehend natural language [34]. Furthermore,
LLMs possess knowledge reasoning capabilities, allowing them to retrieve and synthesize information from large
datasets to answer questions involving common sense and factual knowledge.

The architecture and configuration features of LLMs (e.g., model families, parameter size, and context window
length) collectively determine their capabilities, performance and applicability. The studies selected in this survey
involve LLM model families such as LLaMA [35], CodeLLaMA [36] and GPT [37,38]. The parameter size of a
large model typically refers to the number of variables used for learning and storing knowledge. The parameter size
represents a model’s learning capacity, indicating its ability to capture complexity and detail from data. Generally,
larger parameter sizes enhance the model’s expressive power, enabling it to learn more intricate patterns and finer
details. The context window refers to the range of text fragments a model uses when generating each output. It
determines the amount of contextual information the model can reference during generation. Selecting appropriate
architectures and configurations for LLMs in different scenarios is crucial for optimizing their performance.

3. LLM for Static Analysis

Static analysis examines various objects, such as analyzing vulnerabilities and detecting malware in source
code binary executables. Analyzing vulnerabilities in source code requires techniques like dependency analysis
and taint tracking to trace the flow of sensitive data. On the other hand, detecting malware focuses on control
flow examination and behavior modeling to identify malicious patterns. Consequently, LLM assistance differs by
program type and analysis purpose, which will be discussed in this section across four directions: (i) vulnerability
detection (Section 3.1), (ii) malware detection (Section 3.2), (iii) program verification (Section 3.3), and (iv) static
analysis enhancement (Section 3.4).

3.1. LLMs for Vulnerability Detection

Vulnerability detection focuses on identifying potential security risks or weaknesses in software through
automated tools and techniques, which demand precise code analysis and a deep understanding of program behavior.
Leveraging their advanced contextual comprehension, LLMs can analyze both semantic and syntactic patterns in
source code, providing actionable suggestions and remediation strategies for addressing vulnerabilities. As a result,
integrating LLMs into vulnerability detection has become a prominent application in program analysis.

To provide a clearer understanding of LLM applications in vulnerability detection, Table 2 summarizes the
intermediate representations (IRs) utilized and the specific vulnerability types addressed in selected studies. Figure 4
offers a visual overview of LLM integration at various stages, highlighting their roles in contextual understanding,
feature extraction, enhanced detection accuracy, and remediation strategies. These capabilities enable efficient
and precise identification of OS-level and application-level vulnerabilities. Additionally, a detailed comparison of
the best-performing LLMs in the reviewed studies reveals key factors influencing their effectiveness and adoption.

https://doi.org/10.53941/tai.2025.100006. 4 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

Table 3 presents a comprehensive summary of these models, including their model family, parameter sizes, context
window sizes, and open-source availability.

Table 2. Overview of the intermediate representations (AST, CFG, DFG) employed, their application domains
(OS-level or application-level vulnerabilities), their application to specific vulnerability types, and the assistance
provided by LLMs across selected studies

Reference AST CFG DFG OS App Vulnerability Type LLM’s Assistance

LLift [39] ✗ ✓ ✗ ✓ ✗ Use-before-initialization (UBI). Path analysis.
SLFHunter [40] ✓ ✓ ✓ ✓ ✗ Command injection vulnerabilities. Taint sinks.
LATTE [41] ✗ ✓ ✓ ✓ ✗ Binary taint analysis for data flows. Binary taint analysis and code slicing.
IMMI [42] ✗ ✓ ✓ ✓ ✗ Kernel memory bugs. Memory allocation and deallocation intentions
DefectHunter [43] ✓ ✓ ✓ ✗ ✓ General vulnerability. Code sequence embeddings.
IRIS [44] ✗ ✓ ✓ ✗ ✓ Taint analysis in smart contracts. Taint sources and sinks.
VERACATION [45] ✓ ✗ ✓ ✗ ✓ Syntactic-based vulnerability. Filters non-vulnerability-related statements.
Mao et al. [46] ✓ ✗ ✓ ✗ ✓ Vulnerabilities in Code review processes. Simulates multi-role discussions.
MSIVD [47] ✗ ✓ ✓ ✗ ✓ General vulnerability. Fine-tuned with multitask self-instructed learning.
GPTScan [48] ✓ ✗ ✓ ✗ ✓ Smart contract logic vulnerabilities. Analyzes smart contract semantics.
Yang et al. [49] ✓ ✗ ✗ ✗ ✓ IoT software vulnerability. Explains vulnerabilities in code.
LLbezpeky [50] ✗ ✗ ✗ ✗ ✓ Android security vulnerability. Android application security.
SkipAnalyzer [51] ✓ ✗ ✓ ✗ ✓ Bug detection. Identifies bugs and generates patches.
HYPERION [52] ✗ ✓ ✓ ✗ ✓ DApp Inconsistencies. Extracts attributes of smart contract bytecode.
Zhang et al. [53] ✓ ✗ ✓ ✗ ✓ General vulnerability. Detects vulnerabilities and fixes.
GPTLENS [54] ✓ ✗ ✓ ✗ ✓ Smart contract vulnerability. Generates diverse vulnerability hypotheses.
LuaTaint [55] ✓ ✓ ✓ ✗ ✓ IoT vulnerability Prunes false alarms.

Semantic & Syntactic Analysis

Data Flow Tracking

Control Flow Tracking

Automatic Vulnerability
Detection

False Positive Filtering

Patch Solution Generation

Contextual Understanding

Feature Extraction

Enhance Detection Accuracy &
Reduce False Positive

Automatic Code Review &
Patch Generation

Remediation Recommendations

Confidence Scores

Pre-processing Detection Model Vulnerability Reports

 LLM Assistance

Vulnerability Types

Vulnerable Components

Root Causes

Data Collection

OS-level Vulnerability

Application-level
Vulnerability

Kernel Code

Application Source Code

IoT Software

Code Source

Figure 4. A diagram of LLMs’ application in vulnerability detection.

OS-level Vulnerability. OS-level vulnerabilities refer to security flaws within critical components of an operat-
ing system, such as the kernel, system libraries, or device drivers. These vulnerabilities can compromise the stability
and security of the entire system, allowing attackers to gain unauthorized access, disrupt operations, or cause system-
wide failures affecting all running applications. Common examples include memory management errors, privilege
escalation, and resource misuse. Leveraging LLMs, tools like the LLift framework [39] address challenges such as
path sensitivity and scalability in detecting OS-level vulnerabilities. By combining constraint-guided path analysis
with task decomposition, LLift improves the detection of issues like use-before-initialization (UBI) in large-scale
codebases. Ye et al. [40] developed SLFHunter, which integrates static taint analysis with LLMs to identify command
injection vulnerabilities in Linux-based embedded firmware. The LLMs are utilized to analyze custom dynamically
linked library functions and enhance the capabilities of traditional analysis tools. Furthermore, Liu et al. [41]
proposed a system called LATTE, which combines LLMs with binary taint analysis. The code slicing and prompt
construction modules serve as the core of LATTE, where dangerous data flows are isolated for analysis. These mod-
ules reduce the complexity for LLMs by providing context-specific input, allowing improved efficiency and precision
in vulnerability detection through tailored prompt sequences that guide the LLM in the analysis process. In addition,
Liu et al. [42] proposed a system for detecting kernel memory bugs using a novel heuristic called Inconsistent Mem-
ory Management Intentions (IMMI). The system detects kernel memory bugs by summarizing memory operations
and slicing code related to memory objects. It uses static analysis to infer inconsistencies in memory management

https://doi.org/10.53941/tai.2025.100006. 5 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

responsibilities between caller and callee functions. LLMs assist in interpreting complex memory management mech-
anisms and enable the identification of bugs such as memory leaks and use-after-free errors with improved precision.

Table 3. Overview of the best-performing LLMs used in referenced papers, their model families (MF), parameter
sizes (Param), context window sizes (CW), and open-source availability.

Reference LLM MF Param CW Open-Source

LLift [39] GPT-4-0613 GPT-4 - 32,768 ✗

SLFHunter [40] GPT-4.0 GPT-4 - 32,768 ✗

LATTE [41] GPT-4.0 GPT-4 - 32,768 ✗

IMMI [42] ChatGPT-4-1106 GPT-4 - 32,768 ✗

DefectHunter [43] UniXcoder - 250 M 768 ✓

IRIS [44] GPT-4.0 GPT-4 - 32,768 ✗

VERACATION [45] GPT-4.0 GPT-4 - 1024 ✗

Mao et al. [46] GPT-3.5-turbo GPT-3.5 175 B 4096 ✗

MSIVD [47] CodeLlama-13B CodeLlama 13 B 2048 ✓

GPTScan [48] GPT-3.5-turbo GPT-3.5 175 B 4096 ✗

Yang [49] ChatGPT-4.0 GPT-4 - 32,768 ✗

LLbezpeky [50] GPT-4.0 GPT-4 - 32,768 ✗

SkipAnalyzer [51] ChatGPT-4.0 GPT-4 - 8192 ✗

HYPERION [52] LLaMA2 LLaMA - 4096 ✓

Zhang et al. [53] ChatGPT-4.0 GPT-4 - 8192 ✗

GPTLENS [54] GPT-4.0 GPT-4 - 32,768 ✗

LuaTaint [55] GPT-4.0 GPT-4 - 1920 ✗

Application-level Vulnerability. Application-level vulnerabilities are security weaknesses found within
individual software programs. These vulnerabilities can compromise the application’s performance, data integrity, or
user privacy. However, they typically do not affect the overall stability of the operating system. Common examples
include input validation issues, logic errors, and misconfigurations. These vulnerabilities can result in unauthorized
access or data breaches, as well as application-specific security incidents.

To address the challenges in application-level vulnerability detection, Wang et al. [43] introduced the Conformer
mechanism, which integrates self-attention and convolutional networks to capture both local and global feature
patterns. To further refine the detection process, they optimize the attention mechanism to reduce noise in multi-head
attention and improve model stability. By combining structural information processing, pre-trained models, and
the Conformer mechanism in a multi-layered framework, the approach improves detection accuracy and efficiency.
Building on these advancements, IRIS [44] proposes a neuro-symbolic approach that combines LLMs with static
analysis to support reasoning across entire projects. The static analysis is responsible for extracting candidate
sources and sinks, while the LLM infers taint specifications for specific CWE categories. Similarly, Cheng et al. [45]
combined semantic-level code clone detection with LLM-based vulnerability feature extraction. By integrating
program slicing techniques with the LLM’s semantic understanding, they refined vulnerability feature detection.
This approach addresses the limitations of traditional syntactic-based analysis.

Mao et al. [46] implemented a multi-role approach where LLMs act as different roles, such as testers and
developers, simulating interactions in a real-life code review process. This strategy fosters discussions between
these roles, enabling each LLM to provide distinct insights on potential vulnerabilities. MSIVD [47] introduces
a multi-task self-instructed fine-tuning technique that combines vulnerability detection, explanation, and repair,
improving the LLM’s ability to understand and reason about code through multi-turn dialogues. Additionally,
the system integrates LLMs with a data flow analysis-based GNN, which models the program’s control flow
graph to capture variable definitions and data propagation paths. This enables the model to rely not only on the
literal information in the code but also on the program’s graph structure for more precise detection. Similarly,
GPTScan [48] demonstrates how GPT can be applied to code understanding and matching scenarios, reducing false
positives and uncovering new vulnerabilities previously missed by human auditors.

In the domain of IoT software, Yang et al. [49] explored the application of LLMs combined with static
code analysis for detecting vulnerabilities. By leveraging prompt engineering, LLMs enhance the efficiency of
vulnerability detection and reduce costs, ultimately improving scalability and feasibility in large IoT systems.
Meanwhile, Xiang et al. [55] proposed LuaTaint, a static analysis framework designed to detect vulnerabilities
in the web configuration interfaces of IoT devices. LuaTaint integrates flow-, context-, and field-sensitive static

https://doi.org/10.53941/tai.2025.100006. 6 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

taint analysis with key features such as framework-specific adaptations for the LuCI web interface and pruning
capabilities powered by GPT-4. By converting Lua code into ASTs and CFGs, the framework performs precise taint
analysis to identify vulnerabilities like command injection and path traversal. The system uses dispatching rules
and LLM-powered alarm pruning to improve detection precision, reduce false positives, and efficiently analyze
firmware across large-scale datasets.

Mohajer et al. [51] presented SkipAnalyzer, a tool that employs LLMs for bug detection, false positive filtering,
and patch generation. By improving the precision of existing bug detectors and automating patching, this approach
significantly reduces false positives and ensures accurate bug repair.

Additionally, Zhang et al. [53] introduced tailored prompt engineering techniques with GPT-4 [38], leveraging
auxiliary information such as API call sequences and data flow graphs to provide structural and sequential context.
This approach also employs chain-of-thought prompting to enhance reasoning capabilities, demonstrating improved
accuracy in detecting vulnerabilities across Java and C/C++ datasets.

