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Abstract: Normalization is a critical step in quantitative analyses of biological 

processes. Recent works show that cross-platform integration and normalization 

enable machine learning (ML) training on RNA microarray and RNA-seq data, but 

no independent datasets were used in their studies. Therefore, it is unclear how to 

improve ML modelling performance on independent RNA array and RNA-seq 

based datasets. Inspired by the house-keeping genes that are commonly used in 

experimental biology, this study tests the hypothesis that non-differentially 

expressed genes (NDEG) may improve normalization of transcriptomic data and 

subsequently cross-platform modelling performance of ML models. Microarray and 

RNA-seq datasets of the TCGA breast cancer were used as independent training 

and test datasets, respectively, to classify the molecular subtypes of breast cancer.  

NDEG (p > 0.85) and differentially expressed genes (DEG) (p < 0.05) were selected 

based on the p values of ANOVA analysis and used for subsequent data 

normalization and classification, respectively. Models trained based on data from 

one platform were used for testing on the other platform. Our data show that NDEG 

and DEG gene selection could effectively improve the model classification 

performance. Normalization methods based on parametric statistical analysis were 

inferior to those based on nonparametric statistics. In this study, the LOG_QN and 

LOG_QNZ normalization methods combined with the neural network classification 

model seem to achieve better performance. Therefore, NDEG-based normalization 

appears useful for cross-platform testing on completely independent datasets. 

However, more studies are required to examine whether NDEG-based 

normalization can improve ML classification performance in other datasets and 

other omic data types.  

 Keywords: machine learning; feature selection; normalization; transcriptomics; 

breast cancer 

1. Introduction 

Normalization is a critical step in quantitative analyses of biological processes, but very difficult yet 

important in cross-platform comparison [1–3]. Independent dataset is required for rigorous testing of any 
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quantitative biomedical analyses [4,5], while high-throughput transcriptomic data can be obtained using two 

different platforms, namely RNA microarray and recently RNA-sequencing (RNA-seq) [6–8]. The cross-platform 

difference makes direct cross-platform testing in an independent dataset challenging, if not impossible. Therefore, 

this study aimed to improve performance of machine learning (ML) modelling of transcriptomic data in the two 

commonly used high-through RNA quantification platforms. 

Advances in genome sequencing technology have given researchers a whole new perspective on fighting a 

variety of complex diseases [9–11]. Cancer is a complex genetic disease involving multiple subtypes. In order to 

better understand this disease to improve the accuracy and reliability of diagnosis, treatment and prediction 

prognosis, researchers have collected massive amounts of gene expression data in different biological 

environments and through different assays. Analyzing these data and mining the important relationship between 

them and the disease also puts brand new requirements on algorithms for data processing, prediction and 

classification. To rationally and adequately apply these data from different platforms, many researchers consider 

various ways to eliminate or reduce the data differences cross platforms, and then incorporate them into the same 

framework for analysis [12–20]. It can directly expand the pool of omic data that can be directly compared. 

However, it also introduces selection biases by selecting and/or removing features/factors. Therefore, we seek to 

unbiasedly normalize biological data, while the process may be more complex but more rigorous. 

ML methods excel at solving complex problems such as tumor subtype classification, and often are trained 

using large amounts of data to find the hidden patterns needed to make decisions [12,21–25]. However, there are 

several key issues when classifying tumor subtypes based on gene expression data, such as high dimensionality 

and class imbalance [26–28]. High dimensionality of the data refers to the presence of an exceptionally large 

number of features (e.g., genes in transcriptomic data), compared to that of samples. To address the high 

dimensionality problem, many feature selection methods and techniques have been devised to remove irrelevant 

features, reduce model training time, and develop generalized and scalable models [27,29–36]. These feature 

selection algorithms rely on optimization algorithms or statistical methods and are broadly classified into packing, 

hybrid and filtering methods. However, there is no generalized method that can handle omic datasets for all 

platforms. Moreover, gene screening strategies play an important role in finding key genes such as housekeeping 

gene [37,38]. Most studies have used software, such as GeNorm, BestKeeper and NormFinder, to analyze the 

expression stability of certain genes of interest in disease groups and healthy controls to identify reference genes. 

There have also been successes in identifying key genes through ML methods [22,37–46]. 

Normalization before ML modelling is another issue of successful cross-platform (external) validation and 

thus warrants extensive studies [4,5,47]. It can effectively address the data biases attributable to platform 

difference by reducing data variances associated with platform difference, yet retaining the meaningful biological 

differences. Indeed, the importance of data normalization for constructing predictive models has been 

demonstrated before [1–3,12,16,23,48–62]. However, when cross-platform analysis of genetic data is performed, 

no study has yet delved into how to optimize tumor subtype classification models under the interplay among 

feature selection methods, normalization methods, and ML algorithms. 

Therefore, we here propose a cross-platform data normalization method for tumor subtype prediction based 

on cross-platform transcriptomic data. We will study how to best select stable genes for normalization and 

differentially expressed genes (DEG) for classification when models trained on RNA-seq data are used for the 

prediction of microarray data or vice versa. Then, we will analyze which combined use of normalization methods 

and supervised ML methods can achieve better tumor subtype prediction. Taking this tumor subtype classification 

as an example, we hope to provide researchers with a comprehensive normalization strategy for various 

classification prediction studies based on omic data. 

Dataset Description 

To fulfill the experimental requirements, the datasets we chose had to have matched genes present on both 

microarrays and RNA-seq datasets, and a sufficient number of labeled samples. 

The Breast Cancer (BRCA) dataset from The Cancer Genome Atlas (TCGA) include samples examined using 

both microarray and RNA-seq platforms and well-defined molecular subtypes, which are well suited to be used as 

class labels for supervised ML models. We restricted the datasets of both platforms to the BRCA tumor samples 

with corresponding molecular subtype labels. Thus, 520 samples were selected from 597 microarray samples, and 

522 samples were selected from 1215 RNA-seq samples. The qualified microarray samples included 96 cases of 

Basal, 58 cases of Heritage, 231 cases of LumA, 127 cases of LumB, and 8 cases of Normal. The ratio of the 

number of samples in the largest class to the smallest class is approximated to be 29:1, which is a typical 
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unbalanced dataset. These 520 microarray samples exist in the 522 RNA-seq samples at the same time, and the 

RNA-seq platform has two more Basal samples. 

2. Materials and Methods 

A flowchart for training on RNA-seq data and testing on microarray data has been divided into two stages 

and shown in Figures 1 and 2 (Supplementary Figures S1 and S2 show a flowchart for training on microarray data 

and testing on RNA-seq data). The entire process was repeated at least five times. The analysis steps of each 

process mainly included: data cleaning, gene selection, normalization, dataset partitioning, classification model 

training, prediction and classification performance evaluation. Python version 3.11.9 64-bit was used for the code 

implementation. For the convenience of the subsequent narrative, we will refer the model training based on the 

RNA-seq data and testing based on the microarray data as Model-S, and the model training based on the microarray 

data and testing based on the RNA-seq data as Model-A. 

 

Figure 1. Stage 1 of the framework of the classification strategy: data cleaning, gene selection and normalization 

(RNA-seq Dataset as training set and Microarray Dataset as testing set). 
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Figure 2. Stage 2 of the framework of the classification strategy: dataset partitioning, classification model training, 

prediction and classification performance evaluation (RNA-seq Dataset as training set and Microarray Dataset as 

testing set). 

2.1. Data Cleaning 

Samples were first screened against the data from both platforms, retaining only those samples with 

corresponding subtype classification labels. Genes that were present in the datasets of both platforms were retained 

by gene matching. Then the corresponding genes with missing expression values were removed. After data 

cleaning, expression values of 15,672 shared genes in the samples with classification labels were subject to 

analyses. 

