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Abstract: Traditional automated machine learning (AutoML) often faces
limitations in manual effort, complexity management, and subjective design
choices. This paper introduces a novel LLM-driven AutoML framework centered
on the innovation of decomposed prompting. We hypothesize that by strategically
breaking down complex AutoML tasks into sequential, guided sub-prompts, Large
Language Models (LLMs) operating within a code sandbox on standard PCs can
autonomously design, implement, evaluate, and select high-performing machine
learning models. To validate this, we primarily applied our decomposed prompting
approach to sleep disorder classification (illustrating potential benefits in
healthcare). To assess the generalizability and robustness of our method across
different data types, we subsequently evaluated it on the established 20 Newsgroups
text classification benchmark. We rigorously compared decomposed prompting
against zero-shot and few-shot prompting strategies, as well as a manually
engineered baseline. Our results demonstrate that decomposed prompting
significantly outperforms these alternatives. Our results demonstrate that
decomposed prompting significantly outperforms alternatives, enabling the LLM to
autonomously achieve superior classifier design and performance, particularly
showing strong results in the primary sleep disorder domain and demonstrating
robustness in the benchmark task. These findings underscore the transformative
potential of decomposed prompting as a key technique for advancing LLM-driven
AutoML across diverse application areas beyond the specific examples explored
here, paving the way for more automated and accessible problem-solving in
scientific and engineering disciplines.

Keywords: AutoML; LLM; prompt engineering; Sleep Disorder Newsgroups
Classification

1. Introduction

Roughly 10 percent of the global populace is afflicted by sleep disorders, a figure increasing amidst rapid
urbanization (WHO). Beyond daytime fatigue and diminished attention, sleep disorders can precipitate chronic
ailments like cardiovascular diseases and diabetes. Consequently, the precise identification and classification of
sleep disorders hold significant importance for enhancing public health.

Traditional machine learning algorithms such as decision trees, support vector machines (SVM) and random
forests [1-3] face limitations. They require extensive manual operation in data preprocessing (handling missing
values, outliers, standardization, normalization) and model training/tuning (algorithm selection, parameter setting,
iterative optimization), consuming significant time and effort and being susceptible to human factors, thus limiting
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accuracy and reliability. Furthermore, their application heavily depends on expert experience for algorithm
selection, feature engineering, and parameter adjustment. For complex classifications, varying expert opinions can
lead to inconsistent results. These issues hinder the advancement and application of sleep disorder research,
necessitating new technologies and methods to overcome these challenges.

Large language models (LLMs), a cutting-edge technology in natural language processing based on the
Transformer [4], have shown remarkable progress through unsupervised pre-training on vast text data,
demonstrating great potential in medical research [5—-13]. However, the application of LLMs in sleep health
research remains largely unexplored, particularly considering the limited accessibility of powerful GPU computing
resources for many researchers. This gap highlights the importance of investigating LLM capabilities for sleep
health analysis even on standard PC hardware.

Leveraging these capabilities, we hypothesize that LLMs, when equipped with a code execution sandbox and
guided by structured prompts, can function as effective agents for Automated Machine Learning (AutoML).
Specifically, they could possess the capability to autonomously design, generate, execute, and debug code for the
entire machine learning pipeline—including data pre-processing, feature engineering, model selection,
hyperparameter tuning, and evaluation—thereby streamlining the development process and enabling automated
solutions, initially targeting challenging tasks like sleep disorder classification.

Furthermore, leveraging LLMs’ superior natural language understanding and processing capabilities, we
hypothesize that LLMs can directly analyze text-based data, such as sleep health and lifestyle data, effectively
overcoming current limitations. Additionally, we hypothesize that the integration of LLMs with a code sandbox
environment as an agent for AutoML, leveraging their robust knowledge reasoning capabilities [ 14], can accurately
identify complex sleep disorder symptoms like insomnia and sleep apnea through reasoning (classification). The
core of this research is to investigate and validate the effectiveness of different prompting strategies for LLM-
driven AutoML, with a central focus on the proposed decomposed prompting technique. We hypothesize that
decomposed prompting, by breaking down the complex AutoML workflow into manageable, guided steps, enables
LLMs to autonomously achieve superior classifier design and performance compared to less structured approaches
like zero-shot and few-shot prompting. To test this hypothesis, primarily focusing on the sleep disorder
classification task, we apply our methodology. Furthermore, to evaluate the generalizability and robustness of
decomposed prompting across different data types (structured vs. text), we extend our analysis to include the
standard 20 Newsgroups text classification benchmark.

Our research demonstrates that prompt-driven LLMs with code execution sandbox possess robust capabilities
for automating machine learning workflows across diverse domains. The innovation of decomposed prompting,
in particular, significantly enhances their ability to tackle complex classification problems, as evidenced by our
successful application to sleep disorder classification (a potential area of impact in healthcare, as illustrated
conceptually in Figure 1) Furthermore, the effectiveness on the 20 Newsgroups benchmark demonstrates the broad
applicability of our approach beyond specific domains like healthcare. Specifically, we hypothesize that their
integration with sensor technology and wearable devices can further enhance the value of automated applications.
Furthermore, we hypothesize that this integration will not only effectively address practical challenges in sleep
medicine but, more importantly, will accumulate valuable experience for the broader application of LLMs in
healthcare and Text data analysis.

LLM-Prompting Driven AutoML: From Sleep Disorder
Classification to Beyond
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Figure 1. LLM-Prompting Driven AutoML: From Sleep Disorder Classification to Beyond.
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Different prompting strategies significantly impact the effectiveness of LLMs in automated classification
tasks, and decomposed prompting strategies is more suitable for complex classification tasks. we hypothesize that
decomposed prompting strategies, due to their ability to guide LLMs towards deeper reasoning, will demonstrate
unique advantages in text-based classification compared to manually created intuitive baseline, zero-shot and few-
shot prompting. We design experiments to systematically evaluate the impact of different prompting strategies on
classification accuracy, efficiency, and robustness to validate this hypothesis.

