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Abstract: This paper addresses the composite control problem of aero-engine systems
under actuator faults and input saturation constraints. A novel n-step extended state
observer (ESO) is proposed to precisely estimate actuator fault signals. Based on this
estimation, a model predictive control (MPC) framework is developed to optimize
system performance while explicitly addressing input saturation. Unlike conventional
observer-based MPC strategies that depend on feedback compensation, the proposed
approach directly integrates the estimated fault signal into the predictive model, enabling
simultaneous fault estimation and compensation. This integration significantly enhances
fault tolerance and control accuracy. Simulation results demonstrate that the proposed
method effectively estimates actuator faults and ensures safe, reliable, and efficient
aero-engine operation within predefined safety constraints. The approach is shown to be
robust and capable of maintaining system stability under adverse conditions.

Keywords: aero-engine; actuator fault; n-step extended state observer; model predictive
control

1. Introduction

Aviation safety is of critical importance in the aerospace industry, particularly in the design and control of
aero-engine systems. Actuators are essential for regulating key operational parameters, such as fuel supply and
rotor speed, to ensure stable and efficient engine performance. However, harsh operating conditions and prolonged
component aging can result in actuator faults, which may degrade control accuracy and, in severe cases, lead to
system failures. As a result, fault-tolerant control (FTC) for actuator faults in aero-engine systems has emerged as a
significant area of research [1–3]. Despite significant advancements, the development of effective fault-tolerant
control (FTC) strategies for aero-engines remains challenging due to the inherent complexity of engine dynamics,
stringent safety requirements, and the persistent demand for optimal performance. These challenges underscore the
need for innovative approaches that can simultaneously enhance system reliability and robustness under various
fault conditions while maintaining operational efficiency.

Fault detection and estimation through observer-based adaptive methods with feedback compensation is
extensively utilized in modern control systems [4, 5]. Among the most widely adopted observers for fault estimation
are the H∞ observer [6–8], Luenberger observer [9, 10], adaptive observer [11, 12], and extended state observer
(ESO) [13, 14]. Notably, ESO-based approaches model actuator faults as additional state variables, facilitating
the development of fault-tolerant control strategies that ensure closed-loop system stability. Stability analysis is
generally performed using Lyapunov theory to validate the feasibility of both fault reconstruction and fault-tolerant
control. This theoretical framework provides a robust foundation for ensuring system reliability and performance
under fault conditions. While observer-based methods are effective in predicting faults, detecting fault signals, and
mitigating external disturbances, the accuracy of fault estimation plays a critical role in determining overall control
performance. To enhance estimation accuracy, Wang [15] proposed a finite-time extended state observer for estimating
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the lumped disturbance caused by actuator faults in spacecraft systems. A novel bounded barrier Lyapunov function
(BLF) was introduced to address singularities and excessive control efforts associated with traditional BLF methods
and homeomorphic mapping techniques in the presence of actuator faults. Furthermore, Huang [16] developed a
k-step fault estimation observer that utilizes historical fault information over k steps to more precisely characterize
fault dynamics in terms of both magnitude and shape. Qi [17] proposed an advanced fault estimation methodology,
introducing an integral compensation function observer to estimate disturbances in uncertain systems, this approach
effectively addresses the limitations associated with conventional linear extended state observers, and a significant
improvement in estimation accuracy is achieved. These advancements collectively contribute to the development of
more robust and reliable fault-tolerant control strategies.

The design of fault-tolerant controllers is critical for enhancing actuator fault resilience in aero-engine control
systems. Based on fault estimation, Li [18] proposed an output feedback-based fault-tolerant control (FTC) strategy,
where sufficient conditions for both the observer and controller are formulated using linear matrix inequalities
(LMIs) to ensure closed-loop system stability. However, the effectiveness of feedback-based FTC strategies is
heavily reliant on model accuracy, and their performance can degrade significantly under parameter variations
and external disturbances. To address these limitations, sliding mode control (SMC) has been widely adopted due
to its robustness against model uncertainties and external perturbations. Through the appropriate design of the
sliding mode surface, SMC enables rapid control adaptation and ensures system stability under varying dynamic
conditions [19, 20]. Nevertheless, SMC lacks predictive capabilities, which restricts its effectiveness in handling
input constraints and optimizing overall control performance. To overcome this drawback, model predictive fault-
tolerant control (MPFTC) integrates model predictive control (MPC) with fault-tolerant mechanisms, explicitly
accounting for system constraints while compensating for actuator faults. Zhang [21] proposed an MPC framework
based on Quantum-behaved Particle Swarm Optimization (QPSO) with speed-constrained optimization for the
Human Occupied Vehicle (HOV) system, effectively mitigating speed jumps caused by thruster faults and achieving
smooth dynamic tracking. Similarly, Shi [22] addressed actuator random failures in discrete-time linear systems by
constructing a transition probability matrix to model state evolution.A robust predictive fault-tolerant switching
control strategy is developed to ensure system stability by leveraging historical data and system dynamics for fault
prediction. The proposed predictive capabilities significantly enhance system resilience, improve fault-tolerant
performance, and contribute to the safe and efficient operation of aero-engine control systems [23, 24].

