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Abstract: Traditional automated machine learning (AutoML) often faces 

limitations in manual effort, complexity management, and subjective design 

choices. This paper introduces a novel LLM-driven AutoML framework centered 

on the innovation of decomposed prompting. We hypothesize that by strategically 

breaking down complex AutoML tasks into sequential, guided sub-prompts, Large 

Language Models (LLMs) operating within a code sandbox on standard PCs can 

autonomously design, implement, evaluate, and select high-performing machine 

learning models. To validate this, we primarily applied our decomposed prompting 

approach to sleep disorder classification (illustrating potential benefits in 

healthcare). To assess the generalizability and robustness of our method across 

different data types, we subsequently evaluated it on the established 20 Newsgroups 

text classification benchmark. We rigorously compared decomposed prompting 

against zero-shot and few-shot prompting strategies, as well as a manually 

engineered baseline. Our results demonstrate that decomposed prompting 

significantly outperforms these alternatives. Our results demonstrate that 

decomposed prompting significantly outperforms alternatives, enabling the LLM to 

autonomously achieve superior classifier design and performance, particularly 

showing strong results in the primary sleep disorder domain and demonstrating 

robustness in the benchmark task. These findings underscore the transformative 

potential of decomposed prompting as a key technique for advancing LLM-driven 

AutoML across diverse application areas beyond the specific examples explored 

here, paving the way for more automated and accessible problem-solving in 

scientific and engineering disciplines. 

 Keywords: AutoML; LLM; prompt engineering; Sleep Disorder Newsgroups 

Classification 

1. Introduction 

Roughly 10 percent of the global populace is afflicted by sleep disorders, a figure increasing amidst rapid 

urbanization (WHO). Beyond daytime fatigue and diminished attention, sleep disorders can precipitate chronic 

ailments like cardiovascular diseases and diabetes. Consequently, the precise identification and classification of 

sleep disorders hold significant importance for enhancing public health. 

Traditional machine learning algorithms such as decision trees, support vector machines (SVM) and random 

forests [1–3] face limitations. They require extensive manual operation in data preprocessing (handling missing 

values, outliers, standardization, normalization) and model training/tuning (algorithm selection, parameter setting, 

iterative optimization), consuming significant time and effort and being susceptible to human factors, thus limiting 
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accuracy and reliability. Furthermore, their application heavily depends on expert experience for algorithm 

selection, feature engineering, and parameter adjustment. For complex classifications, varying expert opinions can 

lead to inconsistent results. These issues hinder the advancement and application of sleep disorder research, 

necessitating new technologies and methods to overcome these challenges. 

Large language models (LLMs), a cutting-edge technology in natural language processing based on the 

Transformer [4], have shown remarkable progress through unsupervised pre-training on vast text data, 

demonstrating great potential in medical research [5–13]. However, the application of LLMs in sleep health 

research remains largely unexplored, particularly considering the limited accessibility of powerful GPU computing 

resources for many researchers. This gap highlights the importance of investigating LLM capabilities for sleep 

health analysis even on standard PC hardware. 

Leveraging these capabilities, we hypothesize that LLMs, when equipped with a code execution sandbox and 

guided by structured prompts, can function as effective agents for Automated Machine Learning (AutoML). 

Specifically, they could possess the capability to autonomously design, generate, execute, and debug code for the 

entire machine learning pipeline–including data pre-processing, feature engineering, model selection, 

hyperparameter tuning, and evaluation–thereby streamlining the development process and enabling automated 

solutions, initially targeting challenging tasks like sleep disorder classification. 

Furthermore, leveraging LLMs’ superior natural language understanding and processing capabilities, we 

hypothesize that LLMs can directly analyze text-based data, such as sleep health and lifestyle data, effectively 

overcoming current limitations. Additionally, we hypothesize that the integration of LLMs with a code sandbox 

environment as an agent for AutoML, leveraging their robust knowledge reasoning capabilities [14], can accurately 

identify complex sleep disorder symptoms like insomnia and sleep apnea through reasoning (classification). The 

core of this research is to investigate and validate the effectiveness of different prompting strategies for LLM-

driven AutoML, with a central focus on the proposed decomposed prompting technique. We hypothesize that 

decomposed prompting, by breaking down the complex AutoML workflow into manageable, guided steps, enables 

LLMs to autonomously achieve superior classifier design and performance compared to less structured approaches 

like zero-shot and few-shot prompting. To test this hypothesis, primarily focusing on the sleep disorder 

classification task, we apply our methodology. Furthermore, to evaluate the generalizability and robustness of 

decomposed prompting across different data types (structured vs. text), we extend our analysis to include the 

standard 20 Newsgroups text classification benchmark. 

Our research demonstrates that prompt-driven LLMs with code execution sandbox possess robust capabilities 

for automating machine learning workflows across diverse domains. The innovation of decomposed prompting, 

in particular, significantly enhances their ability to tackle complex classification problems, as evidenced by our 

successful application to sleep disorder classification (a potential area of impact in healthcare, as illustrated 

conceptually in Figure 1) Furthermore, the effectiveness on the 20 Newsgroups benchmark demonstrates the broad 

applicability of our approach beyond specific domains like healthcare. Specifically, we hypothesize that their 

integration with sensor technology and wearable devices can further enhance the value of automated applications. 

Furthermore, we hypothesize that this integration will not only effectively address practical challenges in sleep 

medicine but, more importantly, will accumulate valuable experience for the broader application of LLMs in 

healthcare and Text data analysis. 

 

Figure 1. LLM-Prompting Driven AutoML: From Sleep Disorder Classification to Beyond. 
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Different prompting strategies significantly impact the effectiveness of LLMs in automated classification 

tasks, and decomposed prompting strategies is more suitable for complex classification tasks. we hypothesize that 

decomposed prompting strategies, due to their ability to guide LLMs towards deeper reasoning, will demonstrate 

unique advantages in text-based classification compared to manually created intuitive baseline, zero-shot and few-

shot prompting. We design experiments to systematically evaluate the impact of different prompting strategies on 

classification accuracy, efficiency, and robustness to validate this hypothesis. 