Moreover, by systematically evaluating these prompting strategies, motivated by the challenges in automated
sleep disorder classification and subsequently testing their robustness on the newsgroups classification task we
can clearly delineate their advantages and disadvantages. This in-depth analysis will provide clear guidance for
subsequent optimization of prompting strategies and facilitate the continuous improvement of LLM performance
in AutoML.

LLMs hold pioneering application value in automated Text based data classification. Introducing LLMs into
the field of automated classification, particularly for challenging domains like sleep disorders, is a groundbreaking
initiative. Our extension to the newsgroup classification benchmark serves to validate the broader potential of this
approach. Specifically, compared to traditional methods, LLMs can automatically perform machine learning
processes, enabling high-precision prediction, we will validate this hypothesis by experimentally comparing the
classification performance of LLMs against traditional machine learning models.

2. Datasets

In this study, our primary focus utilizes the Sleep Health and Lifestyle dataset (Table 1), selected for its
clinical relevance and the specific challenges it presents for AutoML (e.g., mixed data types, smaller sample size)
as discussed earlier. This dataset allows us to test the LLM’s ability to handle structured data effectively with
limited samples. To assess the generalizability and robustness of our LLM-driven AutoML approach, particularly
the prompting strategies, across different data modalities and complexities, we also employ the 20 Newsgroups
dataset. This widely-used, high-dimensional text benchmark evaluates the LLM’s capacity to manage unstructured
data and tests the prompting strategies’ effectiveness on a larger-scale text classification task.

Table 1. Datasets.

Dataset Overview Key Features

e  Comprehensive Sleep Metrics: Explore sleep
duration, quality, and factors influencing sleep

patterns.
It comprises 400 rows and 13 columns, ® Lifestyle Factors:
covering a wide range of variables e  Analyze physical activity levels, stress levels, and
related to sleep and daily habits. BMI categories
It includes details: e Cardiovascular Health: Examine blood pressure and
“Person ID (identifier), Gender heart rate measurements

(Male/Female), Age (years),

Sleep Health X . e Sleep Disorder Analysis:
. Occupation (text), Sleep Duration . .

and Lifestyle . e  Identify the occurrence of sleep disorders such as

Dataset (hours), Quality of Sleep (scale 1-10), .
Physical Activity Level (minutes/day), .Insomma and Slc?ep Apnea.

(Kaggle) Stress Level (scale 1-10), BMI Details about Sleep Disorder Column:
Category (Underweight, Normal, e  None: The individual does not exhibit any specific
Overweight, etc.), Blood Pressure sleep disorder.
(systolic/diastolic), Heart Rate (bpm), e Insomnia: The individual experiences difficulty
Daily Steps (count), Sleep Disorder falling asleep or staying asleep, leading to inadequate
(None, Insomnia, Sleep Apnea). or poor-quality sleep.

e Sleep Apnea: The individual suffers from pauses in
breathing during sleep, resulting in disrupted sleep
patterns and potential health risks

Widely used benchmark dataset in Data Structure:
natural language processing (NLP) and o 20 catategories (e.g., comp.graphics,
machine learning for text o .
20Newsgroup . . . rec.sport.hockey, talk.politics.mideast), each
classification, clustering, and ..
(Real world) containing ~1000 text documents.

information retrieval tasks. It was i . . .
collected by Jason Rennie and consists ® Raw data in plain text format, preserving email

of approximately 20,000 newsgroup headers, signatures, and newsgroup metadata.
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posts, evenly distributed across 20 Typical Tasks:

distinct topic categories, such as e Multi-class classification: Assigning documents to
computer science, religion, politics, one of the 20 topics

and hobbies. The dataset is publicly Multi-label classification (extension): Documents

available at . .
http://qwone.com/~jason/20Newsgroup may belong to multiple categories (though the

s/ (accessed on 10 May 2025) and has standard dataset is single-label).

been a standard resource for evaluating ® Clustering, dimensionality reduction, and feature
text analysis algorithms since the late selection (e.g., using TF-IDF, word embeddings).
1990s. Advantages:

e  Balanced class distribution, reducing bias toward
dominant categories.

e  Diverse topics with varying linguistic styles
(technical, conversational, argumentative),
challenging model generalization.

e  Preprocessing flexibility: Users can apply
tokenization, stopword removal, or stemming based
on task requirements.

Applications in Research

The dataset is frequently used to validate the performance

of text classifiers, such as:

e  Traditional machine learning models (Naive Bayes,
SVM, Random Forests).

e  Deep learning approaches (neural networks,
transformers).

e  Few-shot learning and zero-shot learning
frameworks.

Figure 2a—c collectively enable us to formulate and evaluate hypotheses about The Sleep Health and Lifestyle
dataset [15] characteristics, their relevance to sleep disorders, sample composition, and the underlying
relationships between features, transitioning from descriptive observations to testing proposed connections.

The 20Newsgroup dataset [16] was thoroughly analyzed to ensure the robustness of experimental results. A
histogram illustrating the distribution of document counts across the 20 categories (Figure 3a) directly assessed
class balance, verifying that no significant imbalance existed and mitigating potential bias in model performance.
A pie chart (Figure 3b) explicitly detailed the training-test split ratio, outlining the experimental setup and data
allocation for model development and evaluation phases. Box plots illustrating the distribution of text lengths
(word count) within each category (Figure 3c) revealed text complexity differences, providing a data-driven
rationale for pre-processing strategies like truncation or padding to optimize model input lengths. Finally, word
cloud visualizations highlighting prominent keywords associated with each category (Figure 3d) visually
represented topic distinctiveness, supporting the design logic of keyword-based rule classifiers and offering
insights into class separability based on lexical content.

age Sleep Duration Quaity of Sieep Physical Activty Level

e ol [
Stress Level Heart Fiate Daly Steps

7 75 =0 &

0
W00 4000 EODD G200 TOOD 000 G000 10000

(a) Statistical chart of numerical features
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Figure 2. The Sleep Health and Lifestyle dataset characteristics.
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Figure 3. 20 Newsgroup dataset dataset characteristics.
3. Research Methods

