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Abstract: With the growing demand for sustainable wastewater treatment, algae-
based technologies have gained increasing attention as a promising solution, owing 
to their capacity to efficiently remove pollutants and recover valuable nutrients from 
various wastewater sources. Microalgae offer a cost-effective and environmentally 
friendly approach by combining biological treatment with resource recovery. Despite 
their potential, large-scale deployment is often constrained by environmental 
variability and the physiological complexity of microalgal systems. Machine learning 
(ML), a key branch of artificial intelligence (AI), has emerged as a powerful tool for 
predicting pollutant levels and water quality parameters, due to its ability to model 
complex, non-linear relationships between input variables and system responses. 
Recent advancements in ML present new opportunities to enhance process control, 
operational stability, and treatment efficiency. This review explores the application of 
ML techniques, including neural networks, support vector machines, decision trees, 
and genetic algorithms in the modelling, prediction, and optimisation of microalgae-
based wastewater treatment processes. It further discusses the potential of intelligent 
algorithms to manage large, complex datasets and address operational uncertainties, 
while also identifying current limitations and future directions for integrating AI in 
algae-based treatment systems.  

 Keywords: wastewater treatment; microalgae; machine learning; prediction and 
optimization 

1. Introduction 

Global water scarcity is becoming increasingly severe due to improper water management, population 
growth, and climate change [1]. Algae-based wastewater treatment harnesses algae’s natural biological processes 
to offer a sustainable, cost-effective solution. Through photosynthesis, algae absorb carbon dioxide and remove 
pollutants such as nitrogen and phosphorus from wastewater, improving water quality. This approach is gaining 
attention for its dual benefits: purifying water while producing algal biomass that can be converted into biofuels 
or used as animal feed. 

As an advanced sustainable technology, microalgal wastewater treatment can potentially eliminate emerging 
pollutants. Microalgae use both organic and inorganic compounds in wastewater as nutrients, proliferating to 
remove contaminants while simultaneously fixing carbon dioxide, producing oxygen, and reducing the overall 
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carbon footprint of the treatment process [2]. However, their growth and pollutant removal efficiency depend on 
several factors, including wastewater characteristics, cultivation methods, light intensity, nutrient availability, and 
carbon dioxide levels [3]. In environments with high pollutant concentrations—such as elevated levels of total 
nitrogen, total phosphorus, and chemical oxygen demand—certain heavy metals can exert toxic effects on 
microalgal stability [4]. Despite these advantages, practical challenges remain, including optimizing growth 
conditions, system control, and large-scale implementation. Machine learning (ML) has gained significant traction 
in environmental fields such as air pollution, wastewater, and solid waste management, serving as a powerful tool 
for knowledge acquisition and integration. Its core principle is inductive reasoning, which enables the 
identification of patterns between inputs and outputs to support data-driven decision-making [5]. 

The advent of machine learning (ML) has revolutionized wastewater treatment, particularly in addressing the 
complex, dynamic nature of these systems where traditional methods falls short. ML offers predictive modelling, 
real-time monitoring, and optimization tools that enhance algae-based treatment systems’ operational efficiency 
and management. By analyzing historical data, ML models can forecast algal growth, pollutant removal efficiency, 
and environmental impact, thereby supporting more precise decision-making. Integrating artificial intelligence 
(AI) and ML algorithms further improves the efficiency of microalgal wastewater treatment and resource recovery 
by optimizing system parameters and identifying key factors affecting microalgal cultivation [6]. Moreover, AI 
and ML can optimize critical parameters for algal growth—including nutrient availability, temperature, pH, and 
light intensity [7]—while enhancing the conversion of harvested biomass into biofuels, biohydrogen, and 
biofertilizers [8]. These algorithms optimize conversion processes, reducing costs and time while increasing 
overall productivity [6]. 

Researchers provided valuable insights into the application of ML in microalgae research, particularly for 
optimizing cultivation practices. They observed that traditional microalgal cultivation methods face limitations 
due to the complexity of growth dynamics [9]. Conventional approaches—affected by variables such as light 
intensity, temperature, pH, and nutrient availability—often lack real-time monitoring, making it challenging to 
respond swiftly to changes that influence algal growth. These limitations underscore the significant potential of 
machine learning in advancing microalgal research. 