As the core of modern aircraft propulsion systems, twin-spool turbofan engines’ control system reliability
directly impacts flight safety and operational economics. With continuously increasing performance demands,
critical actuators such as low-Pressure Compressor Variable Stator Vanes (VSV) and Fuel Metering Units (FMU)
are facing increasingly severe operating conditions. According to statistics from the International Aviation Safety
Database , 43% of engine in-flight shutdown incidents caused by actuator faults over the past five years originated
from actuator jamming or position feedback anomalies, with VSV system failures accounting for as much as 28%.

Motivated by the aforementioned challenges and advancements, this paper proposes a model MPFTC strategy
based on an n-step ESO to address actuator faults in aero-engine control systems. The key contributions of this
work are summarized as follows:

(1) Building upon conventional ESO methodologies, the proposed n-step ESO significantly enhances the
accuracy of fault signal estimation through multi-step estimation . Additionally, the parameter n can be customized to
align with the specific dynamics of the system, thereby improving the observer’s adaptability and practical applicability.

(2) Unlike traditional observer-based fault-tolerant control strategies that depend exclusively on feedback
compensation, the proposed approach directly incorporates the estimated fault signal into the predictive model. This
integration enables simultaneous fault estimation and prediction, thereby enhancing the controller’s responsiveness
and improving the fault tolerance of the aero-engine system.

(3) The proposed fault-tolerant control scheme explicitly addresses actuator saturation constraints, ensuring
safe and reliable engine operation while maintaining optimal performance under faulty conditions.

2. Main Result

2.1. Linear Modeling of an Aero-Engine

In this study, a two-shaft engine is modeled, with the engine rotor being the only energy storage component
considered. Since the thermal inertia of the component is substantially smaller than that of the rotor, non-stationary
heat transfer between the hot component, the rotor, and the surrounding medium is neglected. Under these
assumptions, the dynamic behavior of the engine is governed by the equilibrium equations of the two rotors,
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expressed as: {
π
30JH

dnH

dt
= △MH

π
30JL

dnL

dt
= △ML

, (1)

where JH and JL denote the moments of inertia of the engine’s low-pressure and low-pressure rotors, respectively,
and ∆MH and ∆ML represent the residual moments of the low-pressure and low-pressure rotors, respectively.
Based on the engine operating principles, the residual moments of the low-pressure and low-pressure rotors are
defined as: {

△MH = △MH(nH , nL, qm,f , A8, p2, T2)

△ML = △ML(nH , nL, qm,f , A8, p2, T2)
. (2)

For simplicity in analysis, it is assumed that the flight conditions remain constant. Equation (2) is linearized,
and the linear state-space equations of the engine are derived by extracting power from the low-pressure and
low-pressure rotors. The engine input is sequentially varied within small ranges around the steady-state operating
point, and the variations in the rotational speeds of the low- and low-pressure rotors, along with other parameters,
are calculated through a balancing process as follows:{

ẋ(t) = Ax(t) +Bu(t) + Cfa(t)

y(t) = Cmx(t)
, (3)

where x =
[
∆nH ∆nL

]T
, with ∆nH and ∆nL representing the variations in the low-pressure and low-pressure

rotor speeds, respectively. Here, u(t) denotes the change in fuel quantity, and fa(t) represents the actuator
fault signal.