2.2. Gene Selection 

Given the challenges posed by high-dimensionality as shown in this study (15,672 genes vs 520 samples), 

feature selection reduction is often required to improve model performance and interpretability [26,27,29,33,35]. 

There are several common approaches for feature selection: filtering, wrapping and embedding methods. Here, we 

performed a one-way ANOVA, a filtering method based on statistical analysis, on the data from each of the two 

platforms separately.  

ANOVA is used to compare between-group variance (differences between category means) and within-group 

variance (fluctuations within the same category) for data sets with multiple categories to determine if at least one 

group’s mean is significantly different from the others. The F-value is the ratio of two variances and represents 

the variance of the between-group means compared to the within-group variance. It is used to test the null 

hypothesis, which states that all group means are equal [45,62,63]. 

The F-value in ANOVA is calculated as follows: 

𝐹 =
𝑀𝑆𝐵

𝑀𝑆𝑊
=

∑ 𝑛𝑖(𝑌�̅� − �̅�)2𝑘

𝑖=1

𝑘 − 1
∑ ∑ (𝑌𝑖𝑗 − 𝑌�̅�)

2𝑛𝑖
𝑗=1

𝑘
𝑖=1

𝑁 − 𝑘

 (1) 

where MSB (Mean Square Between-group) is the sum of squares between groups divided by k-1, the degrees of 

freedom between (number of categories minus one), and MSW (Mean Square Within) is the sum of squares within 
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groups divided by N-k, the degrees of freedom within (total sample size minus the number of groups). N is the 

total number of observations, k is the number of groups, 𝑛𝑖 is the number of observations in group 𝑖, 𝑌�̅� is the mean 

of group 𝑖, and  �̅� is the overall mean. 

A high F-value indicates a greater likelihood that the between-group variance is much larger than the within-

group variance, suggesting that there are significant differences in means between groups. Genes with high F-value 

are considered suitable for classification and are referred to as differentially expressed genes (DEGs). Conversely, 

genes with low F-value show less significant variation across groups and are considered appropriate reference 

genes for normalization, termed non-differentially expressed genes (NDEGs). 

To follow statistical principles of gene selection, F-values are first calculated from gene expression data and 

sample category labels, then compared with the theoretical values in the F-distribution table to determine the p-value. 

The p-value represents the probability of observing the current or more extreme F-value under the null hypothesis 

(that all group means are equal). If the p-value is less than a preset significance level (e.g., 0.05), the null hypothesis 

is rejected, indicating that at least one group’s mean is significantly different. By setting different thresholds, the 

corresponding gene sets can be determined. For example, when the threshold is 0.95, genes with p > 0.95 are 

selected as a set of NDEG for normalization. When the threshold is 0.05, genes with p < 0.05 are selected as a set 

of DEG for classification. The effects of different NDEG and DEG gene sets on the classification prediction results 

were observed by varying the thresholds. 

2.3. Data Partitioning 

In order to fairly evaluate the prediction performance on data from one platform of a classification model 

trained on data from another platform, a rational dataset partitioning strategy needs to be designed. Repeated 

validation and hold-out methods are two commonly used methods for ML model evaluation. Repeated validation 

refers to evaluating the performance of a model multiple times using different training and test sets, and then taking 

the average as the final performance estimate. The hold-out method, on the other hand, pre-divides a portion of 

the dataset as a test set, then uses the training set to train the model and the test set to evaluate the model’s 

performance. On a small dataset, holding a larger percentage of data for testing may result in insufficient training 

data, which may affect the model performance, while holding a smaller percentage of data may lead to unstable 

results, as some important features may not be adequately represented in the test set.  

Therefore, we adopt a repeated validation approach here to evaluate the model performance. When we 

randomly select some samples on the RNA-seq platform for training, then the remaining samples in the microarray 

dataset that do not overlap with these samples are used for testing, and vice versa. To ensure the fairness of the 

model evaluation, during the completion of the complete round of analysis shown in the flowchart, the samples 

constituting the training data and the test set were kept constant throughout the process, regardless of how the gene 

selection thresholds were varied and how the normalization methods and classifiers were combined. The training 

data are further randomly divided into training and validation sets to complete the training of the mode. 

Since the data itself has five categories (cancer subtypes) with very large non-equilibrium, the data will be 

divided into training data and test set in the ratio of 75:25 while maintaining the original category ratio. Under 

Model-S, 75% (390 samples) of the 522 RNA-seq samples were randomly selected. To find the best performing 

model configuration, the validation was done by k-fold cross validation technique with K value considered to be 

10. After the training was completed, the samples with the same names as the samples involved in the training 

were removed from the Microarray data and only the remaining 131 samples that do not overlap constitute the test 

set for performance evaluation. In Mode-A, 75% (389 samples) of the 520 Microarray data samples were randomly 

selected to form the training and validation sets, while the corresponding samples in the RNA-seq data were 

removed, and only the remaining 133 samples that did not overlap were retained to form the test set. When 

randomly dividing the training data and test set, the proportion of the number of samples in each category was 

always kept the same as in the raw data set. 

2.4. Normalization 

Among the main steps in the processing of genetic data, normalization is essential and its importance is well 

recognized. There are many normalization methods, and the choice of which method to use is related to the data 

and the goal of processing. Here we choose only a few commonly used normalization methods for comparative 

analysis to refine our processing strategy. 

We first investigated the effect of five commonly used normalization methods on data preprocessing on both 

the full gene data and data screened with DEG selected with different thresholds. These methods include Log2-

transformation (LOG), Z-Score transformation (Z), Normal score transformation (NST), Non-parametric 
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normalization (NPN), and Quantile normalization (QN). We then investigated the effects of four reference gene-

based normalization methods, including LOG-NPN-Z, LOG-RQN, LOG-RQN-Z, and LOG-NICG-Z 

(Normalization using internal control genes (NICG)). 

­ Log2-transformation (LOG) [12,23] 

Genomic data typically exhibit a wide dynamic range and right-skewed distribution. Logarithmic 

transformation reduces both the dynamic range and skewness, thereby promoting symmetry and approximate 

normality. This helps the data better meet the assumptions of downstream statistical analyses. To avoid issues with 

zero or near-zero values, a small constant (e.g., 1) is usually added to each value before applying the logarithm. 

­ Z-Score transformation (Z) [12,23]  

Z-score transformation is a widely used normalization method that scales features to have a mean of 0 and a 

standard deviation of 1. For each gene or trait, the mean (μ) and standard deviation (σ) across samples are 

calculated, and each value (x) is standardized using the formula (x−μ)/σ. This transformation allows different 

features to be placed on a comparable scale, which is particularly useful in ML and statistical inference. 

­ Normal score transformation (NST) [64] 

Normal Score Transformation is a specific type of non-parametric method designed to map observed data 

ranks into values that follow a standard normal distribution. First, data are ranked within each feature across 

samples. These ranks are then converted into cumulative probabilities (percentiles), which are in turn transformed 

into z-scores using the inverse cumulative distribution function (CDF) of the standard normal distribution. NST 

ensures that the transformed data closely approximate a Gaussian distribution, which facilitates the use of statistical 

tests and models that assume normality. 