Moreover, by systematically evaluating these prompting strategies, motivated by the challenges in automated 

sleep disorder classification and subsequently testing their robustness on the newsgroups classification task we 

can clearly delineate their advantages and disadvantages. This in-depth analysis will provide clear guidance for 

subsequent optimization of prompting strategies and facilitate the continuous improvement of LLM performance 

in AutoML. 

LLMs hold pioneering application value in automated Text based data classification. Introducing LLMs into 

the field of automated classification, particularly for challenging domains like sleep disorders, is a groundbreaking 

initiative. Our extension to the newsgroup classification benchmark serves to validate the broader potential of this 

approach. Specifically, compared to traditional methods, LLMs can automatically perform machine learning 

processes, enabling high-precision prediction, we will validate this hypothesis by experimentally comparing the 

classification performance of LLMs against traditional machine learning models. 

2. Datasets 

In this study, our primary focus utilizes the Sleep Health and Lifestyle dataset (Table 1), selected for its 

clinical relevance and the specific challenges it presents for AutoML (e.g., mixed data types, smaller sample size) 

as discussed earlier. This dataset allows us to test the LLM’s ability to handle structured data effectively with 

limited samples. To assess the generalizability and robustness of our LLM-driven AutoML approach, particularly 

the prompting strategies, across different data modalities and complexities, we also employ the 20 Newsgroups 

dataset. This widely-used, high-dimensional text benchmark evaluates the LLM’s capacity to manage unstructured 

data and tests the prompting strategies’ effectiveness on a larger-scale text classification task. 

Table 1. Datasets. 

Dataset Overview Key Features 

Sleep Health 

and Lifestyle 

Dataset 

(Kaggle) 

It comprises 400 rows and 13 columns, 

covering a wide range of variables 

related to sleep and daily habits.  

It includes details: 

“Person ID (identifier), Gender 

(Male/Female), Age (years), 

Occupation (text), Sleep Duration 

(hours), Quality of Sleep (scale 1–10), 

Physical Activity Level (minutes/day), 

Stress Level (scale 1–10), BMI 

Category (Underweight, Normal, 

Overweight, etc.), Blood Pressure 

(systolic/diastolic), Heart Rate (bpm), 

Daily Steps (count), Sleep Disorder 

(None, Insomnia, Sleep Apnea). 

• Comprehensive Sleep Metrics: Explore sleep 

duration, quality, and factors influencing sleep 

patterns. 

• Lifestyle Factors: 

• Analyze physical activity levels, stress levels, and 

BMI categories 

• Cardiovascular Health: Examine blood pressure and 

heart rate measurements 

• Sleep Disorder Analysis:  

• Identify the occurrence of sleep disorders such as 

Insomnia and Sleep Apnea. 

Details about Sleep Disorder Column: 

• None: The individual does not exhibit any specific 

sleep disorder. 

• Insomnia: The individual experiences difficulty 

falling asleep or staying asleep, leading to inadequate 

or poor-quality sleep. 

• Sleep Apnea: The individual suffers from pauses in 

breathing during sleep, resulting in disrupted sleep 

patterns and potential health risks 

20Newsgroup 

(Real world) 

Widely used benchmark dataset in 

natural language processing (NLP) and 

machine learning for text 

classification, clustering, and 

information retrieval tasks. It was 

collected by Jason Rennie and consists 

of approximately 20,000 newsgroup 

Data Structure: 

• 20 catategories (e.g., comp.graphics, 

rec.sport.hockey, talk.politics.mideast), each 

containing ~1000 text documents. 

• Raw data in plain text format, preserving email 

headers, signatures, and newsgroup metadata. 
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posts, evenly distributed across 20 

distinct topic categories, such as 

computer science, religion, politics, 

and hobbies. The dataset is publicly 

available at 

http://qwone.com/~jason/20Newsgroup  

s/ (accessed on 10 May 2025) and has 

been a standard resource for evaluating 

text analysis algorithms since the late 

1990s. 

Typical Tasks: 

• Multi-class classification: Assigning documents to 

one of the 20 topics. 

• Multi-label classification (extension): Documents 

may belong to multiple categories (though the 

standard dataset is single-label). 

• Clustering, dimensionality reduction, and feature 

selection (e.g., using TF-IDF, word embeddings). 

Advantages: 

• Balanced class distribution, reducing bias toward 

dominant categories. 

• Diverse topics with varying linguistic styles 

(technical, conversational, argumentative), 

challenging model generalization. 

• Preprocessing flexibility: Users can apply 

tokenization, stopword removal, or stemming based 

on task requirements. 

Applications in Research 

The dataset is frequently used to validate the performance 

of text classifiers, such as: 

• Traditional machine learning models (Naive Bayes, 

SVM, Random Forests). 

• Deep learning approaches (neural networks, 

transformers). 

• Few-shot learning and zero-shot learning 

frameworks. 

Figure 2a–c collectively enable us to formulate and evaluate hypotheses about The Sleep Health and Lifestyle 

dataset [15] characteristics, their relevance to sleep disorders, sample composition, and the underlying 

relationships between features, transitioning from descriptive observations to testing proposed connections. 

The 20Newsgroup dataset [16] was thoroughly analyzed to ensure the robustness of experimental results. A 

histogram illustrating the distribution of document counts across the 20 categories (Figure 3a) directly assessed 

class balance, verifying that no significant imbalance existed and mitigating potential bias in model performance. 

A pie chart (Figure 3b) explicitly detailed the training-test split ratio, outlining the experimental setup and data 

allocation for model development and evaluation phases. Box plots illustrating the distribution of text lengths 

(word count) within each category (Figure 3c) revealed text complexity differences, providing a data-driven 

rationale for pre-processing strategies like truncation or padding to optimize model input lengths. Finally, word 

cloud visualizations highlighting prominent keywords associated with each category (Figure 3d) visually 

represented topic distinctiveness, supporting the design logic of keyword-based rule classifiers and offering 

insights into class separability based on lexical content. 