Despite significant progress, a critical knowledge gap remains in the literature, particularly concerning the 
effective integration of machine learning models with the practical requirements of microalgal wastewater 
treatment. While certain models have demonstrated promising results under controlled laboratory conditions, their 
application in real-world environments presents challenges related to generalizability, stability, and the ability to 
manage complex dynamic systems. Addressing these challenges is crucial for advancing the technology in this field. 

This review provides an in-depth exploration of the application of machine learning (ML) models in 
microalgal wastewater treatment, systematically summarizing recent advancements and offering insights into 
future development trends. It begins by introducing the core concepts of machine learning, outlining fundamental 
methodologies, and analysing their potential value in microalgal wastewater treatment. Additionally, it elaborates 
on the key mechanisms involved in the treatment process. The review highlights both the advantages and 
limitations of machine learning models in this field, particularly their contributions to enhancing treatment 
efficiency, optimizing system design, and enabling intelligent monitoring. Furthermore, it examines the multiple 
benefits of integrating machine learning algorithms into microalgal wastewater treatment systems and envisions 
the future trajectory of this research area. By providing new perspectives, this review underscores the 
transformative potential of artificial intelligence and machine learning in enhancing monitoring efficiency and 
optimizing wastewater treatment system design. 

2. Theoretical Basis and Applications 

2.1. Algae Cultivation and Used in Wastewater Treatment 

As primary producers in aquatic ecosystems, algae play a crucial role in wastewater treatment. Algae absorb 
carbon dioxide from water through photosynthesis, converting it into organic matter while releasing oxygen. They 
also utilize nutrients such as nitrogen and phosphorus from the water for growth, effectively removing these 
pollutants and reducing the risk of eutrophication. 

The mechanisms by which algae remove nutrients from wastewater include assimilation and adsorption. 
Assimilation refers to absorbing nutrients like nitrogen and phosphorus into algal cells, where they form cellular 
components. At the same time, adsorption involves binding nutrients to the surface of algal cells, which can be 
removed through algal harvesting or filtration. Nutrient removal efficiency is influenced by factors such as algal 
species, water temperature, pH, light intensity, and nutrient concentration [6]. 
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The efficiency of algae-based wastewater treatment is not only affected by nutrient concentration, light 
intensity, and water temperature but also by the interference of other pollutants. Algal systems require specific 
growth conditions, such as optimal light intensity and temperature ranges, to ensure efficient operation. The 
balance of nitrogen to phosphorus is critical for the algae’s nutrient uptake efficiency and to prevent excessive 
growth. Despite the advantages of algae-based wastewater treatment, such as low-cost, high-energy efficiency, 
and environmental friendliness, along with the production of biomass for biofuels or animal feed that supports the 
circular economy, the system’s efficiency is highly dependent on ecological conditions and faces management and 
technical challenges in large-scale industrial applications. 

Algal cultivation is a highly complex process influenced by the characteristics of the cultivation system (e.g., 
reactor geometry and power input), photosynthetic efficiency, and microbial growth dynamics. These dynamics are 
primarily governed by environmental factors such as light intensity, pH, salinity, nutrient concentration, temperature, 
carbon dioxide, and dissolved oxygen levels [10]. Optimizing these conditions is crucial for enhancing biomass 
productivity, and conventional optimization approaches, ranging from physical models to data-driven and hybrid 
methods—are commonly employed. However, traditional dynamic models often fall short when applied to algae-
based wastewater treatment systems. While these models can fit experimental data, they tend to oversimplify complex 
biological interactions and typically fail to capture subtle dynamics [11]. 

The Monod model, a classical kinetic model, is frequently used to describe algal growth and nutrient uptake 
in wastewater treatment. It assumes a saturable relationship between nutrient concentration and growth rate but 
overlooks critical factors, such as environmental influences and interactions between algae and other 
microorganisms [12]. To address these limitations, the Mathematical Model of the Algal-Bacterial Symbiotic 
System (MBRM) was developed to better simulate the microbial processes in integrated algal-bacterial systems, 
particularly for livestock and poultry wastewater. Although this model improves accuracy in representing 
microbial interactions, its performance declines under highly complex or variable water quality conditions [13]. 

Machine learning (ML) offers a powerful alternative to traditional modelling approaches in optimizing 
microalgae-based wastewater treatment. Unlike conventional models that rely on fixed assumptions and 
simplified kinetic equations, ML algorithms can learn directly from large datasets, capturing complex nonlinear 
relationships without requiring predefined growth functions. ML is particularly advantageous for 
accommodating diverse microalgal species, varying culture conditions, and fluctuating wastewater 
compositions. Additionally, ML models can integrate both historical and real-time monitoring data to enhance 
prediction accuracy and system adaptability [14]. 