Discretizing the system (2) with respect to the sampling period T results in the following discrete system model:{
x(k + 1) = Φx(k) + Γu(k) + Γafa(k)

y(k) = Cmx(k)
. (4)

Define x̄(k) =
[
x(k) fa(k)

]T
. Based on Equation (4), the following discrete-time system equation for the

expanded system can be derived: {
x̄(k + 1) = Āx̄(k) + B̄u(k) +H(k)

y(k) = C̄mx̄
, (5)

where Ā =

[
Φ Γa

0 1

]
, B̄ =

[
Γ

0

]
, C̄m =

[
Cm 0

]
, H(k) =

[
0 △h

]T
, △h = fa(k + 1)− fa(k).

2.2. Design and Analysis of N-Step Extended State Observer

Considering the engine system described by Equation (5), which incorporates actuator faults, the one-step
extended state fault-tolerant observer is designed as follows:

zx1(k + 1) = Φzx1(k) + Γu(k)

+K1(y(k)− Cmzx1(k))

zfa1
(k + 1) = zfa1

(k) +K2(y(k)− Cmzx1(k))

, (6)

where zx1 represents the state of the one-step observer, zfa1
denotes the first estimate of fa(k), and K1 and K2

represent the observer gains. Furthermore, Equation (6) can be expressed in the following expanded form as a
state observer: {

z1(k + 1) = Āz1(k) + B̄u(k) + L(y(k)− C̄mz1(k))

ŷ1(k) = C̄mz1(k)
. (7)

Define ex1(k) = x(k)− zx1(k), efa1
(k) = fa(k)− zfa1

(k), and e1(k) =
[
ex1(k) efa1(k)

]T
.

Based on system (7) and system (5), the error estimation system can be constructed as follows:{
e1(k + 1) = (Ā− LC̄m)e1(k) + I1
ey1(k) = C̄me1(k)

, (8)

where I1 = H(k).
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To enhance the estimation accuracy of the observer, the two-step extended state fault-tolerant observer for
system (5), building upon the one-step observer, is designed as follows:

zx2(k + 1) = Φzx2(k) + Γu(k)

+K1(y(k)− Cmzx2(k))

zfa2(k + 1)= zfa2(k) +K2(y(k)− Cmzx2(k))

+△ zfa1
(k + 1)

, (9)

where zx2 represents the state of the two-step observer, zfa2
denotes the second estimate of fa(k), and K1 and

K2 represent the observer gains. Furthermore, Equation (9) can be expressed in the following expanded form as a
state observer: {

z2(k + 1) = Āz2(k) + B̄u(k) + L(y(k)− C̄mz2(k))

ŷ2(k) = C̄mz2(k)
(10)

Define ex2(k) = x(k)− zx2(k), efa2
(k) = fa(k)− zfa2

(k), e2(k) =
[
ex2(k) efa2

(k)
]T

.
Based on systems (5) and (10) , the error estimation system can be constructed as follows:{

e2(k + 1) = (Ā− LC̄m)e2(k) + I2
ey2(k) = C̄me2(k)

, (11)

where I2 =
[
0 ∆h−∆zfa1

(k)
]T

.
The n-step extended state fault-tolerant observer is designed as follows:

zxn(k + 1) = Φzxn(k) + Γu(k)

+K1(y(k)− Cmzxn(k))

zfa(n)
(k + 1)= zfa(n)

(k) +K2(y(k)− Cmzxn(k))

+△ zfa(n−1)
(k + 1)

, (12)

where zxn represents the state of the n-step observer, zfa(n)
(k) denotes the n-step estimate of fa(k), and K1 and

K2 represent the observer gains. Furthermore, Equation (12) can be expressed in the following expanded form as a
state observer: {

zn(k + 1) = Āzn(k) + B̄u(k) + L(y(k)− C̄mzn(k))

ŷn(k) = C̄mzn(k)
. (13)

Similar to the two-step observer, the error estimation based on the original state (5) and (13) can be established
as follows: {

en(k + 1) = (Ā− LC̄m)en(k) + In
eyn(k) = C̄men(k)

, (14)

where In =
[
0 ∆h−∆zfa(n−1)

(k)
]T

.

Theorem 1. Define Ā− LC̄m = Ψ. If Ψ is a Hurwitz matrix, the state error predicted by the n-step extended state
fault-tolerant controller is bounded.

Proof. The Lyapunov function is selected as V (en(k)) = eTn (k)Uen(k), where the matrix U is the unique solution
of the Lyapunov equation ΨTUΨ− U = −V , with U > 0 and V > 0 being symmetric matrices.