 

(a) Statistical chart of numerical features 



Zhao et al.   Trans. Artif. Intell. 2025, 1(1), 4 

https://doi.org/10.53941/tai.2025.100004.  5 of 24  

 
(b) Distribution chart of categorical features 

 

(c) Correlation coefficients among features 

Figure 2. The Sleep Health and Lifestyle dataset characteristics. 
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(a) Distribution of document counts across the 20 categories 

 

(b) Training-test split ratio of text count 

 

(c) Distribution of text lengths (word count) within each category 
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(d) word cloud visualizations highlighting prominent keywords associated with each category 

Figure 3. 20 Newsgroup dataset dataset characteristics. 

3. Research Methods 

3.1. Selection of Large Language Model 

Recognizing the constraint of conducting research on a PC without access to expensive GPU resources, we 

hypothesized that the selection of an LLM with a code sandbox would be a critical factor influencing the accuracy 

and efficiency of our automated sleep disorder classification and newsgroups classification research. Our ideal 

LLM would need to support: the ingestion of multiple Excel data files, code generation, code execution, code 

debugging, issue identification, code regeneration, and iterative execution until successful completion. We 

evaluated several LLMs based on these criteria. One reason for choosing these LLMs was their greater accessibility, 

offering features like free usage and unrestricted access within mainland China, bypassing network security 

limitations. However, certain LLMs (like Claude) were excluded; for instance, some are unavailable in mainland 

China, making registration with mainland mobile numbers impossible, or requires payment. Detailed comparisons 

are available in Appendix A, Gemini 2.0 Flash, while capable of generating code, did not support uploading Excel 

files and could not execute the generated code. Manual execution of its generated code encountered data format 

issues, leading to program interruptions near completion. Copilot supported the upload of multiple Excel files, but 

did not display the generated code. While it could execute the code, the final results were flawed; for example, it 

erroneously generated a ROC curve from a Confusion Matrix, with no ability to debug. Qwen2.5-Max supported 

only single Excel file uploads and could generate code but not execute it. DeepSeek-R1 (integrated with Baidu) 

also supported single Excel file uploads and code generation but lacked code execution capabilities. Kimi 

supported uploading multiple Excel files, displayed and executed code. After evaluating these available LLM 

options, we selected GPT4-O and Doubao [17] PC version (1.52.6). This decision was predicated on the hypothesis 

that GPT4-O and Doubao PC’s inherent strengths in natural language processing (NLP), strong adaptability to 

sleep health data, newsgroups data, interactive capabilities, and robust technical features would collectively make 

it a highly compelling and justified choice for the automated classification of all Text related data in our research. 

Crucially, the chosen LLM needed to demonstrate proficiency with both the structured, tabular data typical of the 

sleep health domain and the unstructured text data of the newsgroups benchmark to enable a thorough evaluation 

of our prompting strategies’ adaptability. We aimed to validate the following hypotheses: 

Efficiency: user-friendly interface and technical features would streamline the implementation of our 

automated sleep disorder classification and newsgroup classification, leading to increased research efficiency. 

Specifically, its intuitive interface is capable of directly processing common data formats such as Excel files and 

scikit-learn dataset, simplifying data import and reducing pre-processing. 

Automated Code Execution & Accuracy: This would enable the model to rapidly generate and execute code 

for implementing classification algorithms based on textual analysis, enhancing classification efficiency and 

mitigating potential coding errors, thus supporting accurate automated sleep disorder classification. 

NLP Capabilities: extensive unsupervised pre-training on massive text corpora would enable it to acquire a 

deep and broad understanding of language, crucial for interpreting nuanced textual descriptions of sleep patterns 

and habits. Its inherent multi-head attention mechanism would allow the model to concurrently process different 

segments of input text, effectively capturing nuanced semantic relationships and contextual information relevant 

to sleep disorder classification. The multi-layer neural network architecture would facilitate deep feature extraction 

and information processing across multiple dimensions—lexical, sentential, and textual—enabling a 

comprehensive analysis of text content related to sleep disorders, and thus contributing to accurate classification. 
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3.2. LLM Prompt Design Strategies 

To systematically investigate and optimize LLM performance in sleep disorder classification, and to 

rigorously test our hypotheses regarding prompting strategies, we curated three distinct prompting strategies. Each 

strategy was designed to test a specific hypothesis about how different levels of guidance and information influence 

LLM performance. These strategies are visualized in Flowchart of Prompting Strategies (Figure 4) and Manually 

created baseline (Appendix B) and detailed prompt examples are provided in Table 2. 

Zero-shot prompting, not use training data, tests if LLMs can achieve basic performance using only clear 

task descriptions and their pre-existing knowledge from pre-training. This approach evaluates the model’s inherent 

capabilities without task-specific examples, relying on explicit instructions to guide responses. The hypothesis is 

that LLMs’ extensive pre-trained language understanding and knowledge are sufficient for basic classification 

tasks when given clear, rule-based prompts. Therefore, zero-shot prompting assesses the model’s ability to extract 

relevant information and apply reasoning based on semantic cues in the task description, establishing a 

performance baseline to measure the effectiveness of more sophisticated prompting strategies. Within our 

comparative framework, the Zero-shot approach serves as the fundamental baseline for structured prompting, 

representing the performance achievable with clear instructions but without specific training examples or task 

decomposition guidance. The effectiveness of Few-shot and Decomposed prompting is evaluated relative to this 

baseline. 

Few-shot prompting tests if exposing the LLM to a few data samples enhances classification accuracy by 

enabling it to learn feature-outcome relationships directly. We hypothesize that data patterns in a training set 

provide richer context, improving accuracy beyond the zero-shot baseline. The key hypothesis is that even a few 

examples are crucial for refining the LLM’s understanding of the specific classification task and improving 

performance by learning from data patterns and feature-outcome relationships. 