Wei et al. (2025) [15] proposed an advanced algal-bacterial symbiotic system combining anaerobic 
acidification and microalgal bioaugmentation. By leveraging metabolic synergies among anaerobic bacteria, 
aerobic bacteria, and microalgae, this system established an efficient metabolic network that significantly 
enhanced wastewater treatment performance. Using response surface methodology (RSM) to optimize 
environmental parameters, the system achieved 98.56% chemical oxygen demand (COD) removal and biomass 
production of 3.43 g/L. This dual-function system improved organic load reduction, minimized aeration 
requirements, and facilitated resource recovery. Moreover, ML can be integrated to analyze multi-variable 
processes, offering a more comprehensive and accurate understanding of microalgae–wastewater interactions. 

2.2. Machine Learning model Basic 

Machine learning (ML), a pivotal subset of artificial intelligence (AI), is crucial in transforming data into 
actionable insights across various fields. Artificial Intelligence (AI) refers to the capability of machines to exhibit 
human-like intelligence, including learning, reasoning, planning, perceiving the environment, and making decisions. 
While AI represents the overarching goal, Machine Learning (ML) is a key method for achieving it—by automatically 
learning patterns from data and making informed judgments [16]. By utilizing algorithms, ML utilizes computers to 
autonomously learn from vast datasets and make decisions based on patterns identified within the data by using 
algorithms. ML has proven invaluable in wastewater treatment by analysing large-scale data, analysing hidden 
patterns, and predicting system behaviours. This capability enhances the efficiency and sustainability of wastewater 
treatment processes by optimizing operations and usage. 

ML algorithms can be broadly classified into three categories: supervised learning, unsupervised learning, 
and deep learning. Supervised learning uses labelled data to train models, making it suitable for classification 
tasks. In the context of wastewater treatment, supervised learning can predict critical parameters, such as nutrient 
removal efficiency or the removal of contaminants from the water, based on historical data. Using labelled datasets 
in supervised learning ensures high accuracy and reliability in predicting known outcomes, essential for optimizing 
wastewater management practices [14]. 
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Figure 1 presents a basic overview of supervised learning algorithms. A typical end-to-end machine learning 
(ML) workflow comprises three main stages: training, cross-validation, and testing. During the training phase, the 
model learns by adjusting its parameters based on the input data. Cross-validation follows, where hyperparameters 
are fine-tuned using a validation set to enhance model performance. In the final stage, testing assesses the model’s 
generalization capability using an independent dataset. Once optimized, the trained model can be applied to 
predictive tasks [17]. 

 

Figure 1. Machine learning models algorithms. 

By leveraging ML algorithms, researchers can efficiently analyze large datasets to identify key predictive 
variables and discover meaningful patterns [18]. Commonly used supervised learning algorithms include Artificial 
Neural Networks (ANN), Support Vector Machines (SVM), Decision Trees (DT), and Random Forests (RF). ANN 
mimics the structure of the human brain by adjusting connection weights through backpropagation. SVMs perform 
classification and regression by finding the optimal hyperplane that maximizes the margin between classes. 
Decision Trees use hierarchical feature splitting for classification and regression, while Random Forests combine 
multiple decision trees using ensemble learning to improve predictive accuracy and reduce overfitting [14]. 

Unsupervised learning, on the other hand, does not rely on labelled data. Instead, it identifies inherent 
structures or patterns in the data that may not be immediately obvious. This approach is helpful in scenarios where 
data labelling is not feasible or when the goal is to uncover hidden relationships within large, complex datasets, 
such as detecting previously unknown trends in wastewater quality or identifying system failures early on. 
Unsupervised learning methods can also be applied to classify or group wastewater treatment systems into different 
categories based on their operational conditions. This helps in decision-making regarding system improvements 
or upgrades. 

Deep learning plays a pivotal role in real-time system optimization. Among its approaches, reinforcement 
learning (RL) is particularly distinguished from supervised and unsupervised learning by its interactive framework: 
an agent learns by interacting with an environment, continuously adjusting operational parameters to maximize 
cumulative rewards based on feedback. In the context of wastewater treatment, this could involve dynamically 
regulating variables such as chemical dosages, temperature, or pH levels to optimize plant performance. The real-
time decision-making capability of RL enables continuous adaptation and fine-tuning of treatment processes, 
ensuring optimal efficiency even under fluctuating environmental conditions [14]. 