Extending the application of LLMs in decentralized applications and smart contract analysis, Yang et al. [52]
developed HYPERION, which combines LLM-based natural language analysis with symbolic execution to address
inconsistencies between DApp descriptions and smart contracts. The system integrates a fine-tuned LLM to analyze
front-end descriptions, while symbolic execution processes contract bytecode to recover program states, effectively
identifying discrepancies that may undermine user trust.

For smart contract vulnerability detection, Hu et al. [54] introduced GPTLENS, a two-stage adversarial
framework leveraging LLMs. GPTLENS assigns two synergistic roles to LLMs: an auditor generates a diverse set of
vulnerabilities with associated reasoning, while a critic evaluates and ranks these vulnerabilities based on correctness,
severity, and profitability. This open-ended prompting approach facilitates the identification of a broader range of
vulnerabilities, including those that are uncategorized or previously unknown. Experimental results on real-world
smart contracts show that GPTLENS outperforms traditional one-stage detection methods while maintaining low
false positive rates. Focusing on Android security and software bug detection, Mathews et al. [50] introduced
LLbezpeky, an AI-driven workflow that assists developers in detecting and rectifying vulnerabilities. Their approach
analyzed Android applications, achieving over 90% success in identifying vulnerabilities in the Ghera benchmark.

Conclusion 1. Researchers use static analysis with various intermediate representations (IRs) and LLMs to
detect vulnerabilities. ASTs enhance syntax-related vulnerability detection but struggle with semantic issues. CFGs
handle control flow vulnerabilities but may miss certain execution paths. DFGs focus on data-flow vulnerabilities
but can be computationally expensive in large systems. GPT-4 is widely adopted for its versatility but may still
produce hallucinations and inconsistent results. UniXcoder performs well in specific tasks but lacks generalizability,
while CodeLlama offers flexibility and reproducibility but may not match the performance of proprietary models.
These approaches, despite their strengths, face challenges related to scalability, consistency, and complexity.

3.2. LLMs for Malware Detection

Malware detection determines whether a program has malicious intent and is an essential aspect of pro-
gram analysis research. Initially, signature-based detection methods were predominantly used. As malware
evolved, new detection techniques emerged, including behavior-based detection, heuristic detection, and model
checking approaches. Data mining and machine learning algorithms soon followed, further enhancing detec-
tion capabilities [56].

Traditional malware detection methods struggle with challenges like obfuscation and polymorphic malware.
LLMs offer a new approach to enhance detection accuracy and adapt to evolving threats by analyzing code semantics
and patterns. Fujii et al. [57] utilized decompiled and disassembled outputs of the Babuk ransomware as inputs to the
LLM to generate function descriptions through carefully designed prompts. The generated descriptions were evalu-
ated using BLEU [58] and ROUGE [59] metrics to measure functional coverage and agreement with analysis articles.

Additionally, Simion et al.[60] evaluated the feasibility of using out-of-the-box open-source LLMs for malware
detection by analyzing API call sequences extracted from binary files. The study benchmarked four open-source
LLMs (Llama2-13B, Mistral[61], Mixtral, and Mixtral-FP16 [62]) using API call sequences extracted from
20,000 malware and benign files. The results showed that the models, without fine-tuning, achieved low accuracy
and were unsuitable for real-time detection. These findings highlight the need for fine-tuning and integration with
traditional security tools.

Analyzing malicious behaviors to detect malware is another approach. Zahan et al. [63] employed a static
analysis tool named CodeQL [64] to pre-screen npm packages. This step filtered out benign files, thereby reducing
the number of packages requiring further investigation. Following this step, they utilized GPT-3 and GPT-4 models
to analyze the remaining JavaScript code for detecting complex or subtle malicious behaviors. The outputs from the

https://doi.org/10.53941/tai.2025.100006. 7 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

LLMs were refined iteratively. Accuracy improved through continuous adjustments to the model’s focus based on
feedback and re-evaluation.

Other studies focus on applying LLMs specifically to Android malware detection. Khan et al. [65] extracted
Android APKs to obtain source code and opcode sequences, constructing call graphs to represent the structural
relationships between functions. Models such as CodeBERT [66] and GPT were employed to generate semantic
feature representations, which were used to annotate the nodes in the call graphs. The graphs were enriched
with structural and semantic information. These enriched graphs were then processed through a graph-based
neural network to detect malware in Android applications. Zhao et al. [67] first extracted features from Android
APK files using static analysis, categorizing them into permission view, API view, and URL & uses-feature view.
A multi-view prompt engineering approach was applied to guide the LLM in generating textual descriptions
and summaries for each feature category. The generated descriptions were transformed into vector represen-
tations, which served as inputs for a deep neural network (DNN)-based classifier to determine whether the APK
was malicious or benign. Finally, the LLM produced a diagnostic report summarizing the potential risks and
detection results.

Conclusion 2. The integration of LLMs with static analysis techniques enables the analysis of structured
input sources, including decompiled functions, API call sequences, JavaScript code files, and APK attributes. A
key commonality across approaches is the reliance on LLMs to process static features and generate semantic
representations, textual descriptions, or embeddings, which are subsequently used for classification or detection
tasks. Additionally, we notice that both open-source LLMs (e.g., Llama2-13B and Mistral) and proprietary models
(e.g., GPT-4) are widely utilized in this task.

3.3. LLMs for Program Verification

Automated program verification employs tools and algorithms to ensure that a program’s behavior aligns with
predefined specifications, enhancing both software reliability and security. Traditional verification methods often
require substantial manual effort, particularly for writing specifications and selecting strategies. These processes are
often complex and prone to errors, especially in large-scale systems. In contrast, automated verification generates
key elements such as invariants, preconditions, and postconditions, using techniques like static analysis and model
checking to ensure correctness. The integration of LLMs further enhances this process by enabling the automatic
analysis of code features and the efficient selection of verification strategies. This reduces manual intervention
and significantly accelerates verification. Consequently, automated program verification has evolved into a more
efficient and reliable method for ensuring software quality. This subsection introduces diverse applications of LLMs
in program verification, highlighting their role in automating and enhancing critical tasks.

Table 4 provides an overview of various studies utilizing LLMs for program verification. It summarizes
their targets, methodologies, and outcomes to highlight the diverse applications of these models in automating
verification tasks. The inputs in these studies can be categorized into four types: (i) Code, which includes
program implementations or snippets used for analysis or synthesis. (ii) Specifications, referring to formal
descriptions of program behavior, such as preconditions, postconditions, or logical formulas. (iii) Formal meth-
ods, encompassing mathematical constructs like theorems, proofs, and loop invariants for ensuring correctness.
(iv) Error and debugging information, such as counterexamples, type hints, or failed code generation cases that
aid in resolving programming issues.

Proof Generation. Proof generation in program verification automates the creation of formal proofs to
ensure program correctness, logical consistency, and compliance with specifications. This process reduces the need
for manual effort and enhances verification efficiency by streamlining complex proof tasks. Kozyrev et al. [68]
developed CoqPilot, a VSCode plugin that integrates LLMs such as GPT-4, GPT-3.5, LLaMA-2 [35], and Anthropic
Claude [82] with Coq-specific tools like CoqHammer [83] and Tactician [84] to automate proof generation in
the Coq theorem prover. The authors implemented premise selection for better LLM prompting and created an
LLM-guided mechanism that attempted fixing failing proofs with the help of the Coq’s error messages. Additionally,
Zhang et al. [69] developed the Selene framework to automate proof generation in software verification using LLMs.
The framework is built on the industrial-level operating system microkernel [85], seL4 [86], and introduces the
technique of lemma isolation to reduce verification time. Its key contributions include efficient proof validation,
dependency augmentation, and showcasing the potential of LLMs in automating complex verification tasks.

Invariant Generation. Invariant generation identifies properties that remain true during program execution,
providing a logical foundation for verifying correctness and analyzing complex iterative structures like loops
and recursion.

https://doi.org/10.53941/tai.2025.100006. 8 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

Table 4. Overview referenced studies, detailing their targets, LLMs employed, parameter sizes (Param), open-source
availability (OS), input types, and resulting outputs. The best-performing models are marked with *

Reference Target LLM Param OS Input Output

CoqPilot [68] Proof generation

Claude - ✗

Formal methods Coq proofs
LLaMA-2-13B 13 B ✓

GPT-3.5 - ✗

GPT-4* - ✗

Selene [69] Proof generation
GPT-3.5-turbo 175 B ✗

Specifications Formal proofs
GPT-4* - ✗

iRank [70] Loop invariant ranking
GPT-3.5-turbo 175 B ✗

Formal methods Reranked LLM-generated
invariantsGPT-4* - ✗

Janßen et al. [71] Loop invariant generation GPT-3.5 175 B ✗ Specifications Valid loop invariants
Pirzada et al. [72] Loop invariant generation GPT-3.5-Turbo-Instruct 175 B ✗ Formal methods Loop invariants

LaM4Inv [73] Loop invariant generation
LLaMA-3-8B 8 B ✓

Code Loop invariantsGPT-3.5-Turbo 175 B ✗

GPT-4-Turbo* - ✗

Pei et al. [74] Invariant prediction GPT-4 - ✗ Code Static invariants

AutoSpec [75] Specification synthesis
GPT-3.5-turbo-0613* 175 B ✗

Code Specifications
Llama-2-70B 70 B ✓

LEMUR [76] Automated verification
GPT-3.5-turbo 175 B ✗

Specifications Loop invariants
GPT-4* - ✗

SynVer [77] Automated verification GPT-4 - ✗ Specifications Candidate C programs
PropertyGPT [78] Smart contract verification GPT-4-0125-preview - ✗ Code and specifications Formal verification properties

LLM-Sym [79] Python symbolic execution
GPT-4o-mini - ✗ Error and debugging Initial Z3Py code
GPT-4o - ✗ Error and debugging Refined Z3Py code

CFStra [80] Verification strategy selection GPT-3.5-turbo 175 B ✗ Code and specifications Identified code features
Chapman et al. [81] Error specification inference GPT-4 - ✗ Formal methods Error specifications

Some studies have explored various ways to leverage LLMs for generating and ranking loop invariants.
Janßen et al. [71] investigated the utility of ChatGPT in generating loop invariants. The authors used ChatGPT to
annotate 106 C programs from the SV-COMP Loops category [87] with loop invariants written in ACSL [88], eval-
uating the validity and usefulness of these invariants. They integrated ChatGPT with the Frama-C [89] interactive
verifier and the CPAchecker [90] automatic verifier to assess how well the generated invariants enable these tools
to solve verification tasks. Results showed that ChatGPT can produce valid and useful invariants for many cases,
facilitating software verification by augmenting traditional methods with insights provided by LLMs. Additionally,
Chakrabor et al. [70] observed that employing LLMs in a zero-shot setting to generate loop invariants often led to
numerous attempts before producing correct invariants, resulting in a high number of calls to the program verifier. To
mitigate this issue, they introduced iRank, a re-ranking mechanism based on contrastive learning, which effectively
distinguishes correct from incorrect invariants. This method significantly reduces the verification calls required,
improving efficiency in invariant generation.

Besides, Pei et al. [74] explored using LLMs to predict program invariants that were traditionally generated
through dynamic analysis. By fine-tuning LLMs on a dataset of Java programs annotated with invariants from the
Daikon [91] dynamic analyzer, they developed a static analysis-based method using a scratchpad approach. This
technique incrementally generates invariants and achieves performance comparable to Daikon without requiring
code execution. It also provides a static and cost-effective alternative to dynamic analysis.

Bounded Model Checking (BMC) is a verification technique that checks the correctness of a system within
a finite number of steps. Integrating LLMs with BMC has shown potential in enhancing loop invariant generation.
Pirzada et al. [72] proposed a modification to the classical BMC procedure that avoids the computationally expensive
process of loop unrolling by transforming the CFG. Instead of unrolling loops, the framework replaces loop segments
in the CFG with nodes that assert the invariants of the loop. These invariants are generated using LLMs and validated
for correctness using a first-order theorem prover. This transformation produces loop-free program variants in
a sound manner, enabling efficient verification of programs with unbounded loops. Their experimental results
demonstrate that the resulting tool, ESBMC ibmc, significantly improves the capability of the industrial-strength
software verifier ESBMC [92], verifying more programs compared to state-of-the-art tools such as SeaHorn [93]
and VeriAbs [94], including cases these tools could not handle. Wu et al. [73] proposed LaM4Inv, a framework that
integrates LLMs with BMC to improve this process. The framework employs a ’query-filter-reassemble’ pipeline.
LLMs generate candidate invariants, BMC filters out incorrect predicates, and valid predicates are iteratively refined
and reassembled into invariants.