­ Non-parametric normalization (NPN) [65] 

Non-parametric normalization is a distribution-free transformation approach widely used in high-

dimensional biological data. It operates by ranking the data within each feature (gene), converting these ranks into 

percentiles, and then mapping them onto a reference distribution such as the standard normal. Because it does not 

assume a specific underlying data distribution, NPN is robust to outliers, skewness, and heteroscedasticity. This 

makes it especially suitable for datasets where technical variation dominates and normality assumptions may not 

hold. NPN is flexible in that the final mapping step can be adapted to any desired distribution, or even omitted if 

only rank information is needed. 

While both NST and NPN involve ranking data and applying distributional transformations, NST can be viewed 

as a specialized form of NPN that explicitly enforces a standard normal output using the inverse normal CDF. This 

makes NST particularly suitable for parametric statistical analysis. In contrast, NPN provides a more general, 

distribution-free normalization framework that offers greater flexibility—for example, allowing mapping to any 

reference distribution or omitting the final transformation step altogether—but with less imposed statistical structure. 

­ Quantile normalization (QN) [12] 

Quantile normalization assumes that the overall distribution of gene expression is similar across samples. It 

aligns the expression values across samples by sorting them and replacing each value with the average value for 

the corresponding quantile across all samples. This reduces the impact of outliers and technical noise, and 

improves comparability between samples. QN is especially effective when technical variation dominates over 

biological differences. 

­ Reference-based Quantile Normalization (RQN) 

Reference-based quantile normalization (RQN) is a variant of QN that uses a selected set of reference genes—

often non-differentially expressed genes (NDEGs)—to define the normalization target. The expression values of 

these stable genes across samples are used to compute quantile averages, which are then used to normalize all 

genes. RQN is particularly useful in cross-platform or cross-batch studies, where relying on the full set of genes 

might introduce unwanted bias. 

­ LOG-RQN 

LOG-RQN will further do RQN on the LOG-processed data.  

­ LOG-RQN-Z 

LOG-RQN-Z will further do RQN on the LOG-processed data before doing a Z transformation. 

­ LOG-NPN-Z 

LOG-NPN-Z further applies a Non-Parametric Normalization (NPN) step to log-transformed data before 

performing Z-score normalization. Unlike the conventional NPN method, this approach uses a preselected set of 
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reference genes (NDEGs) to define a standard expression distribution. Each sample’s gene expression values are then 

percentile-mapped against this reference distribution, effectively reducing systematic variation across samples. 

­ Normalization using internal control genes (NICG) [66] 

This method uses endogenous control genes, also known as housekeeping genes, to normalize gene 

expression data. These genes are assumed to be stably expressed across different biological conditions. The 

average expression level of the internal control genes in each sample is computed and used as a scaling factor to 

normalize the expression levels of all genes. This approach compensates for technical variability and enhances 

data comparability, particularly when global normalization assumptions are not appropriate. 

­ LOG-NICG-Z 

LOG-NICG applies NICG processing to log-transformed data before performing Z-score normalization. 

During the NICG step, the selected NDEGs are used as endogenous control genes. 

After applying the same normalization methods to the training data and test set, different classification 

learning models are used for training and testing. The impact of different normalization methods during data 

analysis was evaluated by comparing these results with that of direct classification prediction on the raw data. 

2.5. ML Models 

Based on different training sets, we trained five common classifiers based on common ML algorithms: 

Multilayer Perceptron (MLP), Extreme Gradient Boosting (XGB), Logistic Regression (LR), linear Support 

Vector Machine (SVM), and Random Forest (RF). The five classification models presented here are all commonly 

used in practice, but each has different characteristics that make them suitable for comparing the interaction 

between dataset characteristics and models. 

SVM [67] is a supervised ML algorithm that classifies data by finding the optimal hyperplane. It can be used 

for nonlinear problems by applying kernel tricks. SVM is particularly suitable for classification of small and 

medium-sized complex datasets, and handles high-dimensional data and nonlinear problems well. 

LR [68] is a linear model that effectively reduces the complexity of the model and the risk of overfitting by 

introducing L1 regularization for feature selection. It is suitable for datasets with a large number of irrelevant 

features because it can help select the most useful features through sparse solution, thus improving the 

generalization ability of the model.  

RF [69] is an integrated decision tree-based learning model that enhances the generalization ability of the 

model by introducing random feature selection. It is particularly effective for datasets with nonlinear, outliers and 

complex interactions between features.  

XGB [70,71] is a high-performance model based on gradient boosting decision trees and shares similarities 

with RF. It optimizes the regularization of the model and effectively prevents overfitting. It is ideally suited for 

sparse data and excels in both classification and regression problems, and performs particularly well with 

structured datasets. 

In contrast, MLP [72,73] is a forward deep/neural-network learning model containing one or more hidden 

layers. It is well-suited to the approximation of complex functions in pattern recognition and classification tasks, 

and exhibits robust learning capabilities for nonlinear relationships and highly complex patterns in data. 

To address the issue of class imbalance, we employed stratified 10-fold cross-validation in all experiments 

to ensure representative class distributions within each fold. GridSearchCV was used for hyperparameter tuning, 

with the weighted F1 score (f1_weighted) as the evaluation metric to improve performance on minority classes. 

For the five models under study, we designed structured hyperparameter grids that covered key dimensions 

such as model complexity, regularization strength, and training stability.  

● LR: We tuned the regularization strength C across a log-spaced range (np.logspace(-2, 1, 5)) and tested two 

common solvers (liblinear and lbfgs), both of which are suitable for small to medium datasets and compatible 

with L2 regularization. 

● SVM: We explored both linear and RBF kernels. For RBF, we tuned gamma values (including ‘scale’, 0.01, 

0.1) to control model flexibility. To ensure training convergence, we set max_iter = 1000 and enabled 

probability = True to allow probability-based predictions. 

● RF: We set n_estimators to [100, 200, 300] to avoid instability in small-tree ensembles. We tuned max_depth 

([3, 4, 6]), min_samples_split, min_samples_leaf ([2, 5, 10]), and max_features (‘sqrt’, ‘log2’) to enhance 

tree diversity and generalization. 
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● MLP: We tested several network structures ((100,), (100, 30), (100, 50)), multiple solvers (‘adam’, ‘sgd’, 

‘lbfgs’), and L2 regularization strengths (alpha = 0.0001, 0.001). We also enabled early_stopping = True to 

mitigate overfitting and fixed max_iter = 500. 

● XGB: We tuned n_estimators ([100, 200, 300]), learning_rate ([0.05, 0.1, 0.3]), max_depth ([3, 4, 6]), 

subsample ([0.6, 0.8, 1.0]), colsample_bytree ([0.6, 0.8, 1.0]), and gamma ([0, 0.1, 0.5]) to balance 

convergence speed, regularization, and ensemble diversity. 

Overall, the hyperparameter search space was designed to balance flexibility and generalizability while 

keeping the computational cost feasible. 

2.6. Evaluation of Classification Performance  

Each model was trained on the training set using 10-fold cross-validation and subsequently evaluated on an 

independent cross-platform test set. The entire process of model training and independent testing was repeated 

five times, with the data re-partitioned in each iteration according to the aforementioned strategy. Due to the multi-

class and unbalanced nature of the data in this study, Balanced Accuracy and the Kappa statistic (Kappa), in 

addition to F1 Score (F1), Area Under the Curve (AUC), sensitivity (Recall), and specificity, were used to evaluate 

classification performance based on the test set [32,63,74–77]. Finally, all performance metrics were averaged 

across the five independent test results to provide a comprehensive assessment of the model’s generalization ability 

on external datasets. All model performance results presented in the figures and tables of this paper are obtained 

from the independent test set.  

The kappa statistic is a measure of classification accuracy that takes into account unbalanced data and chance 

agreement. The kappa is a statistic that compares the observed accuracy with the performance of a random 

classifier. It is calculated as Equation (2). 