Several machine learning algorithms are commonly applied in wastewater treatment optimization. Decision 
trees, for instance, are frequently used for both classification and regression tasks. They work by splitting data into 
distinct branches based on input features, which makes them suitable for identifying patterns in treatment 
processes. Support vector machines (SVM), known for their effectiveness in high-dimensional spaces, are handy 
for classification tasks in wastewater treatment, where multiple variables might be at play. Artificial neural 
networks (ANN), intense learning models, are increasingly used to model complex nonlinear relationships in 
wastewater treatment systems. These models can account for the interactions among numerous factors, such as 
flow rates, nutrient concentrations, and chemical treatments, which are challenging to model using traditional 
approaches. Additionally, K-means clustering can help categorize different operators or system conditions in 
wastewater treatment processes, aiding in system diagnosis and maintenance scheduling [9]. Long short-term 
memory (LSTM) networks were used for real-time prediction of water quality and algal concentration [19], while 
autoregressive models (ARM) were used to analyze data and optimize wastewater treatment conditions [20]. 
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Evaluating the performance of ML models is a critical step in determining their usefulness in real-world 
applications. Several metrics are employed for this purpose, including accuracy, precision, recall, F1 score, and 
mean squared error (MSE). MSE is particularly useful in regression tasks, as it quantifies the difference between 
predicted values and the actual outcomes, thus helping to assess the reliability of a model’s predictions. For 
classification problems, precision, recall, and F1 scores are more informative. Precision measures the accuracy of 
optimistic predictions, recall gauges the ability of the model to capture all positive instances, and the F1 score is a 
harmonic mean of precision and recall, providing a balanced evaluation of model performance. In wastewater 
treatment, these metrics are essential for determining how well a model can predict critical parameters such as 
nutrient removal efficiency or the behaviour of specific contaminants [9]. 

Machine learning (ML) methods play a pivotal role in optimizing various aspects of microalgae production, 
with different models tailored to specific tasks. For strain selection, classification algorithms such as decision trees 
and support vector machines (SVM) are frequently employed to identify the most suitable strains for cultivation [21]. 
In growth rate prediction, regression models, including linear regression, random forests, and long short-term memory 
(LSTM) networks are used to estimate algal biomass development under varying environmental conditions [22]. 

For pollution detection, anomaly detection techniques like autoencoders and one-class SVM help identify 
system irregularities, thereby maintaining cultivation quality [23]. In environmental monitoring, time series 
analysis models such as ARIMA, LSTM, and gated recurrent units (GRU) are applied to track and forecast 
ecological variables, ensuring optimal growing conditions [24]. 

These diverse ML techniques form a robust toolkit for addressing the complex challenges of microalgae 
production, significantly enhancing both efficiency and sustainability. For instance, Hossain et al. (2022) [25] 
utilized SVM to predict nitrogen and phosphorus removal efficiencies of microalgae in municipal wastewater 
treatment. SVM outperformed multilayer perceptron artificial neural networks (MLP-ANN) and response surface 
methodology (RSM). However, SVM models can be computationally intensive with large datasets and are 
sensitive to missing data, requiring careful tuning of kernel functions, scaling, and data preprocessing. 

Moreover, nutrient optimization, a critical component of microalgae-based wastewater treatment, has benefited 
from ML approaches. Artificial neural networks (ANN) have been effectively applied to maximize power density 
and chemical oxygen demand (COD) removal, both of which are key indicators of treatment efficiency. 

Using ML algorithms in wastewater treatment transforms how treatment plants manage and optimize 
processes—optimizely predicting outcomes and optimizing operational parameters. These models improve 
treatment efficiency and promote sustainability by reducing resource usage and operational costs. However, while 
ML holds excellent potential, challenges remain, particularly in data quality, model interpretability, and real-time 
application. For instance, the performance of ML models can be affected by the quality and completeness of the 
data used for training, necessitating further research into data preprocessing and enhancement techniques. 