Automated Program Verification. Automating program specification presents challenges such as handling

https://doi.org/10.53941/tai.2025.100006. 9 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

programs with complex data types and code structures. To address these issues, Wen et al. [75] introduced an
approach called AutoSpec. Driven by static analysis and program verification, AutoSpec uses LLMs to generate
candidate specifications. Programs are decomposed into smaller components to help LLMs focus on specific
sections. The generated specifications are iteratively validated to minimize error accumulation. This process enables
AutoSpec to handle complex code structures, such as nested loops and pointers, making it more versatile than
traditional specification synthesis techniques. Wu et al. [76] introduced the LEMUR framework. In this hybrid
system, LLMs generate program properties like invariants as sub-goals, which are then verified and refined by
reasoners such as CBMC [95], ESBMC [92] or UAUTOMIZER [96]. The framework is based on a sound proof
system, thus ensuring correctness when LLMs propose incorrect properties. An oracle-based refinement mechanism
improves these properties, enabling LEMUR to enhance efficiency in verification and handle complex programs
more effectively than traditional tools. Additionally, Mukherjee et al. [77] introduced SynVer, a framework that
integrates LLMs with formal verification tools for automating the synthesis and verification of C programs. SynVer
takes specifications in Separation Logic, function signatures, and input-output examples as input. It leverages LLMs
to generate candidate programs and uses SepAuto, a verification backend, to validate these programs against the
specifications. The framework prioritizes recursive program generation, reducing the dependency on manual loop
invariants and improving verification success rates.

Others. Other applications of LLMs in program verification include smart contract verification, symbolic
execution, strategy selection and error specification inference. For instance, Liu et al. [78] developed a novel
framework named PropertyGPT, leveraging GPT-4 to automate the generation of formal properties such as in-
variants, pre-/post-conditions, and rules for smart contract verification. The framework embeds human-written
properties into a vector database and retrieves reference properties for customized property generation, ensuring
their compilation, appropriateness, and runtime verifiability through iterative feedback and ranking. Similarly,
Wang et al. [79] introduced an iterative framework named LLM-Sym. This tool leverages LLMs to bridge the gap
between program constraints and SMT solvers. The process begins by extracting control flow paths, performing
type inference, and iteratively generating Z3 [97] code to solve path constraints. A notable feature of LLM-Sym
is its self-refinement mechanism, which utilizes error messages to debug and enhance the generated Z3 code. If
the code generation process fails, the system directly employs LLMs to solve the constraints. Once constraints are
resolved, Python test cases are automatically generated from Z3’s outputs.

Another approach [80] automates the selection of verification strategies to overcome limitations of traditional
tools like CPAchecker [90]. These tools often require users to manually select strategies, making the process
more complex and time-consuming. LLMs analyze code features to identify suitable strategies, streamlining the
verification process and minimizing user input. This automation not only improves efficiency but also minimizes
reliance on expert knowledge. Additionally, Chapman et al. [81] proposed a method that combines static analysis
with LLM prompting to infer error specifications in C programs. Their system queries the LLM when static analysis
encounters incomplete information, enhancing the accuracy of error specification inference. This approach is
effective for third-party functions and complex error-handling paths.

Conclusion 3. The applications of LLMs in program verification span various tasks, including proof generation,
specification synthesis, loop invariant generation, and strategy selection. These methods streamline the verification
process by automating the generation of properties, invariants, and other critical components essential for program
analysis. Despite their diverse applications, these methods share a common goal: reducing reliance on expert
knowledge and improving verification efficiency. A key aspect of achieving this goal is the iterative refinement
of LLM-generated outputs. This refinement process often incorporates static analysis or hybrid frameworks that
integrate formal verification tools, further enhancing reliability.

3.4. LLMs for Static Analysis Enhancement

Beyond the previously mentioned applications of LLMs, other studies focus on leveraging LLMs to assist in
certain processes of static analysis.

Code Review Automation. Lu et al. [98] proposed LLaMA-Reviewer, a model that leverages LLMs to
automate code review. It incorporates instruction-tuning of a pre-trained model and employs Parameter-Efficient
Fine-Tuning techniques to minimize resource requirements. The system automates essential code review tasks,
including predicting review necessity, generating comments, and refining code.

Code Coverage Prediction. Dhulipala et al. [99] introduced CodePilot, a system that integrates planning
strategies and LLMs to predict code coverage by analyzing program control flow. CodePilot first generates a plan
by analyzing program semantics, dividing the code into steps derived from control flow structures, such as loops
and branches. Subsequently, CodePilot adopts either a single-prompt approach (Plan+Predict in one step) or a

https://doi.org/10.53941/tai.2025.100006. 10 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

two-prompt approach (planning first, followed by coverage prediction). These approaches guide LLMs to predict
which parts of the code are likely to be executed based on the formulated plan.

Decompiler Optimization. Hu et al. [100] proposed DeGPT, a framework designed to enhance the clarity
and usability of decompiler outputs for reverse engineering tasks. DeGPT begins by analyzing the raw output of
decompilers, identifying issues such as ambiguous variable names, missing comments, and poorly structured code.
The framework leverages LLMs in three distinct roles:Referee, Advisor, and Operator to propose and implement
optimizations while preserving semantic correctness.

Explainable Fault Localization. Yan et al. [101] proposed CrashTracker, a hybrid framework that combines
static analysis with LLMs. This approach improves the accuracy and explainability of crashing fault localization
in framework-based applications. CrashTracker introduces Exception-Thrown Summaries (ETS) to represent
fault-inducing elements in the framework. It also uses Candidate Information Summaries (CIS) to extract relevant
contextual information for identifying buggy methods. ETS models are employed to identify potential buggy
methods. LLMs then generate natural language fault reports based on CIS data, enhancing the clarity of fault
explanations. CrashTracker demonstrates state-of-the-art performance in precision and explainability when applied
to Android applications.

Extract Method Refactoring. Pomian et al. [102] introduced EM-Assist, a tool that combines LLMs and
static analysis to enhance Extract Method (EM) refactoring in Java and Kotlin projects. EM-Assist uses LLMs
to generate EM refactoring suggestions and applies static analysis to discard irrelevant or impractical options.
To improve the quality of suggestions, the tool employs program slicing and ranking mechanisms to prioritize
refactorings aligned with developer preferences. EM-Assist automates the entire refactoring process by leveraging
the IntelliJ IDEA platform to safely implement changes.

Obfuscated Code Disassembly. Rong et al. [103] introduced DISASLLM, a framework that combines
traditional disassembly techniques with LLMs. The LLM component validates disassembly results and repairs errors
in obfuscated binaries, enhancing the quality of the output. Through batch processing and GPU parallelization,
DISASLLM achieves substantial improvements in both the accuracy and speed of decoding obfuscated code,
outperforming state-of-the-art methods

Privilege Variable Detection. Wang et al. [104] presented a hybrid workflow that combines LLMs with static
analysis to detect user privilege-related variables in programs. The program is first analyzed to identify relevant
variables and their data flows, which provides an initial set of potential user privilege-related variables. The LLM
is used to evaluate these variables by understanding their context and scoring them based on their relationship to
user privileges.

Static Bug Warning Inspection. Wen et al. [105] proposed LLM4SA, a framework that integrates LLMs
with static analysis tools to automatically inspect large volumes of static bug warnings. LLM4SA first extracts
bug-relevant code snippets using program dependence traversal. It then formulates customized prompts with
techniques such as Chain-of-Thought reasoning and few-shot learning. To ensure precision, the framework applies
pre- and post-processing steps to validate the results. This approach tackles challenges like token limitations
by optimizing input size, reduces inconsistencies in LLM responses through structured prompt engineering, and
mitigates false positives via comprehensive validation.

Static Analysis Alert Adjudication. Flynn et al. [106] proposed using LLMs to automatically adjudicate
static analysis alerts. The system generates prompts with relevant code and alert details, enabling the LLM to
classify alerts as true or false positives. To address context window limitations, the system summarizes relevant
code and provides mechanisms for the LLM to request additional details or verify its classifications.

Static Analysis Enhancement by Pseudo-code Execution. Hao et al. [107] presented E&V, a system
designed to enhance static analysis using LLMs by simulating the execution of pseudo-code and verifying the results
without needing external validation. It validates the results of the analysis through an automatic verification process
that checks for errors and inconsistencies in the pseudo-code execution. This system is particularly useful for tasks
like crash triaging and backward taint analysis in large codebases like the Linux kernel.

Conclusion 4., These methods illustrate how LLMs improve static analysis in areas like debugging, fault
localization, refactoring, and privilege detection, but they also face several challenges. For example, LLMs
are heavily reliant on prompt engineering, and poorly designed prompts can result in false positives or missed
vulnerabilities. They also struggle with scalability, especially when processing large or complex codebases, as shown
by CodePilot, where computational overhead and token limits can hinder performance. Additionally, LLMs have
limited context understanding, particularly in analyzing complex logic vulnerabilities, as evidenced by DISASLLM,
which, while improving disassembly accuracy, still struggles with intricate control flows.

https://doi.org/10.53941/tai.2025.100006. 11 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

4. LLMs for Dynamic Analysis

Static analysis primarily focuses on detecting structural and logical flaws in code by analyzing the source code
to identify potential issues. In contrast, dynamic analysis emphasizes the program’s behavior during execution,
including performance profiling and testing. Profiling focuses on understanding program performance by analyzing
execution, such as counting statement or procedure executions through instrumentation. Testing aims to make sure
the test suites can cover a program. Statement coverage verifies that every statement in the code is executed at
least once during testing. Branch, condition, and path coverage evaluate how thoroughly all branches, conditions,
and execution paths are tested [32]. This section examines how LLMs enhance dynamic analysis, focusing on
(i) malware detection (Section 4.1) under profiling, (ii) fuzzing (Section 4.2) and (iii) penetration testing (Section 4.3)
under testing.

4.1. LLMs for Malware Detection

As discussed in Section 3.2, the definition of malware detection is provided. This subsection focuses on
using LLMs to analyze runtime data for malware detection. The distinction between static and dynamic analysis
depends primarily on the input source. For instance, if API call sequences are captured during program runtime,
such as through sandboxes, debuggers, or runtime analysis frameworks, they are classified as dynamic analysis.
Conversely, API call sequences extracted through methods like decompilation or disassembly from static files are
classified as static analysis. Table 5 provides an overview of LLMs in both static and dynamic approaches and their
testing accuracy.

Yan et al. [108] proposed a dynamic malware detection method that utilizes GPT-4 to generate text represen-
tations for API calls, which are an essential feature in dynamic malware analysis. Their method incorporates the
innovative use of prompt engineering, allowing GPT-4 to generate highly detailed, context-rich descriptions for
each API call in a sequence. These descriptions go beyond simple API names and delve into the specifics of how
each API call behaves within the context of the malware’s execution. This provides a much deeper understanding
of the malware’s actions, as opposed to traditional approaches that primarily rely on raw, unprocessed sequences
of API calls. After generating these descriptions, the next step in the pipeline involves using BERT to convert the
textual descriptions into embeddings. These embeddings encapsulate the semantic information of the API calls and
their interactions, thereby forming a high-quality representation of the entire API sequence. These representations
are then passed through a CNN, which performs feature extraction and classification. This comprehensive approach
addresses several major challenges faced by traditional API-based models.

Table 5. Overview of the LLMs used in referenced papers, their target malware, input sources, type of analysis,
parameter sizes (Param), context window sizes (CW), open-source availability (OS), and testing accuracy.

Reference Target Malware Input Source Type LLM Param CW OS Accuracy

Fujii et al. [57] Babuk ransomware Decompiled/disassembled functions Static ChatGPT-4.0 - 8192 ✗ 90.90%

Simion et al. [60] General malicious files API call sequences Static

Llama2-13B 13 B 4096 ✓ 50%
Mistral 7.3 B 8192 ✓ 51%
Mixtral 7∼13 B 4096 ✓ 67%
Mixtral-FP16 7∼13 B 4096 ✓ 72%

Zahan et al. [63] Malicious packages JavaScript code files Static
GPT-3.5-turbo-1106 175 B 4096 ✗ 91%
GPT-4-1106-preview - 8192 ✗ 99%

Khan et al. [65] Android malware APK files Static
CodeBERT 125 M 512 ✓ 95.29%
GPT-2 1.5 B 1024 ✓ 94.89%
RoBERTa 125 M 512 ✓ 94.94%

Zhao et al. [67] Android malware APK files Static GPT-4-1106-preview - 8192 ✗ 97.15%

Yan et al. [108] General malware API call sequences Dynamic
BERT 110 M 512 ✓

95.61%
GPT-4 - 8192 ✗

Sun et al. [109] Linux-based malware System call traces Dynamic ChatGPT-3.5 175 B 4096 ✗ -

Sanchez et al. [110] IoT malware System call traces Dynamic

BERT 110 M 512 ✓ 67.72%
DistilBERT 66 M 512 ✓ 63%
GPT-2 1.5 B 1024 ✓ 69%
BigBird 110 M 4096 ✓ 87%
Longformer 150 M 4096 ✓ 86%
Mistral 7.3 B 8192 ✓ 58%

Li et al. [111] Android malware Code features and system calls Hybrid ChatGPT - - ✗ -

Similarly, Sun et al. [109] developed a framework that uses dynamic analysis and LLMs to generate detailed
cyber threat intelligence (CTI) reports. The framework captures syscall execution traces of malware and converts
them into natural language descriptions using a Linux syscall transformer. These descriptions are organized into an
Attack Scenario Graph (ASG) to preserve essential details and reduce redundancy. Sanchez et al. [110] applied
pre-trained LLMs with transfer learning for malware detection. They fine-tuned the models with a classification

https://doi.org/10.53941/tai.2025.100006. 12 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

layer on a dataset of benign and malicious system calls. This approach allows the model to distinguish between
normal and malicious behavior while avoiding the need for training from scratch by leveraging pre-trained LLMs.