K = (𝑃𝑜 − 𝑃𝑒)/(1 − 𝑃𝑒), (2) 

where Po is the observed agreement (actual accuracy) and Pe is the expected agreement under random classification. 

The kappa value typically ranges from −1 to 1, with 0 denoting random accuracy and 1 denoting perfect agreement. 

Balanced Accuracy is a metric that accounts for class imbalance and represents the average accuracy for each 

class. In the case of an unbalanced dataset, the overall accuracy may be high, despite the fact that the predictions 

for a few classes may be inaccurate. Balanced Accuracy provides a fairer assessment of the model’s performance 

across all classes. It is calculated as: 

 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = （1/𝑛）∑ (
True Positives i

Total Class i
)

𝑛

𝑖=1
, (3) 

where n is the number of classes. 

As a typical genetic dataset, BRCA is an unbalanced dataset. Using only traditional accuracy tends to 

overemphasize the impact of dominant categories. The Kappa value is a measure of agreement between observed 

and randomized accuracy, so randomized accuracy is considered in categorical accuracy. Instead of simply 

calculating the total percentage of correct classifications, Balanced Accuracy is the average of the recall (or true 

rate) of all categories. This ensures that all categories are equally important regardless of size, thus providing a 

score for classifiers that performs fairly on each category. Consequently, the Kappa value is more appropriate for 

scenarios where random guessing performance needs to be considered, whereas Balanced Accuracy is more 

suitable for datasets with an imbalanced distribution, where each category must be of equal importance. The 

combination of Balanced Accuracy and Kappa value provides a more balanced and accurate assessment of model 

performance across all categories. In this way, any potential bias in favor of a particular category can be identified.  

Based on the combination of Balanced Accuracy and Kappa value, we design the formula shown in Equation (4) 

to calculate the model evaluation value (Evalue) for model selection. 

𝐸𝑣𝑎𝑙𝑢𝑒 = −100 (𝐾𝑎𝑝𝑝𝑎 ∗ 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) ∗ log (σ𝐾𝑎𝑝𝑝𝑎 ∗  σ𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦), (4) 

where σ𝐾𝑎𝑝𝑝𝑎  and σ𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  are the variance of the corresponding Kappa and Balanced Accuracy 

obtained from multiple repetitions of the experiment, respectively, which can measure the robustness of the model. 

A large Evalue corresponds to a better model performance. 
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3. Results  

We repeated the processing flow in 5 times to obtain average performance metrics (Figures 1 and 2, 

Supplementary Figures S1 and S2). Regardless of the perspective, the model classification performance obtained 

in Model-S mode is generally better than that obtained in Model-A mode, which stems from some technical 

methodological, data characterization, and application differences between the datasets obtained by the two 

platforms. RNA-seq provides more comprehensive and precise transcriptome information. 

Examining the performance metrics corresponding to Model-S or Model-A in Supplementary Tables S1 and S2 

separately, we find that the classification performance metrics show different trends with the changes of DEG or 

NDEG genes, regardless of whether we observe the performance of different classifiers under the same 

normalization method or the performance of different normalization methods under the same classifier. This 

suggests that gene selection, normalization methods and supervised ML classifiers need to be analyzed together. 

3.1. Results on the Original Data  

We consider the performance of ML models on Raw_data (i.e., without gene selection) as the baseline. All 

expression values corresponding to the 15,672 genes shared by the two data platforms are directly used for the 

analysis to observe the performance of the five classifiers in the Raw_data or the data processed by different 

normalization methods. The performance results (Figure 3) show that the five different classification models 

present completely different patterns of change on different datasets. The classifiers do not work at all in some 

cases. For example, in Model-A, MLP and LR have almost no effect on Raw-data, and the corresponding kappa 

value is close to 0.  

  

RNA-seq data as training set 

  

Mircroarray data as training set 

Figure 3. The classification performance results obtained on the original data. 

Although MLP, SVM (Model-S) or XGB (Model-A) generally perform better than the others in general, and 

especially the models sometimes show some classification improvement on data processed by the NPN, QN, and 

NST normalization methods, from the point of view of practical application, both the kappa and the Balanced 

Accuracy are not satisfactory. Among them, the Evalue is calculated according to Equation 4 to evaluate the model 

performance. Under Model-S, when classifying on Raw_data directly, XGB received a relatively high evaluation 

due to having the highest Evalue (99.754), with a corresponding Balanced Accuracy of 0.496 and a Kappa of 0.372. 

After normalization, the best-performing combination was QN and SVM, with an Evalue of 198.072, Balanced 

Accuracy of 0.644 and a Kappa of 0.460. For Model-A on Raw_data, RF performed the best, with an Evalue of 
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72.637, Balanced Accuracy of 0.389 and Kappa of 0.352. After normalization and classification, the superior 

performance was achieved by the combination of NST and XGB, with an Evalue of 223.410, Balanced Accuracy of 

0.571 and Kappa of 0.560.  

3.2. Results on Data Selected by DEG 

Next, we used the gene selection strategy described above to select the expression data corresponding to the 

DEG with p-values below a certain threshold, and analyzed the data after normalization with LOG, NST, QN, Z 

and NPN, respectively. The DEG gene selection threshold varied gradually from 0.001 to 0.1 (Supplementary 

Tables S1 and S2). The model classification results obtained at different thresholds were compared, where the 

optimal performance is shown in Figure 4. 

  

RNA-seq data as training set 

  

Mircroarray data as training set 

Figure 4. The best classification performance results obtained on data selected by DEG genes. Multilayer 

Perceptron (MLP), Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), linear Support Vector 

Machine (SVM), and Random Forest (RF). 

It appears that the classification performance of the five classifiers does not show a monotonous upward or 

downward trend with increasing DEG thresholds for data processed by any of the normalization methods 

(Supplementary Tables S1 and S2). In the vast majority of settings, the classification results are not satisfactory. 

Compared to the setting where normalization and classification are done directly on the Raw_data, most of the 

settings do not show any improvement, and in some settings, the classifier does not work at all (kappa values are 

0 or even negative). 

Interestingly, even when randomly dividing the training data and the test set according to the proportion of 

each category in the original dataset, the imbalance of the samples can lead to very different results in the repeated 

experiments. For example, when using MLP as a classifier with the DEG selection threshold set to 0.03 and using 

Z as the normalization method, the highest accuracy is 0.70415 and the lowest accuracy is 0.4623 in repeated 

experiments, which suggests that repartitioning leads to changes in the data, resulting in large fluctuation in the 

models’ performance. The finding implies the model is less robust. This is exactly the reason why we designed 

the Evalue that combines the mean and the variance of the Kappa and Balance Accuracy obtained from several 

repetitive experiments when selecting the model based on the evaluation metrics. 

For the datasets selected from the DEG with different thresholds, the results of Model-A using SVM seems 

overall more stable than other ML algorithms (Table 1), as shown by its smaller standard deviation and coefficient 
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of variation. On the other hand, the other classifiers show large fluctuations with the change of gene selection 

thresholds, and such fluctuations are not consistent across the data processed by various normalization methods. 

For example, the MLP classifier fluctuates more in Raw_data and NST-processed data, while the RF and XGB 

models fluctuate more in QN-processed data. Strikingly, DEG selection seems not associated with significant 

improvement in classification performance as compared with that of Raw_data (i.e., no gene selection). Indeed, better 

results may be achieved due to comprehensive information when all gene data are involved in model training.  