△V (en(k + 1)) = V (en(k + 1))− V (en(k))

= (Ψen(k) + In(k))
TU(Ψen(k) + In(k))

− en(k)
TUen(k)

= −en(k)TV en(k) + 2In(k)
TUΨen(k))

+ ITn (k)UIn(k).

(15)

Let R(k) = en(k)V
1/2, S(k) = ITn (k)UΨV −1/2, M(k) = ITn (k)U

1/2, then we have:

△V (en(k + 1)) = − ∥ R(k)− S(k) ∥22
+ ∥ S(k) ∥22 + ∥M(k) ∥22,

(16)
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if ∥ en(k) ∥2>∥ ITn (k)UΨ ∥2 +(∥ ITn (k)UΨ ∥22 + ∥ In(k)U1/2 ∥22), and V = I , then ∥ R(k) ∥2>∥ S(k) ∥2
+(∥ S(k) ∥22 + ∥ R(k) ∥22)1/2, and since ∥ R(k) − S(k) ∥2>∥ R(k) ∥2 − ∥ S(k) ∥2, it follows that ∥
R(k) − S(k) ∥22>∥ S(k) ∥22 + ∥ M(k) ∥22. Thus, it can be shown that △V (en(k + 1)) < 0. This implies that
en(k) is decreasing , and consequently en(k) is bounded.

2.3. Design of the MPC Fault-Tolerant Controller

The predictive fault-tolerant control method proposed in this study exhibits fundamental differences from
conventional state-observer-based approaches: while traditional methods require additional compensation control
law design after fault observation, our solution employs an n-step extended state observer to estimate fault signals
in real-time and online updates predictive model parameters, achieving adaptive reconfiguration of the control
law. This integrated design not only eliminates the need for designing separate compensation controllers as in
conventional methods, but more importantly unifies fault suppression and performance optimization within the
model predictive control framework.

By utilizing the n-step extended state observer, an accurate engine model incorporating actuator faults is
derived. The sequential application of model predictive control allows the engine system to operate optimally while
adhering to safety constraints. Instead of relying on the actual system model, Equation (13) is employed. The
structure of the entire system is illustrated in Figure 1.

Figure 1. Model predictive controller structure based on n-step observer.

Compared to the actual model, the observer model integrates estimated actuator faults. As a result, the
system described by Equation (13) closely approximates the real-time online engine model after n–step observation,
effectively addressing system instability caused by actuator faults. Furthermore, by performing rolling optimization
within the model prediction framework, the current optimal inputs are predicted while explicitly incorporating
actuator fault signals.

Without loss of generality, the control objective is defined as x → xo, where xo represents the desired
low-pressure speed change. Therefore, the cost function J is defined as:

min J =
∑N

i=1

{
∥ znL(k + i)− x0(k + i) ∥2P

+ ∥ u(k) ∥2Q
} , (17)

where N is the prediction horizon, P > 0, Q > 0 are the weight matrix.
From the prediction model (13) equation, the predicted low-pressure rotational speed increment x̂nH can be

obtained as follows:
X̂nL(k) = Ezn(k) + Fu(k − 1) +G△Û(k) + Sf , (18)

5 of 15



Liu et al. Intell. Control 2025, 1(1), 1

where Sf =


CzxAf

Czx(ĀAf +Af )
...

Czx

∑N−1
i=0 ĀiAf

, Af = L(y(k)− C̄mzn(k)).

The performance index function (17) of the aircraft engine control system is derived as follows:

minJ =∥ X0(k)− X̂nL ∥2P + ∥ △Û(k) ∥2Q
= (X0(k)− X̂nL)

T P̃ (X0(k)− X̂nL)

+△Û(k)T Q̃△Û(k)

= X0(k)
T P̃X0(k)− 2X0(k)

T P̃ X̂nL(k)

+ X̂nL(k)
T P̃ X̂nL(k) +△Û(k)T Q̃△Û(k)

. (19)

Bringing (18) into (19) yieldsminJ = △Û(k)T (GT P̃G+Q̃)△Û(k)+(2zn(k)
TET P̃G+2u(k−1)FT P̃G−

2X̂nL(k)P̃G+ 2Sf P̃G)△Û(k) + const.

where P̃ =


P 0 · · · 0

0 P · · · 0
...

...
. . .

...
0 0 · · · P

 , Q̃ =


Q 0 · · · 0

0 Q · · · 0
...

...
. . .