Conclusion 5. Dynamic malware detection with LLMs analyzes runtime behaviors such as API and system
call traces to improve accuracy and interpretability. Larger models like GPT-4 enhance adaptability to unseen
patterns, providing in-depth context for each API call, but they come with high computational costs and slower
processing speeds, which may limit their applicability in real-time detection. Smaller models like BERT are efficient
for real-time tasks, but they may struggle with complex patterns and lack the depth of understanding provided by
larger models.

4.2. LLMs for Fuzzing

Fuzzing is a technique for automated software testing that inputs randomized data into a program to detect
vulnerabilities like crashes, assertion failures, or undefined behaviors. The classifications of fuzzing is shown
in Figure 5. Fuzzing approaches are categorized by three dimensions: test case generation, input structure, and
program structure. Test case generation can be mutation-based which alters existing inputs, or generation-based
which creates new inputs from scratch. Input structure distinguishes smart fuzzing which utilizes input format
knowledge, from dumb fuzzing which generates inputs blindly. Program structure analysis classifies fuzzing as
black-box, grey-box, or white-box, based on the tester’s level of program insight.

The use of LLMs for fuzzing is summarized in Table 6, which highlights the strategies, program struc-
tures, LLMs employed, and applications in the studies. Most research utilizing LLMs for fuzzing focuses on
greybox fuzzing.

Fuzzing Classification

Test Case Generation

Input Structure

Program Structure

Mutation-based

Generation-based

Smart Fuzzing

Dumb Fuzzing

Blackbox

Greybox

Whitebox

Figure 5. Fuzzing classifications.

Table 6. Overview of the LLM-based fuzzers used in referenced papers, including their target software, test case
generation (TCG), program structure (PS), model parameters, open-source availability (OS), and usage details. The
best-performing model is marked with *

Reference Target TCG PS LLM Param OS LLMs Usage

CHEMFuzz [112]
Quantum chemistry
software

Mutation Greybox
GPT-3.5 175 B ✗

Input file mutation and output
analysis

Claude-2* [113] - ✗

Bard [114] - ✗

CovRL [115] JavaScript Engines Mutation Greybox CodeT5+ 220 M ✓ Generates valid test cases

LLAMAFUZZ [116] Real-world programs Mutation Greybox llama-2-7b-chat-hf 7 B ✓
Mutate structured data inputs
and generate new seeds

FuzzGPT [117] Deep Learning Libraries Mutation Greybox
Codex (code-davinci-002) - ✗ Mutatie and refine test cases
CodeGen (350M/2B/6B-mono) 350 M/2 B/6 B ✓ Generates initial test cases

CHATFUZZ [118] General programs Mutation Greybox GPT-3.5-turbo 175 B ✗
Generates format-conforming
variations of existing seeds

CODAMOSA [119] Python modules Mutation Greybox Codex - ✗
Generates tailored inputs and
extends callable sets

CHATAFL [120]
Network protocol
implementations

Mutation Greybox GPT-3.5-turbo 175 B ✗
Extracts grammars and enrich
seed corpora

Asmita et al. [121] BusyBox Mutation
Greybox,
blackbox

GPT-4-0613 - ✗ Generate seeds

Fuzz4All [122]
Compilers, SMT solvers,
quantum frameworks and
programming toolchains.

Mutation,
generation

Greybox GPT-4.0 - ✗ Generates fuzzing inputs

https://doi.org/10.53941/tai.2025.100006. 13 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

Qiu et al. [112] introduced CHEMFuzz, an LLM-assisted fuzzing framework designed for quantum chemistry
software. CHEMFuzz uses an evolutionary fuzzing approach with LLM-based input mutation and output analysis to
address the syntactic and semantic complexities of quantum chemistry software. The two-module system combining
syntactic mutation operators with anomaly detection detected 40 bugs and 81 potential warnings in Siesta 4.1.5 [123].
Eom et al. [115] introduced CovRL, a framework that integrates coverage-guided reinforcement learning with LLMs
to enhance fuzzing for JavaScript engines. The approach combines Term Frequency-Inverse Document Frequency
(TF-IDF) [124] weighted coverage maps with reinforcement learning to guide the LLM-based mutator. TF-IDF is a
statistical measure used to evaluate the importance of a word in a document relative to a collection of documents,
where the term frequency (TF) reflects how often a term appears in a document, and the inverse document frequency
(IDF) measures how unique or rare the term is across the entire dataset. This enables the generation of more effective
test cases, discovering new coverage areas and improving the efficiency of JavaScript engine fuzzing.

In addition, Deng et al. [117] introduced FuzzGPT, a framework for fuzzing deep learning libraries. By
mining historical bug-triggering programs and leveraging LLMs such as Codex[125] and CodeGen [126], FuzzGPT
generates edge-case inputs using strategies like few-shot, zero-shot, and fine-tuned learning. This targeted approach
exploits API-specific vulnerabilities, illustrating the effectiveness of LLMs in managing complex software ecosys-
tems. Meng et al. [120] introduced CHATAFL, an LLM-guided mutation-based framework for protocol fuzzing.
The framework extracts protocol grammars, enhances seed diversity, and transitions to unexplored protocol states.
This approach overcomes challenges like reliance on initial seeds and restricted state-space exploration.

Beyond domain-specific applications, frameworks like LLAMAFUZZ [116] and CHATFUZZ [118] showcase
the adaptability of LLMs for general program fuzzing. Zhang et al. proposed LLAMAFUZZ, which combines
greybox fuzzing with LLM-based mutation to enhance branch coverage and bug detection. Its focus on structured
data inputs makes it an effective tool for augmenting traditional fuzzing methods, demonstrating improvements
over AFL++ [127]. Similarly, Hu et al. introduced CHATFUZZ [118], leveraging ChatGPT to generate format-
conforming test cases for highly structured inputs, addressing the efficiency limitations of traditional mutation-
and grammar-based fuzzers. These frameworks demonstrate the ability of LLMs to adapt to structured program
requirements while advancing fuzzing efficiency.

Lemieux et al. [119] introduced CODAMOSA, an approach that integrates LLMs into testing workflows.
Search-Based Software Testing (SBST) [128] is a technique that uses search algorithms to automatically generate
test cases for software applications. CODAMOSA combines SBST with Codex to generate test cases and address
coverage stagnation. It integrates LLM-generated Python code into SBST workflows, highlighting the collaboration
between traditional testing and LLM-driven techniques. Asmita et al. [121] explored LLM-based fuzzing in
BusyBox [129], a widely used Linux utility suite. Their approach combines LLM-assisted seed generation with
crash reuse to enhance efficiency in black-box fuzzing workflows. Using GPT-4, they demonstrated how LLMs
handle complex inputs and reuse crashes for cross-variant testing, improving vulnerability detection.

Additionally, Xia et al. [122] proposed Fuzz4All, a universal fuzzing framework that extends fuzzing beyond
language- or system-specific constraints. Autoprompting is a technique that automatically generates and refines
prompts to effectively guide a model in producing the desired outputs or test cases. In this context, Fuzz4All uses
autoprompting and an iterative fuzzing loop to transform user-provided inputs into prompts for generating diverse
test cases.

Conclusion 6. LLM-based fuzzing frameworks have advanced automated testing by combining mutation-based
and generation-based strategies with models like GPT-3.5, Codex, and CodeGen. As shown in Table 6, these tools
share common goals, such as improving test coverage, addressing domain-specific challenges, and automating seed
generation and refinement.

4.3. LLMs for Penetration Testing

Penetration testing is a controlled security assessment that simulates real-world attacks to identify, evaluate,
and mitigate vulnerabilities in systems and networks[130].

Deng et al. [131] explored the capabilities of LLMs in penetration testing, revealing that while these models
excel at sub-tasks, they face challenges in maintaining context across multi-step workflows. To address this
limitation, the authors proposed PentestGPT, a framework integrating reasoning, generation, and parsing modules.
This framework significantly improved task completion rates by 228.6% compared to GPT-3.5 and demonstrated
effective performance in real-world scenarios. Huang et al. [132] developed PenHeal, an LLM-based framework
combining penetration testing and remediation. PenHeal includes a Pentest Module that uses techniques like
counterfactual prompting to autonomously detect vulnerabilities. Its remediation module offers tailored strategies
based on severity and cost efficiency. Compared to PentestGPT, PenHeal increased detection coverage by 31%,

https://doi.org/10.53941/tai.2025.100006. 14 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

improved remediation effectiveness by 32%, and reduced costs by 46%. Additionally, Goyal et al. [133] proposed
Pentest Copilot, a framework that uses GPT-4-turbo to enhance penetration testing workflows. Pentest Copilot
incorporates chain-of-thought reasoning and retrieval-augmented generation to automate tool orchestration and
exploit exploration. It ensures adaptability with a web-based interface. This approach combines automation with
expert oversight, enhancing the accessibility of penetration testing while preserving technical depth.

Additionally, some frameworks are designed as agent-based systems. Bianou et al. [134] presented PENTEST-
AI, a framework guided by the MITRE ATT&CK [135] framework for multi-agent penetration testing. The
framework automates reconnaissance, exploitation, and reporting tasks using specialized LLM agents. PENTEST-
AI reduces human intervention while aligning with established cybersecurity methodologies, illustrating the synergy
between LLMs and structured security frameworks in addressing real-world challenges. Muzsai et al. [136] pro-
posed HackSynth, an LLM-driven penetration testing agent with two modules: a Planner for generating commands
and a Summarizer for processing feedback. Tested on newly developed CTF-based benchmarks, HackSynth
demonstrated its capability to autonomously exploit vulnerabilities and achieve optimal performance with GPT-4.
Gioacchini et al. [137] developed AutoPenBench, a framework with 33 tasks covering experimental and real-world
penetration testing scenarios. AutoPenBench compares autonomous and semi-autonomous agents, tackling re-
producibility challenges in penetration testing research. Fully autonomous agents achieved a 21% success rate,
significantly lower than the 64% success rate of semi-autonomous setups. Shen et al. [138] introduced PentestAgent,
leveraging LLMs and Retrieval-Augmented Generation (RAG) to automate intelligence gathering, vulnerability
analysis, and exploitation. PentestAgent dynamically integrates tools and adapts to diverse environments, improving
task completion and operational efficiency. It outperforms existing LLM-based penetration testing systems.

As illustrated in Figure 6, penetration testing involves six stages: pre-engagement interactions, reconnaissance,
vulnerability identification, exploitation, post-exploitation, and reporting. Pre-engagement interactions establish
objectives, define scope, and set rules of engagement. Reconnaissance gathers target information through passive
and active methods to identify attack vectors. In the reconnaissance stage, tools like PentestGPT [131] interpret
tool outputs and generate actionable steps. Vulnerability identification employs both automated tools and manual
techniques to detect weaknesses. For example, PenHeal [132] enhances vulnerability detection through Counterfac-
tual Prompting, while HackSynth [136] identifies vulnerabilities via iterative commands. Exploitation uses these
vulnerabilities to demonstrate potential risks, with tools like HackSynth [136] automating exploitation processes
and Pentest Copilot [133] generating and optimizing exploitation scripts. Post-exploitation assesses the breach’s
impact and ensures persistence if needed. In post-exploitation, PentestGPT [131] assists with lateral movement and
multi-step tasks, and PentestAgent [138] supports attack path analysis and persistence strategies. Finally, reporting
consolidates findings into structured documentation, where PenHeal [132] provides remediation strategies, and
Pentest Copilot [133] and PentestAgent [138] automate and optimize the generation of comprehensive reports.

Pre-Engagement
Interactions

Reconnaissance Vulnerability
Identification

Exploitation Post
Exploitation

Reporting

Establish Objectives

Define Scope

Set Rules of
Engagement

PentestGPT: Interprets tool
outputs and generates actionable
steps.
Pentest Copilot: Optimizes tool
orchestration and command
generation.
PENTEST-AI: Automates
intelligence gathering.

Gather target
information passively
and actively.

Use automated tools or
manual techniques to
detect vulnerabilities.

PenHeal: Enhances vulnerability
detection with Counterfactual
Prompting.
HackSynth: Vulnerability
identification via iterative
commands.
PentestAgent: Dynamically
analyzes and verifies
vulnerabilities.