3.1. Selection of Large Language Model

Recognizing the constraint of conducting research on a PC without access to expensive GPU resources, we
hypothesized that the selection of an LLM with a code sandbox would be a critical factor influencing the accuracy
and efficiency of our automated sleep disorder classification and newsgroups classification research. Our ideal
LLM would need to support: the ingestion of multiple Excel data files, code generation, code execution, code
debugging, issue identification, code regeneration, and iterative execution until successful completion. We
evaluated several LLMs based on these criteria. One reason for choosing these LLMs was their greater accessibility,
offering features like free usage and unrestricted access within mainland China, bypassing network security
limitations. However, certain LLMs (like Claude) were excluded; for instance, some are unavailable in mainland
China, making registration with mainland mobile numbers impossible, or requires payment. Detailed comparisons
are available in Appendix A, Gemini 2.0 Flash, while capable of generating code, did not support uploading Excel
files and could not execute the generated code. Manual execution of its generated code encountered data format
issues, leading to program interruptions near completion. Copilot supported the upload of multiple Excel files, but
did not display the generated code. While it could execute the code, the final results were flawed; for example, it
erroneously generated a ROC curve from a Confusion Matrix, with no ability to debug. Qwen2.5-Max supported
only single Excel file uploads and could generate code but not execute it. DeepSeek-R1 (integrated with Baidu)
also supported single Excel file uploads and code generation but lacked code execution capabilities. Kimi
supported uploading multiple Excel files, displayed and executed code. After evaluating these available LLM
options, we selected GPT4-O and Doubao [17] PC version (1.52.6). This decision was predicated on the hypothesis
that GPT4-O and Doubao PC’s inherent strengths in natural language processing (NLP), strong adaptability to
sleep health data, newsgroups data, interactive capabilities, and robust technical features would collectively make
it a highly compelling and justified choice for the automated classification of all Text related data in our research.
Crucially, the chosen LLM needed to demonstrate proficiency with both the structured, tabular data typical of the
sleep health domain and the unstructured text data of the newsgroups benchmark to enable a thorough evaluation
of our prompting strategies’ adaptability. We aimed to validate the following hypotheses:

Efficiency: user-friendly interface and technical features would streamline the implementation of our
automated sleep disorder classification and newsgroup classification, leading to increased research efficiency.
Specifically, its intuitive interface is capable of directly processing common data formats such as Excel files and
scikit-learn dataset, simplifying data import and reducing pre-processing.

Automated Code Execution & Accuracy: This would enable the model to rapidly generate and execute code
for implementing classification algorithms based on textual analysis, enhancing classification efficiency and
mitigating potential coding errors, thus supporting accurate automated sleep disorder classification.

NLP Capabilities: extensive unsupervised pre-training on massive text corpora would enable it to acquire a
deep and broad understanding of language, crucial for interpreting nuanced textual descriptions of sleep patterns
and habits. Its inherent multi-head attention mechanism would allow the model to concurrently process different
segments of input text, effectively capturing nuanced semantic relationships and contextual information relevant
to sleep disorder classification. The multi-layer neural network architecture would facilitate deep feature extraction
and information processing across multiple dimensions—Iexical, sentential, and textual—enabling a
comprehensive analysis of text content related to sleep disorders, and thus contributing to accurate classification.
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3.2. LLM Prompt Design Strategies

To systematically investigate and optimize LLM performance in sleep disorder classification, and to
rigorously test our hypotheses regarding prompting strategies, we curated three distinct prompting strategies. Each
strategy was designed to test a specific hypothesis about how different levels of guidance and information influence
LLM performance. These strategies are visualized in Flowchart of Prompting Strategies (Figure 4) and Manually
created baseline (Appendix B) and detailed prompt examples are provided in Table 2.

Zero-shot prompting, not use training data, tests if LLMs can achieve basic performance using only clear
task descriptions and their pre-existing knowledge from pre-training. This approach evaluates the model’s inherent
capabilities without task-specific examples, relying on explicit instructions to guide responses. The hypothesis is
that LLMs’ extensive pre-trained language understanding and knowledge are sufficient for basic classification
tasks when given clear, rule-based prompts. Therefore, zero-shot prompting assesses the model’s ability to extract
relevant information and apply reasoning based on semantic cues in the task description, establishing a
performance baseline to measure the effectiveness of more sophisticated prompting strategies. Within our
comparative framework, the Zero-shot approach serves as the fundamental baseline for structured prompting,
representing the performance achievable with clear instructions but without specific training examples or task
decomposition guidance. The effectiveness of Few-shot and Decomposed prompting is evaluated relative to this
baseline.

Few-shot prompting tests if exposing the LLM to a few data samples enhances classification accuracy by
enabling it to learn feature-outcome relationships directly. We hypothesize that data patterns in a training set
provide richer context, improving accuracy beyond the zero-shot baseline. The key hypothesis is that even a few
examples are crucial for refining the LLM’s understanding of the specific classification task and improving
performance by learning from data patterns and feature-outcome relationships.

Decomposed prompting tests if breaking down a complex task into sub-tasks with step-by-step guidance
improves efficiency and accuracy. In sleep disorder classification, the core hypothesis is that systematically
guiding the LLM through sub-tasks will lead to a more structured, reasoned, and accurate approach, maximizing
LLM potential for complex AutoML tasks. Decomposed prompting rigorously tests if structured, step-by-step
guidance via task decomposition is the most effective way to achieve high performance in complex classification
tasks using LLMs.

Prompting Strategy Selection

ZERO - shot
Decomposed

Inpul Test Set Data Input Training Set + Test Set Input Training Set + Test Set
Data Pre-processing Data Pre-processing Data Pre-processing

| Select one classifier from model pool ‘

Analyze data l
Execute Pre-defined Rule
Classification
Hyperparameter Train and Evaluation Metrics
optimization
Grid Search or Random
PRE-defined LOOP
Search

Calculate Evaluation Metrics

Train and Evaluation Metrics
Best classifier

Evaluation Chart

output

outout

Figure 4. Flowchart of Prompting Strategies.

Table 2. Prompt examples.