Decomposed prompting tests if breaking down a complex task into sub-tasks with step-by-step guidance 

improves efficiency and accuracy. In sleep disorder classification, the core hypothesis is that systematically 

guiding the LLM through sub-tasks will lead to a more structured, reasoned, and accurate approach, maximizing 

LLM potential for complex AutoML tasks. Decomposed prompting rigorously tests if structured, step-by-step 

guidance via task decomposition is the most effective way to achieve high performance in complex classification 

tasks using LLMs. 

 

Figure 4. Flowchart of Prompting Strategies. 

Table 2. Prompt examples. 

Prompts Sleep Health and Lifestyle Dataset 20Newsgroup 

Manually 

Random 

forest 

Baseline 

Implemented using scikit-learn with the following 

hyperparameters: n_estimators=100  
Same 

Zero-shot • Task Overview 

Use the fetch_20newsgroups dataset 

available on scikit-learn’s official 

website and load the entire dataset. If 
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– Test Dataset 

(‘Sleep_health_and_lifestyle_dataset_remaining_

90_without_last_column.csv) 

– Real Label 

Dataset(Sleep_health_and_lifestyle_dataset_rem

aining_90.csv) 

– This task primarily consists of two sub-tasks: 

first, to perform rule_based_classifier on Test 

Dataset, second, to evaluate the classification 

results using specific evaluation metrics 

(sklearn.metrics in accuracy score, precision 

score, f1 score, recall score, confusion matrix, 

roc curve, auc and other evaluation metrics) and 

draw relevant charts. 

the data is not pre–split into training and 

test sets, divide it in a 7:3 ratio (70% for 

the training set and 30% for the test set). 

Complete the following tasks in an 

efficient manner: 

1. Design a rule–based classifier based 

on the test set data (not use train data) to 

perform full–category classification on 

the test set. 

2. Evaluate the classification results 

using evaluation metrics from 

sklearn.metrics (accuracy score, 

precision score, F1 score, recall score, 

confusion matrix, ROC curve, AUC, 

etc.) and Draw relevant charts based on 

the evaluation results 

Few-shot 

• Task Overview 

– Test Dataset 

(‘Sleep_health_and_lifestyle_dataset_remaining_

90_without_last_column.csv) 

– Real Label Dataset 

(Sleep_health_and_lifestyle_dataset_remaining_

90.csv) 

– Training dataset 

(Sleep_health_and_lifestyle_dataset_selected_90

.csv) 

– This task primarily consists of two sub-tasks: 

first, to perform classification (Random Forest) 

on Test Dataset, second, to evaluate the 

classification results using specific evaluation 

metrics (sklearn.metrics in accuracy score, 

precision score, f1 score, recall score, confusion 

matrix, roc curve, auc and other evaluation 

metrics) and draw relevant charts. 

Use the fetch_20newsgroups dataset 

available on scikit-learn’s official 

website and load the entire dataset. If 

the data is not pre–split into training and 

test sets, divide it in a 7:3 ratio (70% for 

the training set and 30% for the test set). 

Complete the following tasks in an 

efficient manner: 

1. Design Random Forest classifier 

based on the training set data to perform 

full–category classification on the test 

set. 

2. Evaluate the classification results 

using evaluation metrics from 

sklearn.metrics (accuracy score, 

precision score, F1 score, recall score, 

confusion matrix, ROC curve, AUC, 

etc.) and Draw relevant charts based on 

the evaluation results 

Decompose

d 

• Task Overview 

– Test Dataset 

(‘Sleep_health_and_lifestyle_dataset_remaining_

90_without_last_column.csv) 

– Real Label Dataset 

(Sleep_health_and_lifestyle_dataset_remaining_

90.csv) 

– Training dataset 

(Sleep_health_and_lifestyle_dataset_selected_90

.csv) 

This task primarily consists of two sub-tasks: first, to 

perform classification (automatically design, train, and test 

various classifiers (Logistic Regression, Decision Tree, 

Random Forest, Gradient Boosting, SVM, MLP and search 

hyperparamters, select the BEST one for next step) on Test 

Dataset, second, to evaluate the classification results using 

specific evaluation metrics (sklearn.metrics in accuracy 

score, precision score, f1 score, recall score, confusion 

matrix, roc curve, auc and other evaluation metrics) and 

draw relevant charts. 

Use the fetch_20newsgroups dataset 

available on scikit-learn’s official 

website and load the entire dataset. If 

the data is not pre–split into training and 

test sets, divide it in a 7:3 ratio (70% for 

the training set and 30% for the test set). 

Complete the following tasks in an 

efficient manner: 

1. Design, train, various classifiers 

(Logistic Regression,Decision Tree, 

SVM, MLP) and search hyperparamters, 

select the BEST ONE to perform full–

category classification on the test set. 

2. Evaluate the classification results 

using evaluation metrics from 

sklearn.metrics (accuracy score, 

precision score, F1 score, recall score, 

confusion matrix, ROC curve, AUC, 

etc.) and Draw relevant charts based on 

the evaluation results 

3.3. Environment and Experimental Procedure 

The experimental environment was meticulously constructed to provide a robust and reliable platform for 

testing our hypotheses regarding LLM-driven AutoML for Text data classification. The hardware and software 
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configurations were selected to ensure the accuracy and reproducibility of our experimental results, directly 

supporting the rigorous evaluation of our proposed methodologies. Specifically, the processor chosen for these 

experiments was an Intel(R) Core(TM) i5-6400T CPU @ 2.20GHz, featuring a main frequency of 2201 MHz, 

with 4 cores and 4 logical processors. This configuration was deemed sufficient to handle the computational 

demands of running the LLM and executing code within the sandbox environment, crucial for validating 

Hypotheses. The operating system was Microsoft Windows 10 Home Chinese Edition, version 10.0.19045 (build 

19045), providing a stable and widely accessible software foundation. The Large Language Model utilized were 

GitHub Copilot GPT-4o, Doubao PC version 1.52.6, selected for its code execution sandbox capabilities, which 

are essential for testing Hypothesis and the AutoML workflows investigated in this study 

The experimental procedure was carefully designed to systematically evaluate the efficacy of different 

prompting strategies and to demonstrate the feasibility of LLM-driven AutoML for classification. We establish 

two baselines for performance comparison. The first, a Traditional ML approach, employs a manually constructed, 

theoretically optimized Random forest. This baseline represents a model crafted with expert domain knowledge 

and designed to achieve near-optimal performance given the available resources and data. The second baseline is 

a Zero-Prompt (or Zero-Shot) approach, representing a no-training adaptation and usage of LLM on the task. As 

Traditional ML methods are inherently reliant on expert experience in feature engineering and model selection, 

we hypothesize that the relative performance of the Random forest compared to the Zero-Prompt approach will be 

highly case-dependent. That is, neither approach is inherently superior, and the optimal strategy is contingent upon 

the specific characteristics of the dataset and the task at hand. 