HackSynth: Automates
exploitation processes.
Pentest Copilot: Generates and
optimizes exploitation scripts.
PENTEST-AI: Executes
automated exploitation tasks.

PentestGPT: Assists with lateral
movement and multi-step tasks.

PentestAgent: Supports attack
path analysis and persistence
strategies.

PenHeal: Provides remediation
strategies based on severity and
cost.
Pentest Copilot: Generates
structured and detailed reports.
PentestAgent: Automates
comprehensive report creation.

Exploit vulnerabilities
to gain access or
escalate privileges.

Gather additional
insights and assess the
impact.

Provide risk
assessments and
remediation strategies.

Figure 6. Integration of LLMs across the six steps of penetration testing.

Conclusion 7. LLMs can be applied across multiple stages of penetration testing. For example, LLM-
driven frameworks simplify reconnaissance by automating tool output interpretation and intelligence gathering.
They improve vulnerability identification through dynamic analysis methods, including counterfactual prompting.
Additionally, LLMs assist in post-exploitation by facilitating multi-step attack strategies.

5. LLMs for Hybrid Approach

A hybrid approach employs both static and dynamic analysis techniques at different stages. For example,
combining static features like code structure or permissions with dynamic behaviors such as system calls or memory
usage represents a hybrid approach. This section discusses the role of LLMs in hybrid approaches, focusing on two
aspects: (i) LLMs for unit test generation (Section 5.1) and (ii) other hybrid methods (Section 5.2).

https://doi.org/10.53941/tai.2025.100006. 15 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

5.1. LLMs for Unit Test Generation

Unit testing is a fundamental practice in software development that focuses on verifying the functionality
of individual components or ”units” of a program. By isolating and testing each unit, developers can ensure
code correctness, detect errors early, and improve overall code quality. Traditional unit test generation methods
are written manually by developers and generally involve search-based, constraint-based, or random techniques
to maximize code coverage [139]. Automated unit test generation leverages tools and techniques to generate
tests automatically, reducing developer workload and improving coverage. Figure 7 illustrates an end-to-end
workflow for LLM-powered unit test generation, beginning with three key inputs (source code, existing tests, and
coverage reports) that feed into an automated generation module where prompt-engineered LLMs produce new
test suites. These generated tests undergo execution and validation, with passing cases contributing to improved
coverage before being incorporated back into the test files through post-processing, creating a closed-loop system
that continuously enhances test quality through iterative refinement. The streamlined process effectively bridges
traditional testing artifacts with modern LLM capabilities in a single integrated pipeline. In this LLM-powered test
generation workflow, static analysis is essential in guiding test generation by examining the program’s structure,
dependencies, and control flow. Dynamic analysis complements this by evaluating the generated tests through
runtime execution, identifying errors, and refining test quality. Together, these hybrid approaches enhance the
efficiency and effectiveness of unit test generation.

Performance Comparison Between LLMs and Traditional Test Generation Tools. A study evaluated the
performance of ChatGPT and Pynguin [140] in generating unit tests for Python programs, focusing on three types of
code structures: procedural scripts, function-based modular code, and class-based modular code. Bhatia et al. [139]
compared the tools in terms of coverage, correctness, and iterative improvement through prompt engineering.
They found that ChatGPT and Pynguin achieved comparable statement and branch coverage. Iterative prompting
improved ChatGPT’s coverage for function- and class-based code, saturating after four iterations, but showed no
improvement for procedural scripts. The study also revealed minimal overlap in missed statements, suggesting
combining the tools could enhance coverage. However, ChatGPT often generated incorrect assertions, especially for
less structured code, due to its focus on natural language over code semantics. The authors concluded that while
LLMs like ChatGPT are promising for unit test generation, integrating semantic understanding and combining them
with traditional tools could address current limitations and improve performance.

Automated Test
GenerationSource File

Prompt
Engineering

Existing Test Suite

Coverage Report

 LLMs

Generated Test
Suite

Test Command

Run Test

Test Pass

Coverage Increase

Post-Process &
Update Test File

Existing Test Suite

Coverage Report

Figure 7. Workflow of unit test generation with LLMs.

Static Analysis-Assited Unit Test Generation. One improvement is the ability of LLMs to generate focused
and meaningful test cases by using static analysis to extract and structure relevant context. For instance, aster [141]
and ChatUniTest [142] integrate techniques such as dependency extraction, program slicing, and adaptive focal
context. These methods ensure that prompts sent to LLMs are concise and focused, enabling the generation of
tests that better align with the target methods. Similarly, APT [143] employs a property-based approach to guide
LLMs in generating tests using the ”Given-When-Then” paradigm, which improves logical structure in generated
tests. These static analysis techniques address the limitations of traditional methods, which often struggle to extract
relevant dependencies or fail to focus on critical components of the code.

Dynamic Analysis-Assited Unit Test Generation. Dynamic analysis complements static techniques by
validating and refining test cases through iterative processes, improving coverage and correctness. For example,
TestART [144] uses a co-evolutionary framework to iteratively generate and repair tests based on runtime feedback,
addressing flaky or invalid tests often produced by traditional methods. In ChatUniTest [142], dynamic validation
integrates runtime error detection with rule-based and LLM-driven repair, ensuring that generated tests are compil-

https://doi.org/10.53941/tai.2025.100006. 16 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

able and logically sound. Furthermore, ChatTester [145] demonstrates how iterative prompting based on dynamic
feedback can address missed statements and branches, progressively improving line and branch coverage. These
dynamic techniques allow LLM-based approaches to adapt and refine tests, addressing limitations of traditional
static tools that lack iterative capabilities.

Prompt Engineering. Techniques like adaptive focal context in ChatUniTest [142] and program slicing in
HITS [146] streamline prompts by reducing irrelevant information, ensuring the LLM remain focused. Chain-
of-thought reasoning, as seen in aster [141], enhanced the LLM’s ability to handle complex dependencies and
generated logically coherent tests. Additionally, AGONETEST [147] employed structured prompts incorporating
mock dependencies and example inputs, guiding the LLM to generate more comprehensive test cases. These
techniques address the inflexibility of traditional tools, which often rely on predefined templates and lack the ability
to dynamically adapt prompts based on code context.

Conclusion 8. Static and dynamic analysis each play important roles in unit test generation but face challenges.
Static analysis, while effective for extracting dependencies, struggles to identify key components in large-scale
systems, leading to incomplete tests. Dynamic analysis, although useful for refining tests, faces issues with flaky
tests and inconsistent runtime feedback, as seen in TestART and ChatUniTest. Additionally, prompt engineering,
which is crucial for generating targeted tests, must adapt to code context, but techniques like Chain-of-thought
reasoning in aster and structured prompts in AGONETEST still face difficulties in dynamically adjusting to the
evolving code. These challenges highlight the difficulties of integrating static and dynamic approaches effectively.

5.2. Others

In addition to the previously discussed methods for unit test generation, other hybrid approaches integrate
static and dynamic analysis through an agent framework. This framework first performs static analysis, such as
extracting ASTs and analyzing code structure, and then conducts dynamic testing.

Multi-Agent Framework for Secure Code Generation. Nunez et al. [148] introduced AutoSafeCoder,
an innovative multi-agent framework designed to improve the security of automatically generated code. The
framework leverages three distinct LLM-driven agents working collaboratively to generate, analyze, and secure
code. The Coding Agent is responsible for generating the initial code, while the Static Analyzer Agent identifies
potential vulnerabilities through AST analysis. Meanwhile, the Fuzzing Agent detects runtime errors by employing
mutation-based fuzzing techniques, ensuring that the generated code performs securely during execution. Interactive
feedback loops integrate both static and dynamic testing methods into the code generation process, optimizing the
outputs from the LLM at each stage.

Coverage Test Generation. Pizzorno et al. [149] presented CoverUp, a method for generating Python
regression tests with high code coverage. CoverUp evaluates existing code coverage, identifies gaps, and uses LLMs
to generate new tests informed by static analysis. If tests fail to execute or enhance coverage, CoverUp iteratively
refines them using error messages and code context. This process continues until all segments are fully tested and
integration issues are resolved.

Malware Analysis. Li et al. [111] used reverse engineering tools to extract static and dynamic features
from Android APK files, organizing them into permissions, system calls, and metadata. They used tailored
prompts to guide ChatGPT in generating textual analyses and maliciousness scores for each application. These
results were compared with three existing Android malware detection models: Drebin [150], MaMaDroid [151],
and XMAL [152]. Although traditional models showed strong classification capabilities, the authors noted their
limitations in interpretability and dataset dependency. ChatGPT offered comprehensive analyses and explanations
but lacked decision-making capabilities.

Malware Reverse Engineering. Williamson et al. [153] integrated LLMs with static and dynamic analysis
techniques to enhance malware reverse engineering. In the static phase, tools like IDA Pro examined binaries to
extract structural details such as embedded strings and control flow. In the dynamic phase, sandboxes monitored
malware behavior, capturing network and system interactions. LLMs synthesized results from both phases, deriving
actionable insights and identifying indicators of compromise (IoCs).

Conclusion 9. LLMs enhance hybrid methods by iteratively refining the outputs of static (e.g., AST analysis
in AutoSafeCoder, coverage gaps in CoverUp) and dynamic (e.g., fuzzing, runtime feedback) analysis process. They
bridge code structures with runtime behaviors, enabling secure code generation, high-coverage tests, and actionable
malware analysis.

https://doi.org/10.53941/tai.2025.100006. 17 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

6. Discussion

The use of LLMs in the field of program analysis has mitigated several previous limitations such as false
positives, performance overhead, inherent knowledge barriers, path explosion, the trade-off between speed and
accuracy, and the difficulty of achieving automation across diverse systems without heavy manual intervention.
Despite these advancements, new limitations and challenges have emerged with the introduction of LLMs. The
following subsections provide an overview of these challenges (Section 6.1) and discuss potential future research
directions (Section 6.2).

6.1. Challenges

While the reviewed methods demonstrate significant advancements in program analysis, each comes with its
own strengths and limitations. On the positive side, many methods, such as LLM-based approaches, significantly
enhance automation and detection accuracy by overcoming issues related to false positives and performance
overhead. However, they also introduce new challenges, such as inconsistencies in long-context processing and
the issue of hallucinations, where LLMs generate fabricated information. Additionally, the dependency on prompt
engineering for LLMs limits their scalability, particularly for large programs, and requires expert intervention to
ensure reliable results. Furthermore, the lack of high-quality, consistent labeled data and the inherent complexity of
integrating LLMs with other analysis techniques remain significant barriers. Many studies have acknowledged these
limitations, but they are yet to be fully addressed. The following sections will discuss these issues in detail.

Technical Limitations. LLMs face several unresolved technical challenges in program analysis. One key
issue is incorrect data type identification and information loss during decompilation, which significantly reduce the
accuracy of the analysis. Additionally, LLMs often oversimplify patches, limiting their ability to address complex
vulnerabilities in real-world applications. In some cases, they even produce empty responses, particularly during
software verification and patching tasks. Another unresolved issue is variable reuse; LLMs often confuse identically
named variables in different scopes, leading to inaccurate analysis. Moreover, LLMs struggle with analyzing logic
vulnerabilities, especially in scenarios with intricate control flows, complex nesting, and time-based competition
conditions. These technical limitations reduce the effectiveness of LLMs in handling such scenarios and underscore
the need for improvements in these areas.

Model Reliability and Consistency Issues. LLMs are inherently non-deterministic, meaning they may
produce varying outputs for identical inputs. This inconsistency complicates repeated vulnerability assessments,
hindering the reliability and repeatability of results. The hallucination problem, where LLMs generate fabricated
or misleading information, is another significant issue, especially in the context of vulnerability detection. These
hallucinations can mislead the analysis and compromise the accuracy of results. The combination of these issues—
inconsistency, hallucinations, and lack of reproducibility—makes LLMs insufficient for providing reliable and
repeatable results in program analysis. Addressing these issues is crucial for improving the reliability of LLMs in
security applications.

Prompt Engineering and Scalability Challenges. LLM-based program analysis heavily relies on prompt
engineering, which requires significant expertise. Poorly designed prompts can lead to ineffective results, introducing
biases that affect the model’s ability to detect vulnerabilities accurately. Furthermore, using LLMs can be costly,
particularly when analyzing long code segments, as these require a large number of tokens to process. The token
limits of LLMs also restrict their ability to handle extensive or highly complex programs, posing a significant
scalability challenge in real-world applications. The high computational costs and dependencies on high-quality
prompts further limit the feasibility of deploying LLMs for large-scale program analysis tasks.