Additionally, the black-box nature of some ML models and intense learning approaches make it challenging 
to interpret their decision-making processes, which could be a barrier to adoption in highly regulated industries 
such as wastewater treatment. Therefore, future research should improve model transparency and develop hybrid 
models that combine traditional engineering knowledge with ML to achieve more reliable and interpretable 
outcomes. Machine learning holds great promise for enhancing the efficiency and sustainability of wastewater 
treatment processes. By leveraging advanced algorithms, treatment plants can optimize their optimizer, optimize 
environmental impacts, and contribute to more sustainable water resource management. 

3. Role of Machine Learning in Algae-Driven Wastewater Treatment 

3.1. Microalgal Detection and Classification by ML 

Detection and classification of microalgae is an important part of wastewater treatment, and traditional 
methods rely on microscope observation and manual classification, which is a cumbersome and inefficient process. 
Machine Learning technology is able to quickly and accurately identify the species and state of microalgae through 
image recognition and data analysis. Recently, researchers have begun exploring the implementation of intelligent 
control systems to optimize microalgae cultivation. For instance, researchers [26] proposed a precise control 
strategy based on light intensity and temperature feedback, which successfully optimized mixing in open pond 
cultivation of Spirulina and reduced energy input by 30% compared to the control group. Imamoglu found that 
feature extraction and classification of microalgae images using Convolutional Neural Networks (CNNs) can 
achieve highly accurate species identification. In addition, Support Vector Machines (SVM) and Artificial Neural 
Networks (ANN) have been widely used for microalgae classification, and the morphological features of 
microalgae are recognised by training models, which significantly improves the accuracy and efficiency of 
classification [14]. For another study, microalgae images of cyanobacterial and green algal taxa were classified 
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using the AlexNet-SVM model [21]. Chong et al. reported accuracy of 96.93% and 97.63% for k-NN classifier 
and SVM classifier respectively in combination with optimised image preprocessing technique [27]. 

3.2. Prediction of Microalgal Growth and Pollution Removal by ML 

A critical application of machine learning in algae-based wastewater treatment is predictive modelling. By 
leveraging historical data, machine learning algorithms can forecast key parameters such as algal growth rates and 
nutrient removal efficiencies, while accounting for variables like temperature, light intensity, and nutrient 
concentrations. These predictions are valuable for guiding system design, operational strategies, and process 
optimization. As illustrated in Figure 2, machine learning models have been applied across various aspects of 
microalgae-based wastewater treatment, including growth prediction, species identification, biomass estimation, 
process optimization, resource recovery, and reuse. Additionally, they play a vital role in real-time monitoring and 
feedback control. Collectively, these applications enhance the efficiency, reliability, and automation of 
microalgae-based treatment systems, supporting the development of intelligent and sustainable wastewater 
management solutions. 

 

Figure 2. Machine learning model used in microalgae-based wastewater treatment. 

Microalgae are highly effective in removing a wide range of pollutants from wastewater, including 
conventional contaminants such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), 
ammonia nitrogen (NH₃-N), and total phosphorus (TP), as well as trace pollutants like antibiotics, pharmaceuticals, 
and endocrine disruptors. These pollutants are removed through several mechanisms, including adsorption, 
biodegradation, photodegradation, and volatilization. The functional groups on microalgal cell walls can adsorb 
cationic pollutants, while their metabolic activities decompose organic compounds. Light energy from 
photosynthesis can facilitate photodegradation, and certain volatile compounds may be released into the 
atmosphere through algal processes. In algal-bacterial symbiosis systems, the synergistic interactions between 
microalgae and bacteria further enhance pollutant removal. Organic matter excreted by microalgae stimulates 
bacterial heterotrophic metabolism, accelerating degradation processes. In return, bacteria regenerate nutrients that 
support algal growth. For instance, Scenedesmus obliquus was reported to remove 91.43% of BOD, 83.11% of 
COD, 83.74% of total nitrogen, and 54.69% of total phosphorus from pig farm wastewater [28]. 

Machine learning has become a valuable tool in optimizing microalgae-based wastewater treatment. By 
constructing models such as random forests, researchers can analyze the influence of multiple environmental 
parameters on algal growth and predict future trends. Real-time monitoring and control are essential to 
maintaining optimal system performance. Machine learning algorithms, trained on historical data, support 
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predictive modeling of ideal growth conditions. For example, Haro et al. (2022) employed random forest models 
to analyze algal behavior, predict growth patterns, and optimize production strategies. Other machine learning 
approaches—such as long short-term memory (LSTM), extreme gradient boosting (XGBoost), and random 
vector functional link (RVFL)—have also been used to predict growth rates [29]. A recent study by Meenatchi 
Sundaram et al. (2025) demonstrated that the RVFL model achieved exceptionally low prediction errors, 
underscoring its potential for accurately forecasting microalgae growth—an essential factor in optimizing 
cultivation and harvesting processes [30]. These predictive tools support better resource allocation and decision-
making in large-scale algae wastewater treatment systems. Table 1 summarizes key machine learning methods 
applied in this field, showcasing their diverse applications and performance outcomes. 