Dataset partitioning and sample selection for both the primary sleep disorder task and the 20 Newsgroups 

generalization task followed controlled procedures (Table 3) to test prompting strategies:: creating controlled 

datasets for training and evaluation to test prompting Strategies: this step was designed to create distinct datasets 

for training (where applicable) and testing, allowing for a controlled assessment of each prompting strategy’s 

performance. 

Classifier design, training, and evaluation via Diverse Prompting Strategies: This core step involved 

prompting the LLM using zero-shot, 90-sample, and decomposed prompting strategies. For each strategy, the LLM 

was instructed to design, train (where applicable), and evaluate classifier using the provided datasets within its 

code execution sandbox. This systematic variation of prompting strategies allowed for a direct comparison of their 

effectiveness and a rigorous test of hypothesis regarding the influence of prompting on AutoML performance. 

Table 3. Dataset Partitioning. 

 Sleep Disorder Classification 20Newsgroups Classification 

Training Set for Few-Shot 

Learning 

To facilitate the 90-sample prompting strategy and 

test the hypothesis that data exposure enhances 

learning, we randomly selected 30 samples from each 

of the three categories (normal, sleep apnea, and 

insomnia) within the original dataset. This resulted in 

a total of 90 samples, designated as “prompts 90 

examples”, saved in CSV format for easy upload to 

the LLM 

training set (11,314 

documents) and a test set 

(7532 documents), with no 

overlap between categories in 

the splits. 

Ground Truth Preparation 

for Evaluation 

To ensure unbiased evaluation, the 90 samples used 

for training were removed from the original dataset. 

The remaining data constituted the “ground truth” 

dataset, representing unseen data for evaluating the 

generalization performance of the LLM-designed 

classifiers 

Dataset contains Ground Truth 

Test Set Creation for Blind 

Performance Assessment 

To create a test set simulating a real-world scenario 

where the classifier predicts without knowing the true 

labels, a copy of the “ground truth” file was made. 

The last column, containing the “Sleep Disorder” 

labels (ground truth), was deleted, this dataset, devoid 

of labels, was used to assess the predictive accuracy 

of the LLM-generated classifiers on unseen, unlabeled 

data, mirroring a practical diagnostic setting 

test set (7532 documents),  

Data Ingestion into LLM 

Manually uploading the three Excel files (training set, 

ground truth, and test set) to the Doubao platform 

ensured that the LLM had direct access to the 

necessary data within its environment. This step was 

Prompt generated code to 

directly load from internet 
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crucial for enabling the LLM to perform data-driven 

classifier design, training, and evaluation 

4. Results 

To quantitatively assess and compare the effectiveness of each prompting strategy, first in the primary sleep 

disorder task and subsequently in the 20Newsgroup classification benchmark, and thus provide empirical evidence 

for our hypotheses, we employed a suite of standard classification performance metrics. The results presented in 

this section reflect performance metrics obtained from a multiple execution runs for each prompting strategy and 

LLM combination within our controlled experimental environment. While the observed differences in 

performance, particularly the advantages of decomposed prompting, are substantial, Quantitative results are 

summarized in Figure 5 and Table 4, with detailed qualitative insights derived from the confusion matrices and 

ROC curves presented in Figure 6. 

we present a quantitative overview of the classification performance achieved by each prompting strategy. 

The metrics provided—accuracy, precision, recall, F1-score, and AUC value—offer a direct numerical comparison 

of each strategy’s effectiveness in sleep disorder classification. These metrics collectively serve as key indicators 

for evaluating the progressive improvement in model performance as we transition from basic zero-shot prompting 

to more sophisticated and data-informed strategies, directly addressing the comparative performance aspects of 

Hypothesis and the overall efficacy of LLM-driven AutoML. 

 

 

Figure 5. Performance of Prompting Strategies. 
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Table 4. Baseline vs. Best model from Decomposed Prompting. 

 Accuracy Precision Recall F1 Score 

Manul baseline Random forest (Sleep disorder) 0.7993 0.8394 0.7993 0.8074 

AutoML best SVM (Doubao PC Sleep disorder) 0.8803 0.8798 0.8803 0.8772 

AutoML best SVM (GPT-4o Sleep disorder) 0.8873 0.8866 0.8873 0.8859 

Manul Random forest baseline (20news group)  0.8349 0.8416 0.8349 0.8319 

AutoML best MLP (Doubao PC 20news group) 0.9312 0.9317 0.9312 0.9313 

AutoML best MLP (GPT-4o 20news group) 0.9264 0.9274 0.9264 0.9266 

 

 

Figure 6. Performance of Manual Random Forest Baseline on Sleep Disorder (Upper Panels) and 20 Newsgroups 

(Lower Panels) Datasets. 

The Manual Random forest baseline Figure 6 demonstrates strong binary classification for “normal” and 

“insomnia” in the sleep disorder task, achieving high accuracy and discriminative power. However, it struggles 

significantly with the “sleep apnea” category, frequently misclassifying it as “normal,” indicating a major 

weakness. In the 20 Newsgroups multi-class task, the model shows a general capacity for categorization, evidenced 

by ROC curves above the diagonal. However, the 20 × 20 confusion matrix suggests varying performance across 

the 20 categories, with certain newsgroups likely being more difficult to distinguish and leading to higher 

misclassification rates. 