Data Quality and Annotation Issues. Training large language models in the security domain faces challenges
like data scarcity and annotation inconsistency. High-quality labeled data, essential for vulnerability detection and
attack recognition, is scarce due to the subtle nature of security issues, requiring expert manual annotation. This
leads to small datasets that can’t fully support large language model training. Furthermore, annotation is subjective,
especially for classifying vulnerabilities or attack patterns, causing inconsistencies that affect model learning. It is
advantageous that, program analysis techniques hold promise in addressing this by generating high-quality training
data through automated extraction and annotation of vulnerabilities from source code and binary files. Therefore,
advancements in program analysis techniques will also feed back into security large language models, providing
high-quality data that enhances their performance.

6.2. Future Directions

Deep Integration of LLMs with Analysis Techniques. Most current methods use LLMs independently of
program analysis. Integrating LLMs with static analysis into a unified workflow offers opportunities for enhanced

https://doi.org/10.53941/tai.2025.100006. 18 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

effectiveness. Some studies [39] have acknowledged that their methods lack effective integration of LLMs with
other models or techniques. Frameworks combining LLMs with GNNs [47] for program control and data flow have
shown significant improvements in detection accuracy. Future work should focus on integrating LLMs with static
and dynamic analysis to create more effective solutions for vulnerability detection.

Transforming Dynamic Analysis into Static Analysis. Transforming tasks traditionally requiring dynamic
analysis into static analysis with LLMs is an emerging direction. Tasks like runtime vulnerability detection and
memory corruption analysis historically depended on dynamic analysis to capture execution-specific behaviors.
LLM integration can shift these processes to static analysis, enabling early vulnerability detection without runtime
execution. This reduces computational overhead, avoids repeated executions, and improves scalability for analyzing
large systems. Pei et al. [74] showed how fine-tuning LLMs eliminates the need for runtime information by
predicting program invariants from source code, enabling earlier safety checks during compilation.

Emulating Human Security Researchers for Vulnerability Detection. Advancing code understanding and
reasoning capabilities enable LLMs to replicate systematic approaches used by human security researchers. LLMs
overcome the rule-based limitations of traditional tools by analyzing complex code contexts and identifying nuanced
vulnerabilities. This enables LLMs to mimic hypothesis-driven processes, identifying subtle vulnerabilities missed
by automated methods. Glazunov et al. [154] introduced Project Naptime to replicate human security researchers’
workflows for vulnerability detection. The framework employs tools such as a code browser, Python interpreter,
and debugger, enabling LLMs to perform expert-level code analysis and vulnerability detection. Evaluated on the
CyberSecEval 2 [155] benchmark, this approach improves detection and demonstrates the feasibility of automating
complex security tasks.

Exploring the Impact of Advanced Models. LLM technology is evolving rapidly, with new models such as
GPT-o1, GPT-o3, DeepSeek [156], and others emerging. These advancements hold the potential to significantly
impact the field of program analysis. On one hand, more advanced models could improve the effectiveness of LLMs
in tasks like vulnerability detection by providing better long-context understanding, enhanced accuracy, and deeper
reasoning capabilities. For example, models like DeepSeek may be able to understand and analyze the underlying
logic of complex code structures more effectively, enabling more accurate vulnerability identification and prediction.
These models also have the potential to offer more sophisticated decision-making processes and problem-solving
strategies, which could be particularly useful in handling intricate, nuanced security tasks. On the other hand,
these new models might introduce new challenges, such as increased computational costs, more complex prompt
engineering, and the need for extensive fine-tuning to handle specific security tasks. Future work should explore
how these new models can be integrated into existing workflows, evaluate their impact on performance, and address
any new limitations they might introduce, ensuring that the evolution of LLMs continues to push the boundaries of
program analysis.

7. Conclusions

Integrating LLMs into program analysis enhances vulnerability detection, code comprehension, and security
assessments. LLMs’ natural language processing capabilities, combined with static and dynamic analysis techniques
have improved automation, scalability, and interpretability in program analysis. These advancements facilitate faster
vulnerability detection and provide deeper insights into software behavior. Challenges such as token limitations,
path explosion, complex logic vulnerabilities, and LLM’s hallucinations remain barriers. The studies reviewed
in this survey highlight recent progress, offering insights into its current state and emerging opportunities. Future
directions include developing domain-specific models, refining hybrid methods, and enhancing reliability and
interpretability to fully utilize LLMs in program analysis. This survey aims to assist in addressing the mentioned
challenges and inspire the development of more effective program analysis frameworks.

Author Contributions

J.W.: Literature research, writing, and revision. T.N.: Literature research, writing, and revision. W.-B.L.:
supervision. Q.Z.: supervision. All authors have read and agreed to the published version of the manuscript.

Funding

This work was fully supported by the Research Grants Council of Hong Kong (RGC) under Grants C1029-22G
and in part by the Innovation and Technology Commission of Hong Kong (ITC) under Mainland-Hong Kong Joint
Funding Scheme (MHKJFS) MHP/135/23. Any opinions, findings, and conclusions in this paper are those of the
authors and are not necessarily of the supported organizations.

https://doi.org/10.53941/tai.2025.100006. 19 of 25

https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Mens, T.; Wermelinger, M.; Ducasse, S.; et al. Challenges in software evolution. In Proceedings of the Eighth International
Workshop on Principles of Software Evolution (IWPSE’05), Lisbon, Portugal, 5–6 September 2005; pp. 13–22.

2. Li, H.; Kwon, H.; Kwon, J.; et al. Clorifi: software vulnerability discovery using code clone verification. Concurr. Comput.
Pract. Exp. 2016, 28, 1900–1917.

3. Aggarwal, A.; Jalote, P. Integrating static and dynamic analysis for detecting vulnerabilities. In Proceedings of the
30th Annual International Computer Software and Applications Conference (COMPSAC’06), Chicaco, IL, USA, 17–21
September 2006; Volume 1, pp. 343–350.

4. Stechyshyn, A. Security Vulnerabilities in Financial Institutions. Master’s Thesis, Utica College, Utica, NY, USA, 2015.
5. Williams, P.A.; Woodward, A.J. Cybersecurity vulnerabilities in medical devices: A complex environment and multifaceted

problem. Med. Devices Evid. Res. 2015, 8, pp. 305–316.
6. Mathas, C.M.; Vassilakis, C.; Kolokotronis, N.; et al. On the design of iot security: Analysis of software vulnerabilities for

smart grids. Energies 2021, 14, 2818.
7. Atanasov, A.; Chenane, R. Security Vulnerabilities in Next Generation Air Transportation System. Master’s Thesis,

Gothenburg, Sweden, 2014.
8. Shahintash, A.; Hajiyev, Y. e-Government Services Vulnerability. In Proceedings of the 2014 IEEE 8th International

Conference on Application of Information and Communication Technologies (AICT), Astana, Kazakhstan, 15–17 October
2014; pp. 1–5.

9. Goseva-Popstojanova, K.; Perhinschi, A. On the capability of static code analysis to detect security vulnerabilities. Inf.
Softw. Technol. 2015, 68, 18–33.

10. Siddiqui, S.; Metta, R.; Madhukar, K. Towards multi-language static code analysis. In Proceedings of the 2023 IEEE 34th
International Symposium on Software Reliability Engineering Workshops (ISSREW), Florence, Italy, 9–12 October 2023;
pp. 81–82.

11. Wang, J.; Huang, M.; Nie, Y.; et al. Static analysis of source code vulnerability using machine learning techniques:
A survey. In Proceedings of the 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD),
Chengdu, China, 28–31 May 2021; pp. 76–86.

12. Chernis, B.; Verma, R.M. Machine learning methods for software vulnerability detection. In Proceedings of the Fourth
ACM International Workshop on Security and Privacy Analytics, Tempe, AZ, USA, 19–21 March 2018.

13. Pradel, M.; Sen, K. Deepbugs: A learning approach to name-based bug detection. In Proceedings of the ACM on
Programming Languages, Boston, MA, USA, 4–9 November 2018; Volume 2, pp. 1–25.

14. Zou, D.; Zhu, Y.; Xu, S.; et al. Interpreting deep learning-based vulnerability detector predictions based on heuristic
searching. ACM Trans. Softw. Eng. Methodol. (TOSEM) 2021, 30, 1–31.

15. Ye, G.; Tang, Z.; Wang, H.; et al. Deep program structure modeling through multi-relational graph-based learning. In
Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques, Atlanta, GA,
USA, 3–7 October 2020; pp. 111–123.

16. Ahmed, T.; Devanbu, P. Few-shot training llms for project-specific code-summarization. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering, Rochester, MI, USA, 10–14 October 2022.

17. Sharma, P.; Dash, B. Impact of big data analytics and chatgpt on cybersecurity. In Proceedings of the 2023 4th International
Conference on Computing and Communication Systems (I3CS), Shillong, India, 16–18 March 2023; pp. 1–6.

18. Wögerer, W. A Survey of Static Program Analysis Techniques; Technische Universität Wien: Vienna, Austria, 2005.
19. Gosain, A.; Sharma, G. A survey of dynamic program analysis techniques and tools. In Proceedings of the 3rd International

Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), Bhubaneswar, India, 14–15
November 2014; pp. 113–122.

20. Baldoni, R.; Coppa, E.; D’elia, D.C.; et al. A survey of symbolic execution techniques. ACM Comput. Surv. 2018, 51, 1–39.
https://doi.org/10.1145/3182657.

21. Xue, H.; Sun, S.; Venkataramani, G.; et al. Machine learning-based analysis of program binaries: A comprehensive study.
IEEE Access 2018, 7, 65889–65912.

22. Zhou, X.; Cao, S.; Sun, X.; et al. Large Language Model for Vulnerability Detection and Repair: Literature Review and the
Road Ahead. arXiv 2024, arXiv:2404.02525.

23. Chen, Y.; Cui, M.; Wang, D.; et al. A survey of large language models for cyber threat detection. Comput. Secur. 2024, 145,
104016.

24. Wang, J.; Huang, Y.; Chen, C.; et al. Software testing with large language models: Survey, landscape, and vision. IEEE
Trans. Softw. Eng. 2024, 50, 911–936.

25. Al-Karaki, J.; Khan, M.A.Z.; Omar, M. Exploring llms for malware detection: Review, framework design, and countermea-

https://doi.org/10.53941/tai.2025.100006. 20 of 25

https://doi.org/10.1145/3182657
https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

sure approaches. arXiv 2024, arXiv:2409.07587.
26. Xu, H.; Wang, S.; Li, N.; et al. Large language models for cyber security: A systematic literature review. arXiv 2024,

arXiv:2405.04760.
27. Hassanin, M.; Moustafa, N. A comprehensive overview of large language models (llms) for cyber defences: Opportunities

and directions. arXiv 2024, arXiv:2405.14487.
28. Sheng, Z.; Chen, Z.; Gu, S.; et al. Llms in software security: A survey of vulnerability detection techniques and insights.

arXiv 2025, arXiv:2502.07049.
29. Basic, E.; Giaretta, A. From vulnerabilities to remediation: A systematic literature review of llms in code security. arXiv

2025, arXiv:2412.15004.
30. Nielson, F.; Nielson, H.R.; Hankin, C. Principles of Program Analysis; Springer: Berlin/Heidelberg, Germany, 2015.
31. Ashish, A.K.; Aghav, J. Automated techniques and tools for program analysis: Survey. In Proceedings of the 2013 Fourth

International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India,
4–6 July 2013; pp. 1–7.

32. Lösch, F. Instrumentation of Java Program Code for Control Flow Analysis. Ph.D. Thesis, Universitätsbibliothek der
Universität Stuttgart, Stuttgart, Germany, 2005.

33. Vaswani, A. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long
Beach, CA, USA, 4–9 December 2017.

34. Douglas, M.R. Large language models. Commun. ACM 2023, 66, 7.
35. Touvron, H.; Lavril, T.; Izacard, G.; et al. Llama: Open and efficient foundation language models. arXiv 2023,

arXiv:2302.13971.
36. AI, M. Codellama: Open Code-Focused Language Models. 2023. Available online: https://ai.meta.com/research/code-llama

(accessed on 12 October 2024).
37. Brown, T.; Mann, B.; Ryder, N.; et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33,

1877–1901.
38. OpenAI. Gpt-4 Technical Report. 2023. Available online: https://openai.com/research/gpt-4 (accessed on 14 October 2024).
39. Li, H.; Hao, Y.; Zhai, Y.; et al. The hitchhiker’s guide to program analysis: A journey with large language models. arXiv

2023, arXiv:2308.00245.
40. Ye, J.; Fei, X.; de Carnavalet, X.D.C.; et al. Detecting command injection vulnerabilities in linux-based embedded firmware

with llm-based taint analysis of library functions. Comput. Secur. 2024, 144, 103971.
41. Liu, P.; Sun, C.; Zheng, Y.; et al. Harnessing the power of llm to support binary taint analysis. arXiv 2023, arXiv:2310.08275.
42. Liu, D.; Lu, Z.; Ji, S.; et al. Detecting kernel memory bugs through inconsistent memory management intention inferences.

In Proceedings of the 33rd USENIX Security Symposium (USENIX Security 24), Philadelphia, PA, USA, August 14–16
2024; pp. 4069–4086.