Prompts Sleep Health and Lifestyle Dataset 20Newsgroup
Manually
Random  Implemented using scikit-learn with the following
. B Same
forest hyperparameters: n_estimators=100
Baseline

Use the fetch 20newsgroups dataset
Zero-shot Task Overview available on scikit-learn’s official
website and load the entire dataset. If
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—  Test Dataset the data is not pre—split into training and
(‘Sleep_health_and _lifestyle dataset remaining_test SCFS»_lelde itina 07:3 ratio (70% for
90 _without_last_column.csv) the training set and 3.0 % for the test set).
Complete the following tasks in an
—  Real Label . ]

. efficient manner:
D.at'aset(S1eep_health_and_hfestyle_dataset_rem 1. Design a rule-based classifier based
aining_90.csv) on the test set data (not use train data) to

—  This task primarily consists of two sub-tasks: perform full-category classification on
first, to perform rule based classifier on Test  the test set.
Dataset, second, to evaluate the classification 2. Evaluate the classification results
results using specific evaluation metrics using evaluation metrics from
. . sklearn.metrics (accuracy score,
(sklearn.metrics in accuracy score, precision ..
f1 score, recall score, confusion matrix, Lo on SCOTC F1 score, recall score,
score, > ’ : ) > confusion matrix, ROC curve, AUC,
roc curve, auc and other evaluation metrics) and etc.) and Draw relevant charts based on
draw relevant charts. the evaluation results
e Task Overview
Test Dataset Use the fetch 20newsgroups dataset
B ‘es atase ) ~available on scikit-learn’s official
( Slee.p_health_and_hfestyle_dataset_remammg_website and load the entire dataset. If
90_without_last_column.csv) the data is not pre—split into training and
—  Real Label Dataset test sets, divide it in a 7:3 ratio (70% for
(Sleep_health and lifestyle dataset remaining the training set and 30% for the test set).
90.csv) Complete the following tasks in an
—  Training dataset Tﬂ;)clept m;nnsr: Forest classifi
. . Design Random Forest classifier
Few-shot (Sleep_health_and_lifestyle_dataset_selected 90 based on the training set data to perform
'CSY) o ) full-category classification on the test
—  This task primarily consists of two sub-tasks: et
first, to perform classification (Random Forest) 2. Evaluate the classification results
on Test Dataset, second, to evaluate the using evaluation metrics from
classification results using specific evaluation sklea}rp.metrics (accuracy score,
metrics (sklearn.metrics in accuracy score, precision score, F1 score, recall score,
precision score, fl score, recall score, confusion confusion matrix, ROC curve, AUC,
. . etc.) and Draw relevant charts based on
matrix, roc curve, auc and other evaluation .
. the evaluation results
metrics) and draw relevant charts.
e TaskO i
as T Ver]\glew Use the fetch 20newsgroups dataset
B ‘est ataset ) ~available on scikit-learn’s official
(‘Sleep_health_and_lifestyle dataset_remaining v ebsite and load the entire dataset. If
90_without_last_column.csv) the data is not pre—split into training and
—  Real Label Dataset test sets, divide it in a 7:3 ratio (70% for
(Sleep_health and_lifestyle dataset remaining_ the training set and 30% for the test set).
90.csv) Complete the following tasks in an
—  Training dataset Tﬂglem m:lm'ler: . lassifi
. . Design, train, various classifiers
Decompose (Sleep_health and lifestyle dataset selected 90 (Logistic Regression,Decision Tree,
d csV) SVM, MLP) and search hyperparamters,

This task primarily consists of two sub-tasks: first, to

perform classification (automatically design, train, and test
various classifiers (Logistic Regression, Decision Tree,

Random Forest, Gradient Boosting, SVM, MLP and search
hyperparamters, select the BEST one for next step) on Test

select the BEST ONE to perform full—
category classification on the test set.
2. Evaluate the classification results
using evaluation metrics from
sklearn.metrics (accuracy score,

Dataset, second, to evaluate the classification results using precision score, F1 score, recall score
b 9 b

specific evaluation metrics (sklearn.metrics in accuracy
score, precision score, fl score, recall score, confusion
matrix, roc curve, auc and other evaluation metrics) and

draw relevant charts.

confusion matrix, ROC curve, AUC,
etc.) and Draw relevant charts based on
the evaluation results

3.3. Environment and Experimental Procedure

The experimental environment was meticulously constructed to provide a robust and reliable platform for
testing our hypotheses regarding LLM-driven AutoML for Text data classification. The hardware and software
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configurations were selected to ensure the accuracy and reproducibility of our experimental results, directly
supporting the rigorous evaluation of our proposed methodologies. Specifically, the processor chosen for these
experiments was an Intel(R) Core(TM) i5-6400T CPU @ 2.20GHz, featuring a main frequency of 2201 MHz,
with 4 cores and 4 logical processors. This configuration was deemed sufficient to handle the computational
demands of running the LLM and executing code within the sandbox environment, crucial for validating
Hypotheses. The operating system was Microsoft Windows 10 Home Chinese Edition, version 10.0.19045 (build
19045), providing a stable and widely accessible software foundation. The Large Language Model utilized were
GitHub Copilot GPT-40, Doubao PC version 1.52.6, selected for its code execution sandbox capabilities, which
are essential for testing Hypothesis and the AutoML workflows investigated in this study

The experimental procedure was carefully designed to systematically evaluate the efficacy of different
prompting strategies and to demonstrate the feasibility of LLM-driven AutoML for classification. We establish
two baselines for performance comparison. The first, a Traditional ML approach, employs a manually constructed,
theoretically optimized Random forest. This baseline represents a model crafted with expert domain knowledge
and designed to achieve near-optimal performance given the available resources and data. The second baseline is
a Zero-Prompt (or Zero-Shot) approach, representing a no-training adaptation and usage of LLM on the task. As
Traditional ML methods are inherently reliant on expert experience in feature engineering and model selection,
we hypothesize that the relative performance of the Random forest compared to the Zero-Prompt approach will be
highly case-dependent. That is, neither approach is inherently superior, and the optimal strategy is contingent upon
the specific characteristics of the dataset and the task at hand.