Table 1. Representative machine learning methods for microalgae-based wastewater treatment. 

Microalgae Process Model Input 
Machine Learning 
Model Used and 

Activity 
Outcome References 

Microalgae feature 
selection Spectral data DT, RF, SVM; 

Classification 

The RF model accurately classified 
algal communities into 13 major 

classes and effectively modelled total 
biomass 

[22] 

Wastewater treatment 
efficiency Spectral data LSTM, CNN; 

Time series analysis 
LSTM consistently outperforms other 
methods with minimal prediction error [24] 

Model optimization Spectral data SVR 
Effect of temperature, light-dark cycle 
and nitrogen-phosphorus ratio on CO2 

bio fixation with 91.1% accuracy 
[25] 

Microalgae growth rate 
prediction 

Morphologic 
data 

LSTM, XGBoost, 
RVFL; Regression 

The RVFL model can effectively 
predict the growth of microalgae with 

an error of less than 0.01 
[30] 

Distinguishing between 
dead and alive microalgal 

communities 
Spectral data RF The accuracy rate is 94.5% [31] 

Nutrient optimization Morphologic 
data 

ANN: 
optimization 

maximised power density and COD 
removal, and the combination of ANN 
and FBI resulted in a 2.24% increase in 

performance 

[32] 

Model optimization Morphologic 
data ANN Bio fixation of carbon dioxide at 91.1% [33] 

Microalgae feature 
selection 

Morphologic 
data CNN The model achieved 89% accuracy on 

the test set. [34] 

Model optimization Morphologic 
data GA-ANFIS Carbon dioxide fixation at 98.4% [35] 

3.3. Abnormality Detection and Monitoring Systems by ML 

By integrating Internet of Things (IoT) sensors, machine learning algorithms can continuously track key 
parameters such as algal concentration, water quality, and environmental conditions. These algorithms can 
automatically adjust system settings based on real-time data to maintain optimal system performance. Large-scale 
data collection through remote sensors, such as satellites or drones, combined with machine learning analysis, can 
optimize system scheduling across multiple treatment sites. Integrating microalgae with wastewater treatment 
enhances wastewater purification and optimizes biological materials recovery through advanced process control 
systems [6]. Tham et al. (2022) designed and developed an IoT-enabled upscaled photobioreactor that allows 
remote parameter monitoring via a smartphone [36]. In addition, Lee et al. (2022) developed a 3D-printed real-
time optical density monitoring device to predict microalgae growth dynamics from real-time data accurately [37]. 
Recent studies highlight the significant role of AI and machine learning (ML) systems in improving microalgae 
cultivation by reducing resource consumption and enabling more precise decision-making in the biofuel industry. 
For instance, ML techniques such as Isolation Forest and Autoencoder can automatically detect anomalies by 
analyzing both historical and real-time monitoring data [14]. Liu et al. (2023) [22] demonstrated that the Random 
Forest (RF) model effectively classified microalgal species into 13 categories, thereby enhancing predictive 
capabilities and supporting optimization strategies. Additionally, Zambon et al. (2019) [38] reported that 
integrating IoT into microalgae production processes reduced input requirements by 30% and increased yields by 
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20%. Similarly, Giannino et al. (2018) found that systems monitored with IoT and AI achieved a 9% higher yield 
compared to those without such technologies [39]. 