For the Model-S, the performance of each classifier fluctuates dramatically with the threshold. Although the 

SVM and MLP are slightly better overall, there is also no significant improvement in the classification performance 

compared to when the gene selection strategy is not used. These data suggest that normalization method and DEG 

selection alone may not improve the overall performance of ML algorithms. 

Table 1. The results of the statistical analysis of the performance of the different classifiers on each dataset 

processed with various DEG and different normalization treatments (for Model-A). 

Kappa Balanced Accuracy 

SVM Mean 
Standard 

Deviation 

Coefficient of 

Variation 
SVM Mean 

Standard 

Deviation 

Coefficient of 

Variation 

Raw_data 0.257 0.037 0.143 Raw_data 0.402 0.035 0.088 

LOG 0.259 0.038 0.148 LOG 0.402 0.019 0.048 

NST 0.249 0.012 0.046 NST 0.397 0.011 0.026 

QN 0.257 0.028 0.110 QN 0.411 0.036 0.087 

Z 0.263 0.035 0.133 Z 0.407 0.030 0.073 

NPN 0.249 0.012 0.047 NPN 0.397 0.008 0.020 

RF    RF    

Raw_data 0.149 0.130 0.874 Raw_data 0.283 0.075 0.263 

LOG 0.179 0.106 0.595 LOG 0.289 0.055 0.189 

NST 0.258 0.113 0.437 NST 0.355 0.061 0.172 

QN 0.167 0.151 0.908 QN 0.297 0.096 0.322 

Z 0.149 0.101 0.679 Z 0.278 0.060 0.218 

NPN 0.181 0.120 0.665 NPN 0.327 0.082 0.250 

LR    LR    

Raw_data 0.113 0.115 1.018 Raw_data 0.288 0.088 0.305 

LOG 0.131 0.098 0.751 LOG 0.304 0.078 0.255 

NST 0.130 0.086 0.665 NST 0.302 0.068 0.224 

QN 0.077 0.085 1.095 QN 0.263 0.068 0.261 

Z 0.153 0.095 0.621 Z 0.322 0.077 0.238 

NPN 0.152 0.084 0.556 NPN 0.319 0.067 0.209 

MLP    MLP    

Raw_data 0.158 0.116 0.735 Raw_data 0.336 0.110 0.328 

LOG 0.202 0.109 0.540 LOG 0.376 0.107 0.285 

NST 0.222 0.083 0.374 NST 0.382 0.077 0.201 

QN 0.167 0.096 0.577 QN 0.343 0.091 0.265 

Z 0.181 0.077 0.424 Z 0.347 0.065 0.187 

NPN 0.182 0.126 0.691 NPN 0.351 0.118 0.336 

XGB    XGB    

Raw_data 0.217 0.108 0.497 Raw_data 0.370 0.066 0.178 

LOG 0.112 0.105 0.931 LOG 0.272 0.085 0.314 

NST 0.228 0.168 0.734 NST 0.393 0.109 0.277 

QN 0.119 0.100 0.843 QN 0.297 0.116 0.392 

Z 0.148 0.098 0.665 Z 0.321 0.069 0.215 

NPN 0.296 0.129 0.436 NPN 0.455 0.095 0.208 

DEG, Differentially expressed genes; LR, Logistic Regression; MLP, Multilayer Perceptron; RF, Random Forest; SVM, 

(Linear) support vector machine; XGB, Extreme Gradient Boosting. 

3.3. Results on Data Selected by NDEG and DEG  

Subsequently, we used a gene selection strategy to select NDEG with p values above a certain threshold. 

Four reference gene-based normalization methods, including LOG-NPN-Z, LOG-RQN, LOG-RQN-Z, and LOG-

NICG-Z, were used to process the corresponding gene expression data jointly selected from the NDEG and the 

DEG, including the training data and the test set, and then used the five classification models mentioned above to 
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perform classification training and testing (Supplementary Tables S3–S6). Among them, the NDEGs were used as 

the reference genes required for these normalization methods. 

The optimal values in each matrix showed that the performance of both Model-S and Model-A was 

significantly improved (Figure 5). At the same time, the average performances (reported as Mean ± Standard 

Deviation) of each model in the corresponding Figure 5 were shown in Supplementary Tables S7–S10. Compared 

with the classification results on data selected using NDEG and DEG genes, we noted the following findings.  

  

RNA-seq data as training set 

  

Mircroarray data as training set 

Figure 5. The best classification performance results obtained on data selected by DEG and NDEG genes. 

First, for Model-S, using the data normalized with LOG-RQN or LOG-RQN-Z, MLP, LR and SVM 

classifiers can significantly improve the classification performance within the preset range of NDEG and DEG 

thresholds. Among them, MLP has a Kappa average of over 0.83 and an accuracy mean of 0.700 (Figure 5). Further 

observation of the model’s performance on the LOG-RQN and LOG-RQN-Z processed data also reveals that the 

surfaces corresponding to each of the key metrics in the categorization performance fluctuate considerably as the 

NDEG or DEG thresholds are altered, with peaks occurring at very different locations in the tuning matrix (Table 2). 

It is important to note that the NDEG genes or DEG gene thresholds change steps are not consistent here (Table 2). 

For example, the MLP classifier reaches a maximum classification Balanced Accuracy of 0.771 at a NDEG gene 

threshold of 0.98 and a DEG gene threshold of 0.07, a maximum classification Kappa of 0.883 at a NDEG gene 

threshold of 0.90 and a DEG gene threshold of 0.003. The SVM classifier reaches a maximum classification 

Balanced Accuracy of 0.773 at a NDEG threshold of 0.90 and a DEG gene threshold of 0.005, a maximum 

classification Kappa of 0.829 at a NDEG threshold of 0.98 and a DEG threshold of 0.008. This indicates that it is 

more reasonable to determine the optimal model based on the model performance matrices obtained from the 

NDEG and DEG gene threshold changes. They also suggest that relying solely on a single traditional performance 

metric to select a model can be biased.  

Second, for Model-A, the results are basically similar. MLP, LR and SVM classifiers perform better on data 

processed with LOG-RQN or LOG-RQN-Z, but the RF performance is poorer, even worse than the case without 

the NDEG group. The overall effect of MLP is relatively better and more stable, with the highest kappa value of 

0.734 and the highest Balanced Accuracy of 0.718, and the fluctuation of the classification effect with the change 

of NDEG gene thresholds and the change of DEG gene thresholds is not large (Standard Deviation less than 0.04). 

The effect of LR is more stable, but the optimal performance is not as prominent as that of MLP. The fluctuation of 
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SVM is relatively large, and the Standard Deviation value seems to be greater than 0.6. For the data under the action 

of LOG-NPN-Z and LOG-NICG-Z, the overall effect is unsatisfactory, in which XGB outperforms the others.  

Third, the data-normalization method may influence ML performance. For example, ML performance on the 

data normalized with LOG-RQN and LOG-RQN-Z has obvious improvements, but that on the data normalized 

with LOG-NPN-Z and LOG-NICG-Z does not (Supplementary Tables S3–S6). 

Table 2. Some classification performance results on data Selected by NDEG and DEG genes (for Model-S). 