Dataset partitioning and sample selection for both the primary sleep disorder task and the 20 Newsgroups
generalization task followed controlled procedures (Table 3) to test prompting strategies:: creating controlled
datasets for training and evaluation to test prompting Strategies: this step was designed to create distinct datasets
for training (where applicable) and testing, allowing for a controlled assessment of each prompting strategy’s
performance.

Classifier design, training, and evaluation via Diverse Prompting Strategies: This core step involved
prompting the LLM using zero-shot, 90-sample, and decomposed prompting strategies. For each strategy, the LLM
was instructed to design, train (where applicable), and evaluate classifier using the provided datasets within its
code execution sandbox. This systematic variation of prompting strategies allowed for a direct comparison of their
effectiveness and a rigorous test of hypothesis regarding the influence of prompting on AutoML performance.

Table 3. Dataset Partitioning.

Sleep Disorder Classification 20Newsgroups Classification
To facilitate the 90-sample prompting strategy and
test the hypothesis that data exposure enhances
learning, we randomly selected 30 samples from each
Training Set for Few-Shot of the three categories (normal, sleep apnea, and
Learning insomnia) within the original dataset. This resulted in
a total of 90 samples, designated as “prompts 90
examples”, saved in CSV format for easy upload to
the LLM
To ensure unbiased evaluation, the 90 samples used
for training were removed from the original dataset.
Ground Truth Preparation The remaining data constituted the “ground truth”
for Evaluation dataset, representing unseen data for evaluating the
generalization performance of the LLM-designed
classifiers
To create a test set simulating a real-world scenario
where the classifier predicts without knowing the true
labels, a copy of the “ground truth” file was made.
Test Set Creation for Blind The last column, containing the “Sleep Disorder”
Performance Assessment labels (ground truth), was deleted, this dataset, devoid
of labels, was used to assess the predictive accuracy
of the LLM-generated classifiers on unseen, unlabeled
data, mirroring a practical diagnostic setting
Manually uploading the three Excel files (training set,
ground truth, and test set) to the Doubao platform Prompt generated code to
ensured that the LLM had direct access to the directly load from internet
necessary data within its environment. This step was

training set (11,314
documents) and a test set
(7532 documents), with no
overlap between categories in
the splits.

Dataset contains Ground Truth

test set (7532 documents),

Data Ingestion into LLM
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crucial for enabling the LLM to perform data-driven
classifier design, training, and evaluation

4. Results

To quantitatively assess and compare the effectiveness of each prompting strategy, first in the primary sleep
disorder task and subsequently in the 20Newsgroup classification benchmark, and thus provide empirical evidence
for our hypotheses, we employed a suite of standard classification performance metrics. The results presented in
this section reflect performance metrics obtained from a multiple execution runs for each prompting strategy and
LLM combination within our controlled experimental environment. While the observed differences in
performance, particularly the advantages of decomposed prompting, are substantial, Quantitative results are
summarized in Figure 5 and Table 4, with detailed qualitative insights derived from the confusion matrices and
ROC curves presented in Figure 6.

we present a quantitative overview of the classification performance achieved by each prompting strategy.
The metrics provided—accuracy, precision, recall, F1-score, and AUC value—offer a direct numerical comparison
of each strategy’s effectiveness in sleep disorder classification. These metrics collectively serve as key indicators
for evaluating the progressive improvement in model performance as we transition from basic zero-shot prompting
to more sophisticated and data-informed strategies, directly addressing the comparative performance aspects of
Hypothesis and the overall efficacy of LLM-driven AutoML.
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Figure 5. Performance of Prompting Strategies.
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Table 4. Baseline vs. Best model from Decomposed Prompting.

Accuracy  Precision Recall F1 Score
Manul baseline Random forest (Sleep disorder) 0.7993 0.8394 0.7993 0.8074
AutoML best SVM (Doubao PC Sleep disorder) 0.8803 0.8798 0.8803 0.8772
AutoML best SVM (GPT-40 Sleep disorder) 0.8873 0.8866 0.8873 0.8859
Manul Random forest baseline (20news group) 0.8349 0.8416 0.8349 0.8319
AutoML best MLP (Doubao PC 20news group) 0.9312 0.9317 0.9312 0.9313
AutoML best MLP (GPT-40 20news group) 0.9264 0.9274 0.9264 0.9266
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Figure 6. Performance of Manual Random Forest Baseline on Sleep Disorder (Upper Panels) and 20 Newsgroups
(Lower Panels) Datasets.

The Manual Random forest baseline Figure 6 demonstrates strong binary classification for “normal” and
“insomnia” in the sleep disorder task, achieving high accuracy and discriminative power. However, it struggles
significantly with the “sleep apnea” category, frequently misclassifying it as “normal,” indicating a major
weakness. In the 20 Newsgroups multi-class task, the model shows a general capacity for categorization, evidenced
by ROC curves above the diagonal. However, the 20 x 20 confusion matrix suggests varying performance across
the 20 categories, with certain newsgroups likely being more difficult to distinguish and leading to higher
misclassification rates.

The two confusion matrices in Figure 7 compare Doubao’s (left) and GPT-40’s (right) zero-shot prompting
performance on the three-class sleep disorder task. Both models excel at identifying “normal”. However, Doubao
struggles significantly with “sleep apnea,” misclassifying many as “normal”. GPT-40 demonstrates superior
overall performance, with higher true positives and lower false negatives across all three classes, particularly for
“sleep apnea.” The two plots display Multi-Class ROC Curves for Doubao and GPT-40. GPT-40 (orange lines)
generally exhibits higher TPR at lower FPRs for “sleep apnea” and “insomnia” compared to Doubao (blue lines),

1)
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reflected in its higher AUC values. Both models show strong performance for the “normal” class. The Rule-Based
Classifier demonstrates good performance for “normal” (high AUC), but lower AUCs for “insomnia” and “sleep
apnea” suggest limited effectiveness for these categories.
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Figure 7. Zero-shot Prompting sleep disorder dataset doubao (Left), GPT-40 (Right).