43. Wang, J.; Huang, Z.; Liu, H.; et al. Defecthunter: A novel llm-driven boosted-conformer-based code vulnerability detection
mechanism. arXiv 2023, arXiv:2309.15324.

44. Li, Z.; Dutta, S.; Naik, M. Llm-assisted static analysis for detecting security vulnerabilities. arXiv 2024, arXiv:2405.17238.
45. Cheng, Y.; Shar, L.K.; Zhang, T.; et al. Llm-enhanced static analysis for precise identification of vulnerable oss versions.

arXiv 2024, arXiv:2408.07321.
46. Mao, Z.; Li, J.; Jin, D.; et al. Multi-role consensus through llms discussions for vulnerability detection. arXiv 2024,

arXiv:2403.14274.
47. Yang, A.Z.; Tian, H.; Ye, H.; et al. Security vulnerability detection with multitask self-instructed fine-tuning of large

language models. arXiv 2024, arXiv:2406.05892.
48. Sun, Y.; Wu, D.; Xue, Y.; et al. Gptscan: Detecting logic vulnerabilities in smart contracts by combining gpt with program

analysis. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, Lisbon, Portugal,
14–20 April 2024; pp. 1–13. http://dx.doi.org/10.1145/3597503.3639117.

49. Yang, Y. Iot software vulnerability detection techniques through large language model. In Proceedings of the Formal
Methods and Software Engineering: 24th International Conference on Formal Engineering Methods, ICFEM 2023,
Brisbane, QLD, Australia, 21–24 November 2023.

50. Mathews, N.S.; Brus, Y.; Aafer, Y.; et al. Llbezpeky: Leveraging large language models for vulnerability detection. arXiv
2024, arXiv:2401.01269.

51. Mohajer, M.M.; Aleithan, R.; Harzevili, N.S.; et al. Skipanalyzer: A tool for static code analysis with large language
models. arXiv 2023, arXiv:2310.18532.

52. Yang, S.; Lin, X.; Chen, J.; et al. Hyperion: Unveiling dapp inconsistencies using llm and dataflow-guided symbolic
execution. arXiv 2024, arXiv:2408.06037.

53. Zhang, C.; Liu, H.; Zeng, J.; et al. Prompt-enhanced software vulnerability detection using chatgpt. arXiv 2024,
arXiv:2308.12697.

54. Hu, S.; Huang, T.; Ilhan, F.; et al. Large language model-powered smart contract vulnerability detection: New perspectives.
arXiv 2023, arXiv:2310.01152.

https://doi.org/10.53941/tai.2025.100006. 21 of 25

https://ai.meta.com/research/code-llama
https://openai.com/research/gpt-4
http://dx.doi.org/10.1145/3597503.3639117
https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

55. Xiang, J.; Fu, L.; Ye, T.; et al. Luataint: A static analysis system for web configuration interface vulnerability of internet of
things devices. arXiv 2024, arXiv:2402.16043.

56. Aslan, O.A.; Samet, R. A comprehensive review on malware detection approaches. IEEE Access 2020, 8, 6249–6271.
57. Fujii, S.; Yamagishi, R. Feasibility study for supporting static malware analysis using llm. arXiv 2024, arXiv:2411.14905.
58. Post, M. A call for clarity in reporting bleu scores. arXiv 2018, arXiv:1804.08771.
59. Ganesan, K. Rouge 2.0: Updated and improved measures for evaluation of summarization tasks. arXiv 2018,

arXiv:1803.01937.
60. Simion, C.A.; Balan, G.; Gavriluţ, D.T. Benchmarking out of the box open-source llms for malware detection based

on api calls sequences. In Proceedings of the International Conference on Intelligent Data Engineering and Automated
Learning—IDEAL 2024, Valencia, Spain, 20–22 November 2024.

61. Jiang, A.Q.; Sablayrolles, A.; Mensch, A.; et al. Mistral 7B. arXiv 2023, arXiv:2310.06825.
62. Jiang, A.Q.; Sablayrolles, A.; Roux, A.; et al. Mixtral of experts. arXiv 2024, arXiv:2401.04088.
63. Zahan, N.; Burckhardt, P.; Lysenko, M.; et al. Leveraging Large Language Models to Detect npm Malicious Packages.

arXiv 2024, arXiv:2403.12196.
64. GitHub. Codeql: Github’s Static Analysis Engine for Code Vulnerabilities. 2025. Available Online:

https://codeql.github.com/ (accessed on 15 January 2025).
65. Khan, I.; Kwon, Y.W. A structural-semantic approach integrating graph-based and large language models representation

to detect android malware. In Proceedings of the IFIP International Conference on ICT Systems Security and Privacy
Protection, Edinburgh, UK, 12–14 June 2024; pp. 279–293.

66. Feng, Z.; Guo, D.; Tang, D.; et al. Codebert: A pre-trained model for programming and natural languages. arXiv 2020,
arXiv:2002.08155.

67. Zhao, W.; Wu, J.; Meng, Z. Apppoet: Large language model based android malware detection via multi-view prompt
engineering. arXiv 2024, arXiv:2404.18816.

68. Kozyrev, A.; Solovev, G.; Khramov, N.; et al. Coqpilot, a plugin for llm-based generation of proofs. In Proceedings of the
39th IEEE/ACM International Conference on Automated Software Engineering, Sacramento, CA, USA, 27 October–1
November 2024; pp. 2382–2385.

69. Zhang, L.; Lu, S.; Duan, N. Selene: Pioneering automated proof in software verification. arXiv 2024, arXiv:2401.07663.
70. Chakraborty, S.; Lahiri, S.K.; Fakhoury, S.; et al. Ranking llm-generated loop invariants for program verification. arXiv

2024, arXiv:2310.09342.
71. Janßen, C.; Richter, C.; Wehrheim, H. Can chatgpt support software verification? arXiv 2023, arXiv:2311.02433.
72. Pirzada, M.A.; Reger, G.; Bhayat, A.; et al. Llm-generated invariants for bounded model checking without loop unrolling.

In Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering, Sacramento, CA,
USA, 27 October–1 November 2024; pp. 1395–1407.

73. Wu, G.; Cao, W.; Yao, Y.; et al. Llm meets bounded model checking: Neuro-symbolic loop invariant inference. In
Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering, Sacramento, CA, USA,
27 October–1 November 2024; pp. 406–417.

74. Pei, K.; Bieber, D.; Shi, K.; et al. Can large language models reason about program invariants? In Proceedings of the 40th
International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023.

75. Wen, C.; Cao, J.; Su, J.; et al. Enchanting program specification synthesis by large language models using static analysis
and program verification. In Proceedings of the Computer Aided Verification: 36th International Conference, CAV 2024,
Montreal, QC, Canada, 24–27 July 2024.

76. Wu, H.; Barrett, C.; Narodytska, N. Lemur: Integrating large language models in automated program verification. arXiv
2024, arXiv:2310.04870.

77. Mukherjee, P.; Delaware, B. Towards automated verification of llm-synthesized c programs. arXiv 2024, arXiv:2410.14835.
78. Liu, Y.; Xue, Y.; Wu, D.; et al. Propertygpt: Llm-driven formal verification of smart contracts through retrieval-augmented

property generation. arXiv 2024, arXiv:2405.02580.
79. Wang, W.; Liu, K.; Chen, A.R.; et al. Python symbolic execution with llm-powered code generation. arXiv 2024,

arXiv:2409.09271.
80. Su, J.; Deng, L.; Wen, C.; et al. Cfstra: Enhancing configurable program analysis through llm-driven strategy selection

based on code features. In Proceedings of the Theoretical Aspects of Software Engineering: 18th International Symposium,
TASE 2024, Guiyang, China, 29 July–1 August 2024; pp. 374–391. https://doi.org/10.1007/978-3-031-64626-3 22.

81. Chapman, P.J.; Rubio-González, C.; Thakur, A.V. Interleaving static analysis and llm prompting. In Proceedings of the
13th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis, Copenhagen, Denmark, 25
June 2024; pp. 9–17. https://doi.org/10.1145/3652588.3663317.

82. Anthropic. Claude. 2025. Available online: https://www.anthropic.com/claude (accessed on 16 January 2025).
83. Czajka, Ł.; Kaliszyk, C. Hammer for coq: Automation for dependent type theory. J. Autom. Reason. 2018, 61, 423–453.

https://doi.org/10.1007/s10817-018-9458-4.
84. Blaauwbroek, L.; Urban, J.; Geuvers, H. The Tactician: A Seamless, Interactive Tactic Learner and Prover for Coq;

https://doi.org/10.53941/tai.2025.100006. 22 of 25

https://codeql.github.com/
https://doi.org/10.1007/978-3-031-64626-3_22
https://doi.org/10.1145/3652588.3663317
https://www.anthropic.com/claude
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 271–277. http://dx.doi.org/10.1007/978-3-030-
53518-6 17.

85. Klein, G.; Andronick, J.; Elphinstone, K.; et al. Comprehensive formal verification of an os microkernel. ACM Trans.
Comput. Syst. 2014, 32, 1–70. https://doi.org/10.1145/2560537.

86. Group, T.S. sel4: The World’s First Operating-System Kernel with an End-to-End Proof of Implementation Correctness.
Available online: https://sel4.systems/ (accessed on 18 January 2025).

87. Beyer, D. Competition on Software Verification and Witness Validation: SV-COMP 2023; Springer Nature: Cham,
Switzerland, 2023; pp. 495–522.

88. Baudin, P.; Filliâtre, J.-C.; Marché, C.; et al. ACSL: ANSI/ISO C Specification Language. Available online: http://frama-
c.com/download/acsl.pdf (accessed on 15 October 2024).

89. Baudin, P.; Bobot, F.; Bühler, D.; et al. The dogged pursuit of bug-free c programs: the frama-c software analysis platform.
Commun. ACM 2021, 64, 56–68. https://doi.org/10.1145/3470569.

90. Beyer, D.; Keremoglu, M.E. Cpachecker: A tool for configurable software verification. In Computer Aided Verification;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 184–190.

91. Ernst, M.D.; Perkins, J.H.; Guo, P.J.; et al. The daikon system for dynamic detection of likely invariants. Sci. Comput.
Program. 2007, 69, 35–45.

92. Menezes, R.; Aldughaim, M.; Farias, B.; et al. Esbmc v7.4: Harnessing the power of intervals. arXiv 2023,
arXiv:2312.14746.

93. Gurfinkel, A.; Kahsai, T.; Komuravelli, A.; et al. The seahorn verification framework. In Computer Aided Verification;
Springer International Publishing: Cham, Switzerland, 2015; pp. 343–361.

94. Darke, P.; Agrawal, S.; Venkatesh, R. Veriabs: A tool for scalable verification by abstraction (competition contribution). In
Proceedings of the Tools and Algorithms for the Construction and Analysis of Systems: 27th International Conference,
TACAS 2021, Luxembourg, 27 March–1 April 2021. https://doi.org/10.1007/978-3-030-72013-1 32.

95. Kroening, D.; Tautschnig, M. Cbmc—C bounded model checker. In Tools and Algorithms for the Construction and
Analysis of Systems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 389–391.

96. Heizmann, M.; Christ, J.; Dietsch, D.; et al. Ultimate automizer with smtinterpol. In Tools and Algorithms for the
Construction and Analysis of Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 641–643.

97. De Moura, L.; Bjørner, N. Z3: an efficient smt solver. In Proceedings of the Theory and Practice of Software, 14th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Budapest, Hungary, 29
March–6 April 2008; pp. 337–340.

98. Lu, J.; Yu, L.; Li, X.; et al. Llama-reviewer: Advancing code review automation with large language models through parameter-
efficient fine-tuning. In Proceedings of the 2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE),
Florence, Italy, 9–12 October 2023; pp. 647–658.

99. Dhulipala, H.; Yadavally, A.; Nguyen, T.N. Planning to guide llm for code coverage prediction. In Proceedings of the 2024
IEEE/ACM First International Conference on AI Foundation Models and Software Engineering, Lisbon, Portugal, 14 April
2024; pp. 24–34. https://doi.org/10.1145/3650105.3652292.

100. Hu, P.; Liang, R.; Chen, K. Degpt: Optimizing decompiler output with llm. In Proceedings of the 2024 Network and
Distributed System Security Symposium, San Diego, CA, USA, 26 February–1 March 2024.

101. Yan, J.; Huang, J.; Fang, C.; et al. Better debugging: Combining static analysis and llms for explainable crashing fault
localization. arXiv 2024, arXiv:2408.12070.

102. Pomian, D.; Bellur, A.; Dilhara, M.; et al. Together we go further: Llms and ide static analysis for extract method
refactoring. arXiv 2024, arXiv:2401.15298.