Balanced Accuracy 

MLP  

LOG-RQN 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.05 0.07 0.1 1 

0.98 0.691 0.698 0.681 0.705 0.685 0.702 0.694 0.687 0.700 0.692 0.679 0.685 0.681 0.771 0.680 0.702 

0.95 0.691 0.721 0.706 0.694 0.748 0.695 0.727 0.671 0.696 0.687 0.693 0.694 0.688 0.689 0.707 0.705 

0.92 0.694 0.675 0.692 0.686 0.690 0.702 0.730 0.704 0.688 0.684 0.712 0.664 0.678 0.711 0.684 0.706 

0.90 0.691 0.712 0.739 0.696 0.697 0.703 0.707 0.673 0.704 0.681 0.688 0.721 0.695 0.699 0.659 0.715 

0.85 0.690 0.699 0.691 0.699 0.676 0.689 0.699 0.666 0.715 0.703 0.674 0.694 0.682 0.691 0.694 0.681 

SVM  

LOG-RQN-Z 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.05 0.07 0.1 1 

0.98 0.738 0.670 0.668 0.700 0.735 0.689 0.702 0.676 0.667 0.660 0.604 0.671 0.656 0.692 0.648 0.695 

0.95 0.667 0.660 0.699 0.693 0.718 0.675 0.710 0.680 0.667 0.653 0.657 0.675 0.681 0.685 0.686 0.709 

0.92 0.602 0.634 0.659 0.713 0.670 0.693 0.695 0.682 0.680 0.674 0.674 0.597 0.616 0.657 0.663 0.681 

0.90 0.652 0.635 0.659 0.718 0.773 0.749 0.675 0.672 0.687 0.601 0.681 0.617 0.560 0.597 0.629 0.689 

0.85 0.587 0.584 0.618 0.630 0.645 0.676 0.434 0.504 0.612 0.467 0.431 0.430 0.547 0.544 0.548 0.553 

Kappa 

MLP  

LOG-RQN 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.05 0.07 0.1 1 

0.98 0.834 0.827 0.839 0.852 0.833 0.845 0.831 0.809 0.827 0.845 0.818 0.825 0.835 0.850 0.807 0.838 

0.95 0.821 0.863 0.854 0.834 0.841 0.831 0.867 0.799 0.807 0.815 0.837 0.833 0.832 0.830 0.816 0.843 

0.92 0.827 0.792 0.837 0.821 0.837 0.832 0.872 0.849 0.821 0.804 0.857 0.796 0.808 0.858 0.823 0.842 

0.90 0.822 0.825 0.883 0.840 0.849 0.834 0.815 0.791 0.822 0.803 0.823 0.838 0.835 0.847 0.789 0.856 

0.85 0.821 0.844 0.835 0.852 0.826 0.830 0.828 0.786 0.818 0.825 0.813 0.815 0.822 0.851 0.821 0.822 

SVM  

LOG-RQN-Z 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.05 0.07 0.1 1 

0.98 0.788 0.808 0.801 0.783 0.810 0.811 0.808 0.829 0.778 0.793 0.682 0.787 0.721 0.818 0.785 0.797 

0.95 0.737 0.758 0.807 0.797 0.772 0.759 0.818 0.782 0.728 0.745 0.767 0.772 0.739 0.751 0.796 0.820 

0.92 0.697 0.739 0.744 0.755 0.751 0.806 0.782 0.762 0.701 0.736 0.716 0.659 0.732 0.751 0.770 0.751 

0.90 0.703 0.760 0.712 0.707 0.781 0.783 0.780 0.756 0.787 0.669 0.778 0.680 0.620 0.707 0.705 0.658 

0.85 0.690 0.703 0.639 0.706 0.726 0.675 0.579 0.586 0.703 0.541 0.470 0.519 0.688 0.649 0.638 0.547 

The color shade indicates the ranking of the metric in the cell among all cells. MLP, Multilayer perceptron; SVM, (Linear) 

support vector machine. 

4. Discussion 

4.1. Comparison of Kappa and Balanced Accuracy 

Balanced Accuracy and Kappa statistic can show similar trends in this study, but sometimes not. When the 

Kappa value is very low yet the Balanced Accuracy is relatively high, an ML algorithms’ overall performance is 

not significantly improved over random sampling despite the model’s improved performance on each category. 

For example, when the NDEG threshold is 0.85 and the DEG threshold is 0.03, the normalization method is LOG-

RQN, and XGB is the classification model, the Kappa value obtained averages 0.354 in Model-A, and the Balanced 

Accuracy averages 0.531. The reason for this may be that we randomly split the training, validation, and test sets 

by keeping the number of samples in each of the five categories the same as the raw data, which still leaves the 

data severely unbalanced. Once the model performs well on the main categories, which pushes up the Balanced 

Accuracy, the overall consistency prediction (as measured by the Kappa value) decreases due to poor performance 

on the categories with fewer samples. Overall, performance metrics in this case are generally not particularly 

impressive and the results obtained in repeated experiments vary relatively widely. 

We also observed the scenarios of high Kappa values but low balanced accuracies (e.g., in Model-S, when 

the NDEG threshold was 0.92, the DEG threshold was 0.03, the normalization method was LOG-RQN, and the 

classification model was LR, the obtained Kappa values averaged 0.814 and the Balanced Accuracies averaged 

0.667), which may also stem from the extreme lack of data balancing. Balanced Accuracy reflects the average of 

the accuracies for each category. If the model performs poorly on any of the categories, it can significantly reduce 

the Balanced Accuracy, which includes cases where predictions are correct on categories with small sample sizes 
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and can be poorly predicted on major categories with large sample sizes. In this case, the overall consistency (𝑃𝑜) 

may still be high, and the model’s overall predictions perform better than the random predictions, thus improving 

the Kappa value. 

Therefore, when comparing the classification performance of various models, one should not rely solely on 

a single performance metric. We recommend using the Evalue calculated using Equation 4. Models with higher 

mean and lower variance of Balanced Accuracy and Kappa obtained from multiple repetitive experiments should 

be regarded as high-performing models. Based on the Evalue, we can identify the combination conditions associated 

with these high-performing models. In Model-S, the highest Evalue (405.492) corresponds to the model built with 

an NDEG threshold of 0.85, a DEG threshold of 0.07, the normalization method LOG-RQN-Z, and the MLP 

classifier. The classification results show an average Balanced Accuracy of 0.752 and an average Kappa value of 

0.875. As shown in Supplementary Tables S7 and S8, neither the average Kappa or the average Balanced Accuracy 

is the highest in this case. In Model-A, the highest Evalue (311.003) corresponds to the model defined by an NDEG 

threshold of 0.90, a DEG threshold of 0.005, the LOG-RQN normalization method, and the MLP classifier. This 

model achieved an average Balanced Accuracy of 0.707 and an average Kappa value of 0.734. Supplementary 

Tables S9 and S10 shows that the average Kappa is the highest, while the Balanced Accuracy is not. 

4.2. Thresholds in Gene Selection Strategies 

We used the F-values from the ANOVA to determine the p-values according to the F-distribution table 

correspondingly and used this as a threshold to achieve the selection of DEG and NDEG. The gene selection 

strategy allows for narrowing down the range of DEG used for classification and identifying the core NDEG for 

normalization. Interestingly, as the range of DEG is narrowed, the performance of the classification model may 

not improve. Even when all gene data are used for classification, better results can still be achieved. In contrast, 

addition of NDEG could significantly improve classification performance. Therefore, NDEG may play a more 

significant role than DEG in improving ML performance. However, since there may be considerable redundancy 

in (or association among) DEG and our gene selection strategy may not be best optimized, it is probably premature 

to completely exclude the benefits of using DEG. 

Essentially, hypothesis testing is a statistical method that calculates the probability of the strength of evidence 

for or against the null/original hypothesis (i.e., no difference or no change) based on the sample data, which is 

ultimately summarized into a single value, the p value. A cut-off value (cut-off) of 0.05 and 0.95 is often chosen 

in various studies, which seems arbitrary and merely an empirically generated convention. In fact, these values are 

not universal. For example, a stricter cut-off value, such as 0.01, should be used to reach the best ML performance. 