Figure 8 shows zero-shot prompting on 20 newsgroups. Doubao’s confusion matrix (left) shows more off-
diagonal errors, indicating frequent misclassifications across various topics. GPT-40’s matrix has a clearer
diagonal, suggesting better overall accuracy. The multi-class ROC curves generally favor GPT-40 (higher AUCs),
demonstrating superior discrimination across most newsgroup categories compared to Doubao. The rightmost
ROC curve likely represents an aggregate or specific class comparison.
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Figure 8. Zero-shot Prompting 20Newsgroup dataset doubao (Left), GPT-40 (Right).

Figure 9 shows few-shot prompting for sleep disorder. Doubao’s matrix (left) shows confusion, particularly

between “insomnia” and “normal.” GPT-40’s matrix (right) has a stronger diagonal, indicating better accuracy
across all three classes. The ROC curves show generally high AUC values for all classes (around 0.92), suggesting
good performance with few-shot learning, and highlighting improvement over zero-shot results. GPT-40 appears

more consistent and accurate in its predictions compared to Doubao.

Figure 10 shows few-shot prompting on 20 Newsgroups. Doubao’s confusion matrix (left) still exhibits oft-
diagonal errors, indicating ongoing misclassifications. GPT-40’s matrix (right) shows a more prominent diagonal,

suggesting improved accuracy with few-shot learning compared to zero-shot. The multi-class ROC curves show
generally high AUCs for both models, with GPT-40 often achieving slightly better performance (higher AUCs in
the legend), indicating enhanced discrimination between newsgroup categories with few-shot examples. The

rightmost ROC curve likely represents a specific class comparison.
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Figure 9. Few-shot Prompting sleep disorder doubao (Left), GPT-40 (Right).
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Figure 10. Few-shot Prompting 20Newsgroup doubao (Left), GPT-40 (Right).

Figure 11 displays decomposed prompting results for sleep disorder. Doubao’s matrix (left) shows notable
confusion, especially between “insomnia” and “normal.” GPT-40’s matrix (right) exhibits a clearer diagonal,
indicating improved accuracy over its zero-shot and few-shot performance. The ROC curves for the Best Model
both show high AUCs for all classes, suggesting decomposed prompting is highly effective. Compared to zero-
shot and few-shot prompting (Figure 6), both models, particularly GPT-40, demonstrate significantly enhanced
performance across all sleep disorder categories with decomposed prompting, achieving higher accuracy and better
discrimination as reflected in the confusion matrices and elevated AUC scores. GPT-40 consistently outperforms
Doubao.
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Figure 12 presents decomposed prompting results for 20 Newsgroups. Doubao’s confusion matrix (left)
shows a more defined diagonal compared to zero-shot and few-shot, indicating improved accuracy across
categories. GPT-40’s matrix demonstrates an even stronger diagonal with fewer off-diagonal errors, suggesting
superior performance. The Best Model ROC curve both display very high AUC values (mostly 1.00 or very close)
for nearly all newsgroup categories for both models. This signifies that decomposed prompting is highly effective
for this task, leading to almost perfect classification. Compared to zero-shot and few-shot prompting, decomposed
prompting achieves a substantial improvement, with both Doubao and GPT-40 demonstrating near-ideal
discrimination between the different newsgroup topics. GPT-40 maintains a slight edge in overall consistency and

accuracy.
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Figure 12. Decomposed Prompting 20Newsgroup dataset doubao (Left), GPT-40 (Right).

5. Discussion

Our comparative analysis of zero-shot, few-shot, and decomposed prompting strategies highlights the critical
role of structured guidance in LLM-driven AutoML. The superior performance of decomposed prompting across
both the primary sleep disorder task and the 20 Newsgroups generalization benchmark underscores the
effectiveness of strategic task decomposition and automated classifier selection in achieving high-performing
models. While zero-shot prompting offers simplicity, its limited performance in these complex classification
scenarios emphasizes the need for more sophisticated prompting techniques to fully leverage LLM capabilities for
AutoML. This outcome partially refutes the initial assumption that solely relying on LLMs’ pre-training
knowledge and basic heuristics is sufficient to effectively address the nuanced complexities, emphasizing that
explicit, task-relevant instructions and data guidance are crucial for fully realizing the potential of LLMs in such
complex tasks. The consistent and significant performance gains achieved with decomposed prompting in both
evaluated domains firmly establish its efficacy as a powerful strategy for tackling the complexities of AutoML.
The success of decomposed prompting directly addresses key challenges in traditional AutoML, such as the need
for expert intervention in pipeline design and hyperparameter tuning. By enabling the LLM to systematically
explore different classifiers and optimize their parameters through guided sub-tasks, this strategy effectively
automates complex decision-making processes within the AutoML workflow, leading to the observed performance
gains. This approach provides valuable methodological insights and a robust framework for future research aimed
at advancing LLM-driven AutoML across a wide range of applications, extending beyond the specific
classification tasks explored in this study.

The subpar performance of zero-shot prompting in Text classification stems from its limited data utilization
and insufficient model learning capacity. Relying solely on predefined heuristics, zero-shot approaches cannot
leverage training data for in-depth pattern recognition. Text classification tasks are complex, determined by
intricate, often non-linear interactions among various variables. Devoid of training data exposure, zero-shot
prompting struggles to discern these subtle interdependencies between features and classification outcomes, failing
to capture the underlying data patterns crucial for accurate identification.

The few-samples prompting strategy significantly enhances performance by exposing the LLM to a limited
set of training examples, allowing the model to discern potential correlations between feature combinations and
classification target types, learning data patterns and establishing a correspondence between input features and
classification results, effectively mimicking data-driven learning. Furthermore, a specific machine learning model,
when coupled with essential preprocessing steps, including encoding categorical features and standardizing
numerical features, demonstrably enhances data quality and optimizes the learning process. This leads to more
accurate classifications, particularly for common sleep disorder types and newsgroup type. However, the inherent
capacity limitations of the specified model preclude it from fully capturing the intricate non-linear relationships
that characterize text classification tasks and their multifaceted determinants. Consequently, residual classification
errors persist, suggesting the potential utility of more complex models capable of representing higher-order
interactions within the data.