The two confusion matrices in Figure 7 compare Doubao’s (left) and GPT-4o’s (right) zero-shot prompting 

performance on the three-class sleep disorder task. Both models excel at identifying “normal”. However, Doubao 

struggles significantly with “sleep apnea,” misclassifying many as “normal”. GPT-4o demonstrates superior 

overall performance, with higher true positives and lower false negatives across all three classes, particularly for 

“sleep apnea.” The two plots display Multi-Class ROC Curves for Doubao and GPT-4o. GPT-4o (orange lines) 

generally exhibits higher TPR at lower FPRs for “sleep apnea” and “insomnia” compared to Doubao (blue lines), 
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reflected in its higher AUC values. Both models show strong performance for the “normal” class. The Rule-Based 

Classifier demonstrates good performance for “normal” (high AUC), but lower AUCs for “insomnia” and “sleep 

apnea” suggest limited effectiveness for these categories. 

 

 

Figure 7. Zero-shot Prompting sleep disorder dataset doubao (Left), GPT-4o (Right). 

Figure 8 shows zero-shot prompting on 20 newsgroups. Doubao’s confusion matrix (left) shows more off-

diagonal errors, indicating frequent misclassifications across various topics. GPT-4o’s matrix has a clearer 

diagonal, suggesting better overall accuracy. The multi-class ROC curves generally favor GPT-4o (higher AUCs), 

demonstrating superior discrimination across most newsgroup categories compared to Doubao. The rightmost 

ROC curve likely represents an aggregate or specific class comparison. 
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Figure 8. Zero-shot Prompting 20Newsgroup dataset doubao (Left), GPT-4o (Right). 

Figure 9 shows few-shot prompting for sleep disorder. Doubao’s matrix (left) shows confusion, particularly 

between “insomnia” and “normal.” GPT-4o’s matrix (right) has a stronger diagonal, indicating better accuracy 

across all three classes. The ROC curves show generally high AUC values for all classes (around 0.92), suggesting 

good performance with few-shot learning, and highlighting improvement over zero-shot results. GPT-4o appears 

more consistent and accurate in its predictions compared to Doubao. 

Figure 10 shows few-shot prompting on 20 Newsgroups. Doubao’s confusion matrix (left) still exhibits off-

diagonal errors, indicating ongoing misclassifications. GPT-4o’s matrix (right) shows a more prominent diagonal, 

suggesting improved accuracy with few-shot learning compared to zero-shot. The multi-class ROC curves show 

generally high AUCs for both models, with GPT-4o often achieving slightly better performance (higher AUCs in 

the legend), indicating enhanced discrimination between newsgroup categories with few-shot examples. The 

rightmost ROC curve likely represents a specific class comparison. 
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Figure 9. Few-shot Prompting sleep disorder doubao (Left), GPT-4o (Right). 

 

 

Figure 10. Few-shot Prompting 20Newsgroup doubao (Left), GPT-4o (Right). 

Figure 11 displays decomposed prompting results for sleep disorder. Doubao’s matrix (left) shows notable 

confusion, especially between “insomnia” and “normal.” GPT-4o’s matrix (right) exhibits a clearer diagonal, 

indicating improved accuracy over its zero-shot and few-shot performance. The ROC curves for the Best Model 

both show high AUCs for all classes, suggesting decomposed prompting is highly effective. Compared to zero-

shot and few-shot prompting (Figure 6), both models, particularly GPT-4o, demonstrate significantly enhanced 

performance across all sleep disorder categories with decomposed prompting, achieving higher accuracy and better 

discrimination as reflected in the confusion matrices and elevated AUC scores. GPT-4o consistently outperforms 

Doubao. 
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Figure 12 presents decomposed prompting results for 20 Newsgroups. Doubao’s confusion matrix (left) 

shows a more defined diagonal compared to zero-shot and few-shot, indicating improved accuracy across 

categories. GPT-4o’s matrix demonstrates an even stronger diagonal with fewer off-diagonal errors, suggesting 

superior performance. The Best Model ROC curve both display very high AUC values (mostly 1.00 or very close) 

for nearly all newsgroup categories for both models. This signifies that decomposed prompting is highly effective 

for this task, leading to almost perfect classification. Compared to zero-shot and few-shot prompting, decomposed 

prompting achieves a substantial improvement, with both Doubao and GPT-4o demonstrating near-ideal 

discrimination between the different newsgroup topics. GPT-4o maintains a slight edge in overall consistency and 

accuracy. 

 

 

Figure 11. Decomposed Prompting sleep disorder dataset doubao (Left), GPT-4o (Right). 
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Figure 12. Decomposed Prompting 20Newsgroup dataset doubao (Left), GPT-4o (Right). 

5. Discussion 

Our comparative analysis of zero-shot, few-shot, and decomposed prompting strategies highlights the critical 

role of structured guidance in LLM-driven AutoML. The superior performance of decomposed prompting across 

both the primary sleep disorder task and the 20 Newsgroups generalization benchmark underscores the 

effectiveness of strategic task decomposition and automated classifier selection in achieving high-performing 

models. While zero-shot prompting offers simplicity, its limited performance in these complex classification 

scenarios emphasizes the need for more sophisticated prompting techniques to fully leverage LLM capabilities for 

AutoML. This outcome partially refutes the initial assumption that solely relying on LLMs’ pre-training 

knowledge and basic heuristics is sufficient to effectively address the nuanced complexities, emphasizing that 

explicit, task-relevant instructions and data guidance are crucial for fully realizing the potential of LLMs in such 

complex tasks. The consistent and significant performance gains achieved with decomposed prompting in both 

evaluated domains firmly establish its efficacy as a powerful strategy for tackling the complexities of AutoML. 