Indeed, our study show that the thresholds of NDEG and DEG selection for the best model corresponding to 

Model-A are 0.90 and 0.005, respectively, and the thresholds of NDEG and DEG selection for the best model 

corresponding to Model-S are 0.85 and 0.07, respectively. Therefore, it seems necessary to find the proper 

thresholds on the basis of the data and the model in the course of the study. 

We also find that when LOG-RQN or LOG-RQN-Z is selected as the normalization method and MLP is 

selected as the classification method, the classification performance corresponding to different combinations of 

thresholds for NDEG and DEG shows a relatively stable effect. This suggests that under the premise of optimal 

selection of normalization methods and classification models, changes in the thresholds of NDEG and DEG 

selection have relatively limited effects on the final classification performance. Among the three approaches of 

normalization method, classification model and gene selection strategy in this experiment, the normalization 

method and classification model currently appear to play a more decisive role than gene selection strategy. 

The number of DEGs selected based on p-values in our experiments is very large. First, the gene screening 

strategy in this paper only considered the variability of the features in the category but did not account for the 

correlation of the features, which contributed to the large number of selected DEGs. Additionally, this partly stems 

from the high-dimensional nature of the raw data itself (i.e., the number of genes is much larger than the number 

of samples), which increases the probability of false positives in statistical testing. It may also result from the 

potential technical variation, noise, or batch effect in the dataset, all of which can affect the outcome of statistical 

tests. More importantly, it reflects the skewed distribution characteristics of the data and reaffirms that the 

distribution of gene expression data often do not follow a normal distribution. Therefore, when using traditional 

methods such as Student t-test or ANOVA, the assumption of normality may not hold, leading to erroneous results.  

Feature dimensionality reduction is indeed a critical component of our work. In our previous studies, depending 

on research goals, we have explored various dimensionality reduction methods, including feature importance from 

RF and XGB, LR, principal component analysis (PCA), and reference-based gene filtering [33,78–80]. Each method 

shows strengths and limitations depending on the specific task. In this study, we adopted a one-way ANOVA-
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based gene screening strategy. Its advantage lies in its ability to improve model performance while preserving the 

original identity of each gene feature, facilitating subsequent biological interpretation. In contrast, although PCA 

performs well in dimensionality reduction tasks, it transforms the original feature space into principal components 

through linear mapping, where each principal component is a linear combination of the original features. As a 

result, the retained new features no longer correspond to specific genes, making it difficult to interpret the 

biological significance of individual features. 

We also attempted to explore the impact of alternative feature selection methods on model performance, 

including RF, XGB and PCA. Compared to LR, RF and XGB provide feature importance rankings and require 

manually setting a threshold to select top-ranked features, while PCA also requires manual determination of the 

number of dimensions to retain during dimensionality reduction. In contrast, LR with elastic net regularization 

performs automatic feature selection during training by shrinking coefficients through regularization. Only 

features with non-zero coefficients are retained. This feature selection process is entirely determined by the model 

itself. Therefore, we conducted an exploratory analysis on Model_S using LR with elastic net regularization for 

feature selection, and then trained and tested models based on the DEG and NDEG matrices generated by this 

method to evaluate the method’s feasibility and performances. Performance metrics of these top-performing 

models—those achieving the highest Balanced Accuracy—for each DEG and NDEG matrix are summarized in 

Supplementary Table S11. Although this method significantly reduced the number of selected features, model 

performance also declined (with the best Kappa around 0.734 and the best Balanced Accuracy around 0.707). This 

finding aligns with the general understanding of dimensionality reduction: while reducing the number of features 

can effectively lower computational burden and sometimes improves performance, it also inevitably decreases the 

amount of information available to the model, potentially compromising classification performance. These results 

further highlight our motivation to balance model interpretability and predictive performance through gene 

selection strategies. They also support the validity of the gene selection approach we proposed.  

To address concerns about inflated false discovery rates (FDR) in high-dimensional settings, we conducted 

an exploratory study in Model-S by applying FDR-based multiple testing correction to the results of the one-way 

ANOVA. When applying an FDR threshold of 0.05, the absolute change in the number of DEGs and NDEGs was 

relatively small (see Supplementary Table S12 for comparison). Due to computational constraints, we performed 

only a single round of experiments using the FDR-adjusted DEG and NDEG sets across all classifiers presented 

before. The performance metrics of the top-performing models (based on highest Balanced Accuracy) are reported 

in Supplementary Table S13. Although the absolute changes in DEG and NDEG numbers were modest, the 

reduction in NDEGs may have had a disproportionate effect on normalization quality and classification 

performance. We observed a corresponding decrease in classification performance with the best Kappa around 

0.724 and the best Balanced Accuracy around 0.679. This suggests that moderately relaxing the significance 

threshold to retain weakly informative features may be more beneficial for model performance than strictly 

enforcing statistical significance, at least with the use of FDR-based correction. 

Therefore, in future work, we plan to enhance our gene screening strategy using two methods. First, for 

multiple testing correction, we will consider more robust FDR control methods that account for inter-gene 

correlation, such as the Benjamini–Yekutieli procedure (suitable for dependency structures) or the q-value 

approach, to more accurately control the false discovery rate. Second, considering that some data may not conform 

to any explicit (finite-parametric) distributional form, we also plan to introduce non-parametric methods (e.g., the 

Kruskal–Wallis test or permutation-based inference) to improve the adaptability and robustness of our gene 

selection process. 

4.3. Impact of Normalization on Model Performance 

When selecting and designing models, the potential impact of data preprocessing steps on the performance 

of the final model needs to be considered. Appropriate data preprocessing can improve model performance. For 

the RNA-Seq by Expectation-Maximization (RSEM) counts of BRCA used in this study, we also found significant 

differences even when using the same classification model for data processed by different normalization methods. 

Comprehensively comparing the classification performance of different classification models on data 

processed by various normalization methods with and without NDEG, we find that the LOG and Z perform 

relatively poorly, while QN and NPN yield more stable results when NDEG is not used, consistent with prior 

reports [12]. After incorporating NDEG selection, MLP, LR and SVM all show improved performance on data 

processed by LOG-RQN and LOG-RQN-Z methods. However, the impact of NDEG and DEG selection appears 

to be less critical than the choice of normalization methods. We also observe that Z-transformation, when used in 
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conjunction with robust preprocessing, contributes positively to model performance. Conversely, models trained 

on data processed by LOG-NPN-Z and LOG-NICG-Z underperform, despite the use of reference genes. 

We attribute the underperformance of LOG and Z methods to the wide variance and inconsistency of cross-

platform gene expression data, as well as the presence of noise and extreme values. NICG, which depends heavily 

on the stability of the selected internal control genes, may be compromised when those genes are not reliably 

expressed. NST addresses these challenges by mapping ranked data to a standard normal distribution using the 

inverse normal CDF. NPN similarly uses rank-based percentile mapping but supports more flexible target 

distributions, making it robust to outliers, skewness, and heteroscedasticity. QN, a non-parametric method, aligns 

the expression distribution across samples and is especially effective in handling sparsity and preserving feature 

relationships—advantages that benefit models like SVM and MLP. 

Parametric methods such as Z-score normalization assume that the data fit an approximate Gaussian 

distribution and apply linear transformations based on the sample mean and standard deviation. These approaches 

perform well with large, symmetric datasets, but they are highly sensitive to skews and outliers. In contrast, non-

parametric methods like QN, NST, and NPN do not rely on distributional assumptions and remain effective under 

skewed, heavy-tailed, or noisy data—conditions often encountered in transcriptomic analysis. Technically, NST 

can be viewed as a special case of NPN, where transformation is explicitly mapped to the standard normal distribution 

via the inverse CDF. NPN, however, offers greater flexibility by supporting custom or omitted target distributions. 