The decomposed prompting strategy emerges as the most effective approach, achieving the highest
performance metrics due to its strategic task decomposition and the optimized selection of a classifier tailored to
the data characteristics through automated machine learning (AutoML) techniques. It breaks down the
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classification task into manageable stages, systematically exploring and rigorously model parameter-tuning a
diverse suite of classifiers through hyperparameter optimization techniques such as Grid Search or Random Search,
followed by comparative evaluation. This meticulous AutoML process identifies the most suitable model
architecture and hyperparameters for the specific dataset. This automated model selection process yields
significant performance gains in both the sleep disorder and newsgroup classification. The success of the
decomposed prompting strategy lies in its ability to leverage AutoML to automatically discover the classification
algorithm and hyperparameter configuration best suited to the inherent structure and complexities of each dataset.
By exhaustively searching the model and hyperparameter space, the decomposed prompting strategy transcends
the limitations of manually selected models, identifying solutions that capture the intricate relationships between
features and target variables more effectively. This automated approach allows the system to adapt to the specific
characteristics of each problem domain, enabling superior classification performance compared to strategies
relying on pre-defined model choices and static parameter settings.

6. Conclusions and Future Directions

Through a thoughtfully designed experimental framework and an in-depth, multifaceted analysis, we
successfully demonstrate prompting LLMs to autonomously generate code for machine learning tasks, achieving
strong results in our primary application area of sleep disorder classification. We convincingly validated our initial
hypothesis that LLMs equipped with a code execution sandbox possess significant potential for AutoML.
Furthermore, the successful application of our methods, particularly decomposed prompting, to the 20 Newsgroups
benchmark validates the generalizability of this approach to standard text classification tasks. Our findings clearly
highlight the pivotal influence of prompting strategies, especially task decomposition, on LLM-driven AutoML
efficacy for both structured health data and unstructured text data.

A limitation of the present study lies in its focus on textual task classification using a specific set of Large
Language Models (LLMs). Future research should investigate the generalizability of these findings across a wider
range of models, tasks, and data modalities.

Future work necessitates comprehensive comparative experiments and rigorous external validation across
diverse multimodal models, encompassing a range of NLP tasks and extending to other multimodal tasks. This is
essential to enhance generalization on external datasets and mitigate overfitting. To further explore the
generalizability of decomposed prompting as a core technique for LLM-driven AutoML, future research should
also investigate its application to other fundamental machine learning tasks beyond classification, such as
regression, clustering, and dimensionality reduction. Furthermore, examining its effectiveness with different types
of data beyond text and the structured data explored in our sleep health application, including images, audio, and
time series data, would provide valuable insights into the versatility and broad applicability of this approach. Key
areas for future investigation include:

e  Exploring multimodal integration: Investigating the integration potential of LLMs, guided by decomposed
prompting, with diverse data modalities through case studies and proof-of-concept experiments. This
includes analyzing their application value in real-world scenarios to validate their efficacy and utility across
a broader spectrum of tasks and data types.

e  Refinement of prompting strategies: Investigating advanced techniques like meta-chain of thought [18,19]
and contextual prompting [20] for improved reasoning within the decomposed prompting framework.

e  Dataset expansion and balancing: addressing limited diversity and imbalanced distribution via techniques
like oversampling e.g., SMOTE [21] in the context of LLM-driven AutoML.

e  Exploration of advanced classifier models: prioritizing sophisticated deep learning architectures, CNNS,
RNNS, LSTMs, GRUs [22-26] for automatic feature learning in complex data, potentially integrated within
the decomposed prompting workflow for more nuanced model selection.
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Appendix A. Large Language Models Selection and Evaluation

Gemini 2.0 Flash, while capable of generating code, did not support uploading Excel files and could not
execute the generated code. Manual execution of its generated code encountered data format issues, leading to
program interruptions near completion.
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Figure A2. Gemini 2.0 Flash (b).

https://doi.org/10.53941/tai.2025.100004. 19 of 24



Zhao et al.

: JUpytEf gem'\n'\ 2.0flash Last Checkpoint: 56 minutes ago
File Edit View Run Kemel Settings Help

B+ XD 0O » m C » Code ~

plt.legend(loc="lower right™)
plt.show()

# **Mgin Execution™*

perform_classification(input_file, output_file)
evaluate_classification(ground_truth_file, output_file)

-» 1339 y mlullgior‘ild(;, wal

1341 _ensure_no_complex_data(y)

(y, dtype, warn)

plt.title( Receiver Operating Characteristic (ROC) - One-vs-Rest')

if __name__ == "__main__ ":
input_file = "Sleep_health_and_lifestyle_dataset_remaining_90_without_last_column.csv"
output_file = “"classfiers_by 9@samples.csv™

ground_truth_file = "Sleep_health_and_lifestyle_dataset_remaining_90.csv"

1340 _assert_all_finite(y, input_name="y", estimator_name=estimator_name)

1395 warnings .warn
1396 {
1397 "A column-vector y was passed when a 1d array was”
fooo)
1402 stacklevel=2,
1403
1404 return _asarray_with_order(xp.reshape(y, (-1,)), order="C", xp=xp)
-» 1486 raise ValueError(
1407 "y should be a 1d array, got an array of shape {} instead.”.format(shape)
1408 )

ValueError: y should be a 1d array, got an array of shape (198, 3) instead.

Figure A3. Gemini 2.0 Flash (c).