The success of decomposed prompting directly addresses key challenges in traditional AutoML, such as the need 

for expert intervention in pipeline design and hyperparameter tuning. By enabling the LLM to systematically 

explore different classifiers and optimize their parameters through guided sub-tasks, this strategy effectively 

automates complex decision-making processes within the AutoML workflow, leading to the observed performance 

gains. This approach provides valuable methodological insights and a robust framework for future research aimed 

at advancing LLM-driven AutoML across a wide range of applications, extending beyond the specific 

classification tasks explored in this study. 

The subpar performance of zero-shot prompting in Text classification stems from its limited data utilization 

and insufficient model learning capacity. Relying solely on predefined heuristics, zero-shot approaches cannot 

leverage training data for in-depth pattern recognition. Text classification tasks are complex, determined by 

intricate, often non-linear interactions among various variables. Devoid of training data exposure, zero-shot 

prompting struggles to discern these subtle interdependencies between features and classification outcomes, failing 

to capture the underlying data patterns crucial for accurate identification. 

The few-samples prompting strategy significantly enhances performance by exposing the LLM to a limited 

set of training examples, allowing the model to discern potential correlations between feature combinations and 

classification target types, learning data patterns and establishing a correspondence between input features and 

classification results, effectively mimicking data-driven learning. Furthermore, a specific machine learning model, 

when coupled with essential preprocessing steps, including encoding categorical features and standardizing 

numerical features, demonstrably enhances data quality and optimizes the learning process. This leads to more 

accurate classifications, particularly for common sleep disorder types and newsgroup type. However, the inherent 

capacity limitations of the specified model preclude it from fully capturing the intricate non-linear relationships 

that characterize text classification tasks and their multifaceted determinants. Consequently, residual classification 

errors persist, suggesting the potential utility of more complex models capable of representing higher-order 

interactions within the data. 

The decomposed prompting strategy emerges as the most effective approach, achieving the highest 

performance metrics due to its strategic task decomposition and the optimized selection of a classifier tailored to 

the data characteristics through automated machine learning (AutoML) techniques. It breaks down the 
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classification task into manageable stages, systematically exploring and rigorously model parameter-tuning a 

diverse suite of classifiers through hyperparameter optimization techniques such as Grid Search or Random Search, 

followed by comparative evaluation. This meticulous AutoML process identifies the most suitable model 

architecture and hyperparameters for the specific dataset. This automated model selection process yields 

significant performance gains in both the sleep disorder and newsgroup classification. The success of the 

decomposed prompting strategy lies in its ability to leverage AutoML to automatically discover the classification 

algorithm and hyperparameter configuration best suited to the inherent structure and complexities of each dataset. 

By exhaustively searching the model and hyperparameter space, the decomposed prompting strategy transcends 

the limitations of manually selected models, identifying solutions that capture the intricate relationships between 

features and target variables more effectively. This automated approach allows the system to adapt to the specific 

characteristics of each problem domain, enabling superior classification performance compared to strategies 

relying on pre-defined model choices and static parameter settings. 

6. Conclusions and Future Directions 

Through a thoughtfully designed experimental framework and an in-depth, multifaceted analysis, we 

successfully demonstrate prompting LLMs to autonomously generate code for machine learning tasks, achieving 

strong results in our primary application area of sleep disorder classification. We convincingly validated our initial 

hypothesis that LLMs equipped with a code execution sandbox possess significant potential for AutoML. 

Furthermore, the successful application of our methods, particularly decomposed prompting, to the 20 Newsgroups 

benchmark validates the generalizability of this approach to standard text classification tasks. Our findings clearly 

highlight the pivotal influence of prompting strategies, especially task decomposition, on LLM-driven AutoML 

efficacy for both structured health data and unstructured text data. 

A limitation of the present study lies in its focus on textual task classification using a specific set of Large 

Language Models (LLMs). Future research should investigate the generalizability of these findings across a wider 

range of models, tasks, and data modalities. 

Future work necessitates comprehensive comparative experiments and rigorous external validation across 

diverse multimodal models, encompassing a range of NLP tasks and extending to other multimodal tasks. This is 

essential to enhance generalization on external datasets and mitigate overfitting. To further explore the 

generalizability of decomposed prompting as a core technique for LLM-driven AutoML, future research should 

also investigate its application to other fundamental machine learning tasks beyond classification, such as 

regression, clustering, and dimensionality reduction. Furthermore, examining its effectiveness with different types 

of data beyond text and the structured data explored in our sleep health application, including images, audio, and 

time series data, would provide valuable insights into the versatility and broad applicability of this approach. Key 

areas for future investigation include: 

• Exploring multimodal integration: Investigating the integration potential of LLMs, guided by decomposed 

prompting, with diverse data modalities through case studies and proof-of-concept experiments. This 

includes analyzing their application value in real-world scenarios to validate their efficacy and utility across 

a broader spectrum of tasks and data types. 

• Refinement of prompting strategies: Investigating advanced techniques like meta-chain of thought [18,19] 

and contextual prompting [20] for improved reasoning within the decomposed prompting framework. 

• Dataset expansion and balancing: addressing limited diversity and imbalanced distribution via techniques 

like oversampling e.g., SMOTE [21] in the context of LLM-driven AutoML. 

• Exploration of advanced classifier models: prioritizing sophisticated deep learning architectures, CNNS, 

RNNS, LSTMs, GRUs [22–26] for automatic feature learning in complex data, potentially integrated within 

the decomposed prompting workflow for more nuanced model selection. 
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Appendix A. Large Language Models Selection and Evaluation 

Gemini 2.0 Flash, while capable of generating code, did not support uploading Excel files and could not 

execute the generated code. Manual execution of its generated code encountered data format issues, leading to 

program interruptions near completion. 

 

Figure A1. Gemini 2.0 Flash (a). 

 

Figure A2. Gemini 2.0 Flash (b). 
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Figure A3. Gemini 2.0 Flash (c). 

Copilot supported the upload of multiple Excel files, but did not display the generated code. While it could 

execute the code, the final results were flawed; for example, it erroneously generated a ROC curve from a 

Confusion Matrix, with no ability to debug. 
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Figure A4. Copilot. 