...
0 0 · · · Q

, const denotes a constant.

The above optimization problem can be transformed into the following form for solution:

minJ = 1/2△Û(k)TΘ△Û(k) + T△Û(k), (20)

where Θ = 2(GT P̃G+ Q̃), T = 2zn(k)
TET P̃G+ 2u(k − 1)TFT P̃G− 2X̂nL(k) + 2ST

f P̃ .
System constraints are incorporated into the performance metrics, with particular emphasis on fuel variation

and the rate of fuel variation. The constraints are defined as follows:

△umin ≤ △û(k + j | k) ≤ △umax

umin ≤ û(k + j | k) ≤ umax

The above constraints can be transformed into a matrix form as follows:[
M1

M2

]
△Û(k) ≤

[
m1

m2

]

m1 =
[
△umax . . . △umax −△umin · · · −△umin

]T
m2 = [umax − u(k − 1) · · · umax − u(k − 1)

−umin + u(k − 1) · · · − umin + u(k − 1)]
T

The above optimization problem can thus be transformed into a standard quadratic programming problem and
thus solved: 

min J =
1

2
△Û(k)TΘ△Û(k) + T△Û(k),

s.t.
[
M1

M2

]
△Û(k) ≤

[
m1

m2

]
.

(21)

The optimal inputs for achieving the desired engine speed under actuator fault conditions are determined
through Algorithm 1, which is developed based on the proposed n-step extended state observer and model predictive
control framework. The algorithm systematically outlines the necessary steps to ensure accurate and efficient
control performance.
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Algorithm 1 MPC based on n-step observer structure

1: Set the initial sampling time k = 1,initialize the system’s estimated state z1(1) . . . zn(1), and input u(0)
2: While system state has not reached setpoint, do
3: Compute next-step state estimates for each observer sequentially using Equation (13)
4: Solve the problem (20) to obtain the optimal input △Û∗(k)

5: Take △u∗(k) in △Û∗(k) to obtain u∗(k + 1), and
then take u∗(k + 1) into Equation (4)

6: Measure current output y(k + 1)

7: Update state estimates by substituting u∗(k + 1), y(k + 1)

into observer Equation (13)
8: k = k + 1

9: end

2.4. Stability Analysis

Theorem 2. The engine system is stabilized against continuous fault signals through the integration of Kx into
MPC , as formulated in Equation (21), in conjunction with ESO gain L , which is derived in Theorem 1. This
approach ensures robust stability and effective fault tolerance within the control framework.

Proof. DefineKX as the input gain obtained from the model predictive controller solution. By combining Equations (13)
and (14), and the control law, the engine system is given by:

x̃(k + 1) = Ãx̃(k) + B̃ν(k), (22)

where,

x̃(k) =

 x(k + 1)

en(k + 1)

, ν(k) =

In(k)
fa(k)

, Ã =

[
A+BKx BK̄

0 Ψ

]
, B̃ =

[
0 Γa

I 0

]
, K = [Kx, 0].

For the above system, the Lyapunov function in the form of Equation (23) is chosen as follows:

V (x(k), en(k)) = x(k)TPx(k) + γen(k)
TQen(k), (23)

where, γ is a regulation parameter, usually used for the performance or stability of a control system.
Define △V (x(k + 1), en(k + 1)) = V (x(k + 1), en(k + 1))− V (x(k), en(k)) , then

△V (x(k + 1), en(k + 1))

= xT (k + 1)Px(k + 1) + γeTn (k + 1)Qen(k + 1)

− xT (k)Px(k)− γeTn (k)Qen(k).

(24)

Substituting Equation (22) into the above equation yields:

 x(k)fa(k)

en(k)

T

Λ1

 x(k)fa(k)

en(k)

 ≤ 0, (25)

where,

Λ1 =

AT
f PAf − P ∗ ∗
ΓT
a PAf ΓT

a PΓa ∗
K

T
BTPAf K

T
BTPΓa K

T
BTPBK − γψ

,

ψ = Q−ΨTQΨ, Af = A+BKx.

Let y ∈ Ω, and suppose there exist a matrixG and a scalar g such that the ellipsoid σ = {y(k) | Gy(k)+g ≤ 1}
serves as an external approximation of the set Ω.

It can be rewritten as:
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(Gy + g)T (Gy + g) ≤ 1. (26)

Rewriting the above equation in matrix form, we obtain:[
y(k)

1

]T
Λ2

[
y(k)

1

]
≤ 0, (27)

where, Λ2 =

[
GTG ∗
gTG gT g − 1

]
.