3.4. Optimization of Process Conditions for Improved Wastewater Treatment by ML 

In microalgal cultivation, regulating physical and chemical parameters that influence growth—such as light 
intensity, pH, nutrient concentration, carbon dioxide levels, and algal biomass concentration—is crucial. Various 
sensors to monitor these parameters ensure optimal algal bioreactors’ cultivation conditions. The vast data these 
monitoring systems generate can serve as inputs for optimizing parameters in artificial intelligence (AI) and 
machine learning (ML) models. Through real-time monitoring and automated management, along with developing 
appropriate ML models from collected data, the biomass productivity of microalgae and wastewater treatment 
efficiency can be significantly enhanced. Depending on the requirements of the final product, the results from ML 
models can provide feedback to maintain optimal cultivation conditions. Artificial neural networks (ANN) and 
genetic algorithms (GA) have been used to optimize wastewater and yeast concentrations, enhancing power 
density and chemical oxygen demand (COD) removal efficiency in microbial fuel cells [32]. Furthermore, ANN, 
support vector machines (SVM), and genetic algorithms (GA) have also been applied to microalgae classification, 
survival characteristic prediction, and algal concentration estimation [40]. These ML tools have significantly 
improved microalgae production efficiency and wastewater treatment effectiveness [9]. Machine learning models 
are essential for optimizing microalgae cultivation and wastewater treatment processes. They can predict the 
growth rate, biomass composition, production efficiency, and pollutant removal performance of microalgae. By 
optimizing resource input, ML can enhance microalgae biomass production while ensuring optimal wastewater 
treatment efficiency [41]. These parameters are species-specific, thus requiring the optimization of growth 
conditions to achieve the highest biomass yield and treatment efficiency. 

Machine learning and real-time monitoring systems can optimize microalgae cultivation, harvesting, and 
drying processes to improve efficiency and sustainability [42]. Machine learning can also be applied to optimize 
the operational parameters of algae wastewater treatment systems. For example, reinforcement learning algorithms 
can adjust real-time parameters such as light intensity, nutrient input, and temperature to ensure that the system 
operates under optimal conditions, maximizing energy efficiency and nutrient removal [6]. 

3.5. Enhancement of Downstream Process 

Machine Learning (ML) plays a crucial role in optimizing downstream processes in microalgae-based 
wastewater treatment. For instance, Support Vector Regression (SVR) models are employed to predict drying 
efficiency and fine-tune process parameters for improved performance. Additionally, ML models can analyze the 
influence of extraction parameters on product yield, enabling the optimization of extraction processes to enhance 
resource recovery. These applications not only increase the efficiency of downstream operations but also reduce 
production costs and strengthen the overall competitiveness of microalgae wastewater treatment technologies [14]. 
Sayed et al. (2024) [32] found that combining ANN with feedback inhibition (FBI) led to a 2.24% increase in 
performance, illustrating how machine learning can help fine-tune system parameters for optimal results. 
Regarding wastewater treatment efficiency, LSTM and convolutional neural networks (CNN) were applied for 
time series analysis regarding wastewater treatment efficiency. LSTM models consistently outperformed other 
methods with minimal prediction error, as demonstrated by Rostam et al. (2023) [24]. This further emphasizes the 
ability of machine learning to provide accurate, real-time predictions, enabling better control of the treatment 
process and ensuring optimal system performance. In the microalgae industry, IoT-based systems play a crucial 
role in streamlining and optimising production, promoting more sustainable and efficient practices [43]. 
Complementing these technologies, artificial intelligence (AI) and machine learning are increasingly integrated 
into intelligent control systems to minimise resource consumption and support informed decision-making in 
microalgae biorefineries [14]. Together, these advancements offer substantial opportunities to enhance both 
productivity and sustainability in the sector. Notably, recent studies highlight the transformative potential of 
machine learning in microalgae-based wastewater treatment. The ability to accurately predict key parameters, 
optimise nutrient conditions, and improve treatment efficiency is essential for advancing the sustainability of these 
systems. As research progresses, the integration of more sophisticated machine learning models is expected to 
drive further innovation in microalgae wastewater treatment, contributing to more effective and sustainable water 
management solutions [44]. 
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4. Challenges and Future Perspectives 

4.1. Challenges 

During the data processing procedure, data often faces issues such as incompleteness, noise, or scarcity, 
which can limit the performance and generalizability of models. Additionally, problems related to data 
standardization and the reliability of sensors may also affect the accuracy and stability of the model. Many machine 
learning models, intense learning models, are often considered “black box” models due to their complexity and 
lack of interpretability. This lack of transparency can make it difficult for stakeholders to accept the system, 
especially in environments that require strict regulation and decision support in algae wastewater treatment [32]. 
Typically, the accuracy of machine learning models improves with increased data availability. However, acquiring 
large amounts of data in practical applications is often costly and time-consuming. Therefore, the limited 
availability of data can become a barrier to application. To address this, data preprocessing can be the overall 
quality of data. Data augmentation (DA) techniques can artificially expand the dataset based on known invariants, 
which helps the trained model generalize better. For example, Correa et al. (2017) proposed that data augmentation 
significantly improves the accuracy of deep learning models in microalgae classification tasks compared to 
situations without data augmentation [16]. However, it is essential to note that improper data augmentation may 
lead to inaccurate predictions. 