103. Rong, H.; Duan, Y.; Zhang, H.; et al. Disassembling obfuscated executables with llm. arXiv 2024, arXiv:2407.08924.
104. Wang, H.; Wang, Z.; Liu, P. A hybrid llm workflow can help identify user privilege related variables in programs of any

size. arXiv 2024, arXiv:2403.15723.
105. Wen, C.; Cai, Y.; Zhang, B.; et al. Automatically inspecting thousands of static bug warnings with large language model:

How far are we? ACM Trans. Knowl. Discov. Data 2024, 18, 1–34. https://doi.org/10.1145/3653718.
106. Flynn, L.; Klieber, W. Using Llms to Automate Static-Analysis Adjudication and Rationales. Available on-

line: https://insights.sei.cmu.edu/library/using-llms-to-automate-static-analysis-adjudication-and-rationales/ (accessed on
2 October 2024).

107. Hao, Y.; Chen, W.; Zhou, Z.; et al. E&v: Prompting large language models to perform static analysis by pseudo-code
execution and verification. arXiv 2023, arXiv:2312.08477.

108. Yan, P.; Tan, S.; Wang, M.; et al. Prompt engineering-assisted malware dynamic analysis using gpt-4. arXiv 2023,
arXiv:2312.08317.

109. Sun, Y.S.; Chen, Z.K.; Huang, Y.T.; et al. Unleashing Malware Analysis and Understanding With Generative AI. IEEE
Secur. Priv. 2024, 22, 12–23.

110. Sánchez, P.M.S.; Celdrán, A.H.; Bovet, G.; et al. Transfer learning in pre-trained large language models for malware
detection based on system calls. arXiv 2024, arXiv:2405.09318.

https://doi.org/10.53941/tai.2025.100006. 23 of 25

http://dx.doi.org/10.1007/978-3-030-53518-6_17
http://dx.doi.org/10.1007/978-3-030-53518-6_17
https://doi.org/10.1145/2560537
https://sel4.systems/
http://frama-c.com/download/acsl.pdf
http://frama-c.com/download/acsl.pdf
https://doi.org/10.1145/3470569
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.1145/3650105.3652292
https://doi.org/10.1145/3653718
https://insights.sei.cmu.edu/library/using-llms-to-automate-static-analysis-adjudication-and-rationales/
https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

111. Li, Y.; Fang, S.; Zhang, T.; et al. Enhancing android malware detection: The influence of chatgpt on decision-centric task.
arXiv 2024, arXiv:2410.04352.

112. Qiu, F.; Ji, P.; Hua, B.; et al. Chemfuzz: Large language models-assisted fuzzing for quantum chemistry software bug
detection. In Proceedings of the 2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security
Companion (QRS-C), Chiang Mai, Thailand, 22–26 October 2023; pp. 103–112.

113. Anthropic. Claude-2. 2023. Available online: https://www.anthropic.com/index/claude-2 (accessed on 9 December 2024).
114. Google. Bard. 2023. Available online: https://bard.google.com (accessed on 9 December 2024).
115. Eom, J.; Jeong, S.; Kwon, T. Covrl: Fuzzing javascript engines with coverage-guided reinforcement learning for llm-based

mutation. arXiv 2024, arXiv:2402.12222.
116. Zhang, H.; Rong, Y.; He, Y.; et al. Llamafuzz: Large language model enhanced greybox fuzzing. arXiv 2024,

arXiv:2406.07714.
117. Deng, Y.; Xia, C.S.; Yang, C.; et al. Large language models are edge-case fuzzers: Testing deep learning libraries via

fuzzgpt. arXiv 2023, arXiv:2304.02014.
118. Hu, J.; Zhang, Q.; Yin, H. Augmenting greybox fuzzing with generative ai. arXiv 2023, arXiv:2306.06782.
119. Lemieux, C.; Inala, J.P.; Lahiri, S.K.; et al. Codamosa: Escaping coverage plateaus in test generation with pre-trained large

language models. In Proceedings of the 45th International Conference on Software Engineering, Melbourne, Australia,
14–20 May 2023; pp. 919–931. https://doi.org/10.1109/ICSE48619.2023.00085.

120. Meng, R.; Mirchev, M.; Böhme, M.; et al. Large language model guided protocol fuzzing. In Proceedings of the 31st
Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 26 February–1 March 2024.

121. Oliinyk, Y.; Scott, M.; Tsang, R.; et al. Fuzzing busybox: Leveraging llm and crash reuse for embedded bug unearthing.
arXiv 2024, arXiv:2403.03897.

122. Xia, C.S.; Paltenghi, M.; Le Tian, J.; et al. Fuzz4all: Universal fuzzing with large language models. arXiv 2024,
arXiv:2308.04748.

123. ICMAB-CSIC. Siesta. 2023. Available online: https://departments.icmab.es/leem/siesta/ (accessed on 9 December 2024).
124. Sparck Jones, K. A statistical interpretation of term specificity and its application in retrieval. J. Doc. 1972, 28, 11–21.
125. Chen, M.; Tworek, J.; Jun, H.; et al. Evaluating large language models trained on code. arXiv 2021, arXiv:2107.03374.
126. Nijkamp, E.; Pang, B.; Hayashi, H.; et al. Codegen: An open large language model for code with multi-turn program

synthesis. arXiv 2023, arXiv:2203.13474.
127. Fioraldi, A.; Maier, D.; Eißfeldt, H.; et al. {AFL++}: Combining Incremental Steps of Fuzzing Research. In Proceedings

of the 14th USENIX Workshop on Offensive Technologies (WOOT 20), Online, 11 August 2020. Available online:
https://www.usenix.org/conference/woot20/presentation/fioraldi (accessed on 11 November 2024).

128. McMinn, P. Search-based software test data generation: a survey: Research articles. Softw. Test. Verif. Reliab. 2004, 14,
105–156.

129. Wells, N. Busybox: A swiss army knife for linux. Linux J. 2000, 78, 10.
130. Arkin, B.; Stender, S.; McGraw, G. Software penetration testing. IEEE Secur. Priv. 2005, 3, 84–87.
131. Deng, G.; Liu, Y.; Mayoral-Vilches, V.; et al. {PentestGPT}: Evaluating and harnessing large language models for auto-

mated penetration testing. In Proceedings of the 33rd USENIX Security Symposium (USENIX Security 24), Philadelphia,
PA, USA, 14–16 August 2024; pp. 847–864.

132. Huang, J.; Zhu, Q. Penheal: A Two-Stage Llm Framework for Automated Pentesting and Optimal Remediation. Available
online: https://synthical.com/article/655e0b6b-8ece-4830-bb82-649bac33bd5e (accessed on 18 June 2024).

133. Goyal, D.; Subramanian, S.; Peela, A. Hacking, the lazy way: Llm augmented pentesting. arXiv 2024, arXiv:2409.09493.
134. Bianou, S.G.; Batogna, R.G. Pentest-ai, an llm-powered multi-agents framework for penetration testing automation

leveraging mitre attack. In Proceedings of the 2024 IEEE International Conference on Cyber Security and Resilience
(CSR), London, UK, 2–4 September 2024; pp. 763–770.

135. Zych, M.; Mavroeidis, V. Enhancing the stix representation of mitre attack for group filtering and technique prioritization.
arXiv 2022, arXiv:2204.11368.

136. Muzsai, L.; Imolai, D.; Lukács, A. Hacksynth: Llm agent and evaluation framework for autonomous penetration testing.
arXiv 2024, arXiv:2412.01778.

137. LGioacchini, L.; Mellia, M.; Drago, I.; et al. Autopenbench: Benchmarking generative agents for penetration testing. arXiv
2024, arXiv:2410.03225.

138. Shen, X.; Wang, L.; Li, Z.; et al. Pentestagent: Incorporating llm agents to automated penetration testing. arXiv 2024,
arXiv:2411.05185.

139. Bhatia, S.; Gandhi, T.; Kumar, D.; et al. Unit test generation using generative ai: A comparative performance analysis
of autogeneration tools. In Proceedings of the 1st International Workshop on Large Language Models for Code, Lisbon,
Portugal, 20 April 2024; pp. 54–61. https://doi.org/10.1145/3643795.3648396.

140. Lukasczyk, S.; Fraser, G. Pynguin: automated unit test generation for python. In Proceedings of the ACM/IEEE 44th
International Conference on Software Engineering: Companion Proceedings, Pittsburgh, PA, USA, 21–29 May 2022.
http://dx.doi.org/10.1145/3510454.3516829.

https://doi.org/10.53941/tai.2025.100006. 24 of 25

https://www.anthropic.com/index/claude-2
https://bard.google.com
https://doi.org/10.1109/ICSE48619.2023.00085
https://departments.icmab.es/leem/siesta/
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://synthical.com/article/655e0b6b-8ece-4830-bb82-649bac33bd5e
https://doi.org/10.1145/3643795.3648396
http://dx.doi.org/10.1145/3510454.3516829
https://doi.org/10.53941/tai.2025.100006

Wang et al. Trans. Artif. Intell. 2025, 1(1), 6

141. Pan, R.; Kim, M.; Krishna, R.; et al. Multi-language unit test generation using llms. arXiv 2024, arXiv:2409.03093.
142. Chen, Y.; Hu, Z.; Zhi, C.; et al. Chatunitest: A framework for llm-based test generation. In Proceedings of the 32nd ACM

International Conference on the Foundations of Software Engineering, FSE 2024, Porto de Galinhas, Brazil, 15–19 July
2024. https://doi.org/10.1145/3663529.3663801.

143. Zhang, Z.; Liu, X.; Lin, Y.; et al. Llm-based unit test generation via property retrieval. arXiv 2024, arXiv:2410.13542.
144. Gu, S.; Fang, C.; Zhang, Q.; et al. Testart: Improving llm-based unit testing via co-evolution of automated generation and

repair iteration. arXiv 2024, arXiv:2408.03095.
145. Yuan, Z.; Lou, Y.; Liu, M.; et al. No more manual tests? evaluating and improving chatgpt for unit test generation. arXiv

2024, arXiv:2305.04207.
146. Wang, Z.; Liu, K.; Li, G.; et al. Hits: High-coverage llm-based unit test generation via method slicing. arXiv 2024,

arXiv:2408.11324.
147. Lops, A.; Narducci, F.; Ragone, A.; et al. A system for automated unit test generation using large language models and

assessment of generated test suites. arXiv 2024, arXiv:2408.07846.
148. Nunez, A.; Islam, N.T.; Jha, S.K.; et al. Autosafecoder: A multi-agent framework for securing llm code generation through

static analysis and fuzz testing. arXiv 2024, arXiv:2409.10737.
149. Pizzorno, J.A.; Berger, E.D. Coverup: Coverage-guided llm-based test generation. arXiv 2024, arXiv:2403.16218.
150. Kumar, R.; Xiaosong, Z.; Khan, R.U.; et al. Effective and explainable detection of android malware based on machine

learning algorithms. In Proceedings of the 2018 International Conference on Computing and Artificial Intelligence,
Chengdu China, 12–14 March 2018. https://doi.org/10.1145/3194452.3194465.

151. Onwuzurike, L.; Mariconti, E.; Andriotis, P.; et al. Mamadroid: Detecting android malware by building markov chains of
behavioral models (extended version). arXiv 2019, arXiv:1711.07477.

152. Wu, B.; Chen, S.; Gao, C.; et al. Why an android app is classified as malware? towards malware classification interpretation.
arXiv 2020, arXiv:2004.11516.

153. Williamson, A.Q.; Beauparlant, M. Malware reverse engineering with large language model for superior code comprehen-
sibility and ioc recommendations. Research Square 2024, https://doi.org/10.21203/rs.3.rs-4471373/v1.

154. Glazunov, S.; Brand, M. Project Naptime: Evaluating Offensive Security Capabilities of Large Language Models. Available
online: https://googleprojectzero.blogspot.com/2024/06/project-naptime.html (accessed on 16 October 2024).

155. Bhatt, M.; Chennabasappa, S.; Li, Y.; et al. Cyberseceval 2: A wide-ranging cybersecurity evaluation suite for large
language models. arXiv 2024, arXiv:2404.13161.

156. Liu, A.; Feng, B.; Xue, B.; et al. Deepseek-v3 technical report. arXiv 2024, arXiv:2412.19437.

https://doi.org/10.53941/tai.2025.100006. 25 of 25

https://doi.org/10.1145/3663529.3663801
https://doi.org/10.1145/3194452.3194465
https://doi.org/10.21203/rs.3.rs-4471373/v1
https://googleprojectzero.blogspot.com/2024/06/project-naptime.html
https://doi.org/10.53941/tai.2025.100006

	Introduction
	Background
	Program Analysis
	Large Language Models

	LLM for Static Analysis
	LLMs for Vulnerability Detection
	LLMs for Malware Detection
	LLMs for Program Verification
	LLMs for Static Analysis Enhancement

	LLMs for Dynamic Analysis
	LLMs for Malware Detection
	LLMs for Fuzzing
	LLMs for Penetration Testing

	LLMs for Hybrid Approach
	LLMs for Unit Test Generation
	Others

	Discussion
	Challenges
	Future Directions

	Conclusions