In our experiments, parametric methods like Z-score underperformed unless preceded by more robust 

normalization steps, while non-parametric methods such as QN and LOG-RQN yielded more stable results across 

models. Taken together, these observations reinforce our methodological choice to prioritize non-parametric 

normalization strategies such as QN, NPN, and NST, which are more robust to skewness, extreme values, and 

batch effects commonly found in cross-platform transcriptomic data. 

Furthermore, consistent with prior reports [22,45,81–85], our gene selection strategy is also based on 

ANOVA. Although ANOVA assumes normality of residuals for valid F-test statistics, it is generally robust to 

modest deviations from this assumption. In large sample settings, the Central Limit Theorem justifies the continued 

use of such methods, even when the raw data deviate from normality. However, in small-sample, high-dimensional 

transcriptomic studies, violations of normality may significantly impact the accuracy of statistical inference. We 

believe this limitation partly explains why the DEG-based filtering strategy did not substantially improve 

classification performance in our study. Future work will explore non-parametric (distribution-free) feature 

selection techniques to better capture core biological signals and reduce potential bias. 

In summary, while normalization benefits all models, its impact varies substantially depending on the method 

chosen and the learning model applied. Proper selection of normalization techniques—based on empirical data 

characteristics rather than theoretical assumptions alone—is essential to maximize model generalizability, 

robustness, and biological interpretability. 

4.4. Impact of Classification Models 

Different ML models often yield varying performance on the same dataset due to their distinct learning 

mechanisms and ways of processing data features. In our experimental results, we found a situation where the LR 

and MLP models performed the best, while the SVM performance fluctuated and the XGB and RF performed 

poorly. The finding may be attributable to the specific characteristics of the dataset and the mechanisms by which 

each of these models interacts with these characteristics.  

Possible factors for this phenomenon include:  

(1) The dimensionality and sparsity of the data 

A dataset may contain many irrelevant or redundant features. LR, which implements feature selection 

through L1 regularization, tends to perform well on datasets with high dimensionality and low correlation 

between features [86]. If the dataset contains many irrelevant features or noise, LR can effectively identify and 

compress these unimportant features to improve the model performance. MLP, on the other hand, is a powerful 

nonlinear model capable of capturing complex data patterns and relationships through multiple hidden layers [73]. 

If the feature relationships in the data are very complex and nonlinear, MLP is usually able to learn these 

complexities through its deep network structure. 

(2) Feature interaction and nonlinearity 

XGB and RF typically perform well when feature relationships are relatively independent and linearly 

differentiable, and XGB in particular performs well for classification problems and structured datasets [71]. 

However, if the relationships between features in a dataset are extremely complex or masked by noise, these 

models may not be able to capture these relationships effectively. In particular, when gene expression data contain 



Deng et al.   Trans. Artif. Intell. 2025, 1(1), 5 

https://doi.org/10.53941/tai.2025.100005.  17 of 22  

many low or extreme values and are sparsely represented after normalization methods such as Log or Z, these 

models may struggle even more to capture complex nonlinear patterns. 

(3) Model robustness and sensitivity to noise 

While XGB and RF are resistant to general outliers and noise, they may be less effective in the face of extreme 

noise or outlier distributions, especially in cases where decision trees are prone to overfitting on outliers. In contrast, 

MLP may be better at resisting noise through its nonlinear and multilevel structure during training, especially when 

equipped with appropriate regularization techniques (e.g., Dropout). 

(4) Scale sensitivity of different models 

Feature scale sensitivity is the degree to which a ML model is sensitive to changes in the range and scale of 

input feature values [87]. Different models have different sensitivities to feature scales. Distance-based models, 

such as LR and SVM, are very sensitive to feature scales, while tree-based models, such as decision trees, random 

forests, and gradient boosting trees are not sensitive to feature scales, so that the performance of the former 

improves much more after normalization. As a neural network model, on the other hand, the structure and learning 

algorithm of MLP enable it to adapt to different data scales, and the appropriate normalization method also helps 

to speed up the training and avoid some gradient problems, such as gradient vanishing or exploding, which leads 

to a more stable model performance. 

By further analyzing the performance of the LR and MLP models on datasets with different preprocessing, 

we find that Balanced Accuracy seems to be relatively more stable than Kappa value. From a data perspective, this 

suggests that preprocessing tools such as normalization, feature selection, and outlier handling change the 

distribution of the raw data or the relationship between features to a certain extent, thus affecting the way the 

model learns. The change in data distribution directly affects the decision boundaries of the model, making the 

model’s classification boundaries significantly different after different preprocessing, thus enhancing Kappa, 

which specifically emphasizes the consistency between actual and random classification. On the other hand, the 

relative stability of Balanced Accuracy suggests that, despite the change in the classification boundaries, the 

model’s ability to recognize the various categories on the whole consistency was maintained. From a modeling 

perspective, LR and MLP show better robustness when dealing with different data. Even if the preprocessing 

changes some features of the data, these two models are still able to recognize the categories effectively and 

maintain a more stable classification performance. 

We also recognize that this study has its limitations. The training process was limited by the small number 

of available samples and did not take into account the effects caused by imbalance. During the analysis process, 

due to the limited computational power, we were unable to examine the variations in gene selection thresholds, 

normalization methods in a large and detailed way, especially as we mentioned earlier that further research on 

suitable gene selection methods is needed.  

In addition to the models examined in this study, we acknowledge the growing availability of novel ML 

approaches that may offer advantages in small-sample, high-dimensional settings. For example, penalized 

regression methods such as elastic net have shown strong performance in feature selection under high-dimensional 

conditions, though our preliminary tests did not yield improved accuracy in this setting and introduced additional 

complexity. More recent methods like TabPFN v2 [88], which leverage pre-trained transformer architectures for 

tabular data, demonstrate impressive generalization in few-shot tasks and warrant further exploration. Beyond 

these, self-supervised learning techniques (e.g., contrastive learning) [89,90], meta-learning frameworks (e.g., 

Prototypical Networks) [91], and attention-based tabular models (e.g., TabTransformer, SAINT) [92,93] may offer 

alternative strategies that better capture nonlinear patterns or perform robustly with limited labeled data. While not 

explored in this study, these emerging approaches represent promising future directions for genomic prediction tasks. 

However, we hope to use this study as an example to provide researchers with a comprehensive set of 

classification model construction strategies for various classification prediction studies. 

5. Conclusions 

To improve ML performance in cross-platform testing on independent datasets, this study proposes a strategy 

based on novel NDEG-based data normalization. It combines gene selection scenarios, normalization methods and 

classification models. The BRCA data in TCGA were generated using both microarray and RNA-seq platforms 

for the sample set, and thus was used in this study. Stable NDEG and DEG with variability were first searched for 

by ANOVA and used for the screening of the corresponding datasets.  

In this cross-platform data classification study, RNA-seq provides more comprehensive and precise 

transcriptome information since the overall performance of model S trained on RNA-seq data is much better than 

that of model A trained on Microarray data. The results show that NDEG and DEG gene selection can effectively 
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improve the classification performance of ML models. Thus, it is recommended to determine the optimal model 

based on the model performance matrices obtained from the NDEG and DEG gene threshold changes. The choice 

of normalization method is crucial for ML classification performance, while the parametric normalization methods 

are overall inferior to the nonparametric ones. At the same time, different classifiers perform differently on 

different data, and the normalization methods and classifiers should be considered together. 
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