Combining Equations (25) and (27), we obtain:

 x(k)fa(k)

en(k)

T

Λ1

 x(k)fa(k)

en(k)

− λ

[
y(k)

1

]T
Λ2

[
y(k)

1

]
≤ 0, (28)

when y(k) = Cmx(k) is substituted into Equation (28) yields:


x(k)

fa(k)

en(k)

1


T

Λ3


x(k)

fa(k)

en(k)

1

−


x(k)

fa(k)

en(k)

1


T

Λ4


x(k)

fa(k)

en(k)

1

 ≤ 0, (29)

where, Λ3 =

[
Λ1

0

]
,

Λ4 =


CT

mG
TGCm ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

fTGCm 0 0 gT g − 1

.

Organizing the above equation yields: [
A1 AT

2

A2 A3

]
≤ 0, (30)

where,

A1 =

 θ ∗ ∗
ΓT
a PAf ΓT

a PΓa ∗
K

T
BTPAf K

T
BTPΓa K

T
BTPBK − γψ

,

θ = AT
f PAf − P − λCT

mG
TGCm, A2 =

[
−λgTGCM 0 0 −λgT g + λ

]
, A3 = −λgT g + λ.

Rewriting the above equation in the following form:

Λ5 −


AT

f

ΓT
a

K̄BT

0

P [Af BK̄ Γa 0
]
≥ 0, (31)

where, Λ5 =


P + λCT

mG
TGCm ∗ ∗ ∗

0 0 ∗ ∗
0 0 γψ ∗

λgTGCM 0 0 λgT g − λ

.
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Using the Schur complement,we can obtain:
P + λCT

mG
TGCm ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗
0 0 γψ 0 ∗

λgTGC 0 0 λgT g − λ ∗
Af Bd BK̄ 0 P−1

. (32)

Here, we adopt the approach taken in the literature [25], and multiply both sides of the equation by

µ =


I 0 0 0 0

0 0 0 I 0

0 0 0 0 I

0 I 0 0 0

0 0 I 0 0


and µT , respectively. [

Ξ ∗
O γϖ

]
≥ 0, (33)

where,

Ξ =

P + λCT
mG

TGCm ∗ ∗
λgTGCm λ(gT g − 1) ∗

Af 0 P−1

 > 0,

O =

[
0 0 ΓT

a

0 0 K
T
BT

]
,

ϖ =

[
0 0

0 ψ

]
.

If γ is large enough, by utilizing the Schur complement, we have γϖ −OΞ−1OT > 0, thus proving the stability of
the system.

3. Simulation and Experiments

In this paper, the numerical modelnL = 96%nLmax , which is commonly used in aero-engine control, is
selected. This model is established based on the power extraction method, with detailed steps following the standard
modeling procedure. The resulting numerical model is given as follows:

A =

[
−2.322 −0.509

3.5 −5.98

]
, B =

[
8460

9974

]
, Cm =

[
1 0

]
, C =

[
−798 −940.9

]T
.

Set the sampling period T =0.005 s, the actuator fault signal is set to 5sin10t, and then discretize the system to
get the initial state of the system where the engine’s low and low voltage speed variations x(2) =

[
−300 −348

]T
,

the control constraints are: the rate of change of fuel quantity, △u(k)
T ≤ 0.05 kg/s, the maximum change of fuel

quantity △umax = 0.6 kg, and the control objective is to make the change of low-pressure speed △nH = 0 r/min.
The observation gain matrix of the ESO L =

[
1.5 1.5 −0.1

]T
is selected based on Theorem 1 , where the

prediction step in the model predictive control is N =5, and the corresponding weighting matrix is Q = 0.1 and
R = 1, set the sampling time Ts = 2.5 s. The proposed n-step observer’s effectiveness is validated by comparing
one-step and three-step observer performance (Figures 2 and 3). Results show the three-step observer achieves
significantly better fault signal estimation accuracy than the one-step observer, demonstrating the method’s enhanced
precision. The observer’s flexibility allows optimal step selection (n) based on system requirements for improved
fault estimation.