Qwen2.5-Max supported only single Excel file uploads and could generate code but not execute it. 

 

Figure A5. Qwen2.5-Max. 



Zhao et al.   Trans. Artif. Intell. 2025, 1(1), 4 

https://doi.org/10.53941/tai.2025.100004.  22 of 24  

DeepSeek-R1 (yuanbao) supported csv files uploads and code generation. 

 

Figure A6. DeepSeek-R1. 

Appendix B. Establishing Prompt Engineering Baselines: An Exploration from Naïve/Enhanced 

Contextual Prompts to Manually Aligned LLM-Generated Classifiers and Rule-Based Strategies 

Naive Prompt generated qualitative textual analysis and descriptions of potential disorder categories but did 

not produce executable code for a classification model. This served as a valuable initial baseline. Enhanced 

Contextual Prompt auto-generated Python code that utilized a RandomForestClassifier and included the requested 

evaluation metrics and visualizations (Table A1). 

Table A1. Naïve Prompt vs Enhanced Contextual Prompt GPT-4o output. 

Prompts  GPT-4o Outputs 

Naïve Prompts 

Which disorder category do you think these features 

belong to? 

Based on the dataset features, the information presented is 

predominantly related to lifestyle, physical activity, sleep 

patterns, health indicators, and stress levels. This type of 

data is often used in the analysis of sleep disorders or health 

conditions that are influenced by such factors. Here’s how 

the features relate to potential sleep or health-related 

disorders: 

 

Likely Disorder Categories: 

Sleep Disorders: 

 

Sleep Duration, Quality of Sleep, Sleep Disorder directly 

relate to sleep health. 

Disorders such as insomnia, sleep apnea, or hypersomnia 

could be analyzed. 

Lifestyle-Induced Disorders: 

 

Physical Activity Level, Stress Level, Daily Steps may 

contribute to conditions like chronic fatigue syndrome, 

obesity, or cardiovascular issues. 

Metabolic and Cardiovascular Disorders: 

 

BMI Category, Blood Pressure, Heart Rate are indicators 

for disorders like hypertension, obesity, or diabetes. 

Mental Health Disorders: 

 

Stress Level connects to anxiety or depression, which can 

also manifest as sleep disturbances. 

Occupational Health Disorders: 
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Occupation might be explored for links to occupational 

stress or burnout, which in turn affect sleep and health. 

Each of these features contributes to understanding how 

lifestyle factors and health indicators interplay with sleep 

and related disorders. If you have a specific category in 

mind, I can help narrow down the analysis further! 

Enhanced Contextual Prompt 

Features: all columns of file 

(Sleep_health_and_lifestyle_dataset_remaining_90_

without_last_column.csv) 

Label: Sleep Disorder column of file 

(Sleep_health_and_lifestyle_dataset_remaining_90.c

sv) 

Tasks: which disorder category do you think 

these features belong to? and to evaluate the 

classification results using specific evaluation 

metrics (sklearn.metrics in accuracy score, precision 

score, f1 score, recall score, confusion matrix, roc 

curve, auc and other evaluation metrics) and draw 

relevant charts. 

… 

features_file = 

“../dataset/Sleep_health_and_lifestyle_dataset_remaining_9

0_without_last_column.csv” 

labels_file = 

“../dataset/Sleep_health_and_lifestyle_dataset_remaining_9

0.csv” 

 

features_df = pd.read_csv(features_file) 

labels_df = pd.read_csv(labels_file) 

 

# Extracting features and target label 

X = features_df.drop(columns=[“Person ID”]) # Drop 

Person ID as it’s not a feature 

y = labels_df[“Sleep Disorder”] 

# Split the dataset into training and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.3, random_state=42) 

# Train a classification model (Random Forest) 

model = RandomForestClassifier(random_state=42) 

model.fit(X_train, y_train) 

# Predict on test data 

y_pred = model.predict(X_test) 

y_proba = model.predict_proba(X_test) 

# Compute evaluation metrics 

accuracy = accuracy_score(y_test, y_pred) 

# Compute evaluation metrics 

accuracy = accuracy_score(y_test, y_pred) 

precision = precision_score(y_test, y_pred, 

average=“weighted”) 

recall = recall_score(y_test, y_pred, average=“weighted”) 

f1 = f1_score(y_test, y_pred, average=“weighted”) 

… 

# Plot Confusion Matrix 

plt.figure(figsize=(10, 6)) 

sns.heatmap(conf_matrix, annot=True, fmt=‘d’, 

cmap=‘Blues’, xticklabels=model.classes_, 

yticklabels=model.classes_) 

plt.title(“Confusion Matrix”) 

plt.xlabel(“Predicted”) 

plt.ylabel(“Actual”) 

An interesting observation from the LLM-generated code (from the Enhanced Contextual Prompt) was that 

it independently split the provided test dataset again into its own internal training and testing sets. This behavior, 

while demonstrating the LLM’s capability, rendered its direct quantitative results incomparable with our other 

experiments that used a predefined, consistent train-test split. To address this and provide a robust comparison 

framework focused on prompt strategies as you advised, we have made the following significant modifications to 

our experimental baselines in the main body of the paper: 

• Manually Aligned Baseline (Derived from Enhanced Prompt): We took the RandomForestClassifier 

code generated by the LLM (from the “Enhanced Contextual Prompt”). We then manually modified this 

code to ensure it utilized our standard, predefined training and testing datasets. This allowed us to 

evaluate the core logic of the LLM-generated model on a comparable basis with other methods. This now 

serves as one of our primary baselines. 

• Rule-Based Zero-Shot Prompt Baseline: To further explore the spectrum of prompt engineering, we have 

also introduced and evaluated a “Rule-Based Zero-Shot Prompt” as another baseline. This prompt is 
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designed to guide the LLM towards a classification decision using more explicit, rule-like instructions 

without relying on code generation for a traditional ML model. 
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