Overfitting is a common issue in machine learning, where the model performs well on training data but poorly 
on new, unseen data. Regularization techniques and cross-validation methods are typically applied to prevent 
overfitting. Moreover, some machine learning models, such as deep learning, have high computational costs, 
which could hinder their application in practical algae wastewater treatment systems, particularly in resource-
limited environments. 

4.2. Future Perspective 

In the future, advancements in machine learning and artificial intelligence will drive the intelligent 
development of algae wastewater treatment systems. Emerging technologies, such as transfer learning, are 
expected to address the issue of data scarcity and enhance the generalization capability of models. By integrating 
laboratory data, field observation data, and remote sensing data, the accuracy and robustness of predictive 
modelling will be significantly improved. Multi-scale data fusion will help machine learning models more 
accurately reflect the actual conditions of wastewater treatment systems, providing more substantial support for 
decision-making. Most existing studies use a single machine-learning model for prediction. However, combining 
different algorithms could achieve better results and should be the focus of future research. In most cases, ensemble 
models (e.g., combining ANN/SVM/RF with GA) outperform standalone models in terms of prediction 
performance, risk of overfitting, and robustness [45]. 

With the development of smart sensors, blockchain, and Internet of Things (IoT) technologies, the 
performance and operability of algae wastewater treatment systems will be further improved [43]. Machine 
learning will be key in data processing, analysis optimization, and system control. In response to the growing 
global water scarcity and pollution challenges, the integration of machine learning and sustainable water resource 
management will become the core focus of future research. This will help improve algae wastewater treatment 
efficiency, meet the increasing demand for clean water, and promote the sustainable development of environmental 
protection and resource recovery. Future research should prioritize several key areas: (1) the development of 
flexible and adaptable machine learning models capable of managing the diverse and complex characteristics of 
various wastewater types; (2) the design of integrated frameworks that closely couple machine learning with 
microalgal biological processes to enhance algorithm accuracy and real-time operational reliability; and (3) the 
promotion of interdisciplinary collaboration by leveraging advancements in biology, chemistry, and computational 
sciences to optimize the overall performance of microalgal wastewater treatment systems. 

5. Conclusions 

Machine learning (ML) techniques are demonstrating substantial potential and broad applicability in the field 
of microalgae cultivation and its diverse applications. These data-driven technologies are increasingly vital across 
key processes such as growth regulation, species identification, harvesting, extraction, and purification. By 
leveraging artificial intelligence (AI), the microalgae industry chain benefits from enhanced process efficiency, 
output optimization, and improved controllability. 

In the context of wastewater treatment using microalgae, ML interventions have yielded notable progress. 
Through predictive modeling, real-time data monitoring, and the optimization of operational strategies, ML 



Zhang et al.   Algae Environ. 2025, 1(1), 2 

https://doi.org/10.xxxx/xxx  10 of 12  

algorithms enhance treatment efficiency and environmental performance. These approaches enable precise estimation 
of key variables, support optimal resource allocation, and allow for timely operational adjustments. Collectively, 
these capabilities contribute to improved system performance and provide a scientific basis for shaping and 
implementing effective environmental policies. Furthermore, machine learning is accelerating the advancement of 
smart water systems, promoting more efficient and sustainable water resource management. Nevertheless, several 
challenges continue to hinder widespread adoption. These include issues related to data quality control, limited model 
interpretability, and the lack of transparency in complex real-world environments. Future research should prioritize 
addressing these limitations—for example, by refining data acquisition techniques to improve training dataset quality 
or by developing more interpretable models to build trust in practical applications. 

The integration of AI with IoT sensors and UAV-based remote sensing also presents promising opportunities 
for comprehensive, full-cycle data acquisition and large-scale monitoring in microalgae cultivation. This 
technological synergy not only facilitates optimal environmental regulation for algal growth but also enables 
responsive adaptation to market dynamics. As these technologies mature and are more deeply integrated, the field 
is poised for significant breakthroughs and expanded development opportunities. 
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