As illustrated in Figure 4, the integration of the one-step observer with the model predictive controller is
found to produce significant estimation errors, resulting in a misalignment between the observer model and the
actual system dynamics. This misalignment leads to failure in the rolling optimization process of the model
predictive control framework to generate an effective control response. Consequently, substantial fluctuations in
the low-pressure rotor speed are observed, preventing convergence to the desired set point. In contrast, Figure 5
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reveals that the proposed n-step observer enables the system to achieve and maintain the target rotational speed
without the oscillations observed in the one-step observer scenario. This improvement underscores the superior
predictive capability of the n-step observer, which not only enhances estimation accuracy but also supports the
rolling optimization process in generating optimal control inputs that comply with system constraints. Consequently,
the proposed approach significantly improves the system’s fault tolerance and overall control performance.
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Figure 2. Estimated and actual fault signal under of a one-step observer.
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Figure 3. Estimated and actual fault signal under of a three-step observer.

As shown in Figure 6, when the model predictive control is implemented with the three-step observer, the
estimation error between the observer and the actual system state is reduced as the number of observer steps
increases. This demonstrates that the three-step observer provides a more accurate representation of the system
dynamics compared to the one-step observer, thereby enhancing the predictive accuracy of the control process.
In practical applications, the number of observer steps can be tailored to meet the specific control performance
requirements of the system. By optimizing the number of steps, the estimation accuracy of the observer is improved,
leading to enhanced control effectiveness and overall system stability.

Furthermore, as depicted in Figure 7, the model predictive controller utilized in this study reveals that an
extended prediction horizon leads to a slower response of the engine system. Although a longer prediction horizon
enhances the controller’s capability to predict future system behavior, it also substantially increases computational
complexity. Therefore, the selection of an appropriate prediction horizon necessitates a trade-off between control
performance and computational efficiency, ensuring that the system achieves its specific performance requirements
while maintaining real-time feasibility.
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Figure 4. Changes in the response of the system under MPC control based on a one-step observer.
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Figure 5. Changes in the response of the system under MPC control based on a three-step observer.
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Figure 6. Error between the state observed by each step observer and the true state.
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Figure 7. low voltage rotor speed variation with varying prediction horizon.

Additionally, to validate the applicability of the proposed method in predicting continuous fault signals, a
peak-like fault signal is introduced, as illustrated in Figure 8. This scenario is designed to evaluate the observer’s
capability to accurately estimate abrupt fault variations and to assess its effectiveness in real-time fault prediction
and compensation within the control framework.

The aforementioned fault signals are applied to the engine system, with both one-step and three-step extended
state observer configurations being employed for fault signal estimation. The corresponding results are presented in
Figures 9 and 10. As clearly demonstrated in these figures, although the one-step observer successfully predicts the
fault signal, its estimation accuracy is markedly inferior to that achieved by the three-step observer configuration.
This observation underscores the improved fault prediction performance of the three-step observer, demonstrating
its superior ability to provide more accurate fault estimations.

The dynamic response of the engine low-pressure spool speed in Figures 11 and 12 shows that the predictive
controller drives the rotor to converge to the steady-state operating point while satisfying all constraints. In the
presence of an actuator fault, the observer initiates the estimation of fault signals. A comparative analysis between
predictive control using the one-step and three-step observers reveals that the rotational speed fluctuation at the
steady-state operating point is significantly larger when the one-step observer is employed. Furthermore, the
fluctuation at the peak of the fault signal is approximately twice as large in the one-step observer compared to the
three-step observer. These findings demonstrate the enhanced fault tolerance and more stable performance of the
three-step observer in managing actuator faults.
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Figure 8. A peak-like fault signal.
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Figure 9. Estimated and actual fault signal under of a one-step observer.
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Figure 10. Estimated and actual fault signal under of a three-step observer.
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Figure 11. Dynamic response of the system under one-step observer-based control.
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Figure 12. Dynamic response of the system under three-step observer-based control.

4. Conclusions

This study proposes an n-step extended state observer, which achieves lower observation accuracy compared
to conventional extended state observers. Furthermore, unlike traditional feedback controllers that often disregard
system constraints, this work integrates model predictive control and incorporates the estimated fault signals into
the predictive model, thereby significantly enhancing control performance. The proposed MPC framework, based
on the n-step extended state observer, is validated through simulations, which demonstrate its effectiveness in
addressing actuator faults and optimizing system performance. The results underscore the advantages of the n-step
observer in delivering more accurate fault predictions, resulting in improved fault tolerance and stability in the
engine control system.
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