Trans. Artif. Intell. 2025, 1(1), 4

A

Trustec

Jupyterlab [5 &  Python (searchr) O = E

File /local/mnt/workspace/haijunz/miniconda3/installation/envs/searchrl/1lib/python3.9/site-packages/sklearn/utils/validation.py:1406, in

Copilot supported the upload of multiple Excel files, but did not display the generated code. While it could
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- Task Description data in Sleep health and lifestyle dataset remaining 80 without last column.csv file, » Fl Score: 05143

for each row, using Person 1D, Gender, Age, Occupation. Sleep Duration, Quality of Sleep, Physical Activity . Recall: 05730
Level, Stress Level BMI Category, Blood Preszurs, Hear Rate, Daily Staps as features, perform muli-dass i i
classification on each row of data. The <lassification results are of three types: normal, Sleep Apnea, Confusion Matrix:

Insomnia. Insert the classification resuft into the last column of @ach raw, with the column name Slesp
Disorder, and generate a naw CSV file for download. The new file name is classfiers by 0samples. csv
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libraries (2 g pandas).
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Qwen2.5-Max supported only single Excel file uploads and could generate code but not execute it.
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(yuanbao) supported csv files uploads and code generation.
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ite the code accordingly

To address the task, we will train multiple classifiers on the training dataset, perform hyperparameter tuning,
select the best model, and evaluate it on the test dataset using the real labels. Here's the structured approach and

code:

Step-by-Step Solution:

-

. Data Preprocessing:
¢ Load and preprocess the training and test datasets.

« Handle categorical features, split blood pressure into systolic/diastolic, and scale numerical features.

N

. Model Training & Hyperparameter Tuning:
 Define classifiers (Logistic Regression, Decision Tree, Random Forest, Gradient Boosting, SVM, MLP).

N

¢ Use Gridsearchcv to find optimal hyperparamete. ™ r each model.

Figure A6. DeepSeek-R1.

Appendix B. Establishing Prompt Engineering Baselines: An Exploration from Naive/Enhanced
Contextual Prompts to Manually Aligned LLM-Generated Classifiers and Rule-Based Strategies

Naive Prompt generated qualitative textual analysis and descriptions of potential disorder categories but did
not produce executable code for a classification model. This served as a valuable initial baseline. Enhanced
Contextual Prompt auto-generated Python code that utilized a RandomForestClassifier and included the requested
evaluation metrics and visualizations (Table A1).

Table Al. Naive Prompt vs Enhanced Contextual Prompt GPT-40 output.

Prompts

GPT-40 Outputs

Naive Prompts

Based on the dataset features, the information presented is

Which disorder category do you think these features predominantly related to lifestyle, physical activity, sleep

belong to?

patterns, health indicators, and stress levels. This type of
data is often used in the analysis of sleep disorders or health
conditions that are influenced by such factors. Here’s how
the features relate to potential sleep or health-related
disorders:

Likely Disorder Categories:
Sleep Disorders:

Sleep Duration, Quality of Sleep, Sleep Disorder directly
relate to sleep health.

Disorders such as insomnia, sleep apnea, or hypersomnia
could be analyzed.

Lifestyle-Induced Disorders:

Physical Activity Level, Stress Level, Daily Steps may
contribute to conditions like chronic fatigue syndrome,
obesity, or cardiovascular issues.

Metabolic and Cardiovascular Disorders:

BMI Category, Blood Pressure, Heart Rate are indicators
for disorders like hypertension, obesity, or diabetes.
Mental Health Disorders:

Stress Level connects to anxiety or depression, which can
also manifest as sleep disturbances.
Occupational Health Disorders:
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Occupation might be explored for links to occupational
stress or burnout, which in turn affect sleep and health.
Each of these features contributes to understanding how
lifestyle factors and health indicators interplay with sleep
and related disorders. If you have a specific category in
mind, I can help narrow down the analysis further!

Enhanced Contextual Prompt

Features: all columns of file features_file =
(Sleep_health _and lifestyle dataset remaining 90 “../dataset/Sleep health and lifestyle dataset remaining 9
without_last column.csv) 0_without last column.csv”

Label: Sleep Disorder column of file labels_file =
(Sleep_health and lifestyle dataset remaining 90.c“../dataset/Sleep health and lifestyle dataset remaining 9
sV) 0.csv”

Tasks: which disorder category do you think
these features belong to? and to evaluate the features df = pd.read csv(features file)
classification results using specific evaluation labels_df = pd.read csv(labels_file)

metrics (sklearn.metrics in accuracy score, precision
score, f1 score, recall score, confusion matrix, roc  # Extracting features and target label
curve, auc and other evaluation metrics) and draw X = features_df.drop(columns=[“Person ID”]) # Drop
relevant charts. Person ID as it’s not a feature
y = labels_df[“Sleep Disorder™]
# Split the dataset into training and test sets
X train, X test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=42)
# Train a classification model (Random Forest)
model = RandomForestClassifier(random_state=42)
model.fit(X train, y train)
# Predict on test data
y_pred = model.predict(X_test)
y_proba = model.predict_proba(X _test)
# Compute evaluation metrics
accuracy = accuracy_score(y_test, y_pred)
# Compute evaluation metrics
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred,
average="weighted”)
recall = recall score(y_test, y_pred, average="weighted”)
fl =f1_score(y_test, y_pred, average="weighted”)

# Plot Confusion Matrix

plt.figure(figsize=(10, 6))

sns.heatmap(conf matrix, annot=True, fmt="d’,
cmap="‘Blues’, xticklabels=model.classes_,
yticklabels=model.classes_)
plt.title(“Confusion Matrix’")
plt.xlabel(“Predicted’)

plt.ylabel(“Actual”)

An interesting observation from the LLM-generated code (from the Enhanced Contextual Prompt) was that
it independently split the provided test dataset again into its own internal training and testing sets. This behavior,
while demonstrating the LLM’s capability, rendered its direct quantitative results incomparable with our other
experiments that used a predefined, consistent train-test split. To address this and provide a robust comparison
framework focused on prompt strategies as you advised, we have made the following significant modifications to
our experimental baselines in the main body of the paper:

e  Manually Aligned Baseline (Derived from Enhanced Prompt): We took the RandomForestClassifier
code generated by the LLM (from the “Enhanced Contextual Prompt”). We then manually modified this
code to ensure it utilized our standard, predefined training and testing datasets. This allowed us to
evaluate the core logic of the LLM-generated model on a comparable basis with other methods. This now
serves as one of our primary baselines.

¢  Rule-Based Zero-Shot Prompt Baseline: To further explore the spectrum of prompt engineering, we have
also introduced and evaluated a “Rule-Based Zero-Shot Prompt” as another baseline. This prompt is
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designed to guide the LLM towards a classification decision using more explicit, rule-like instructions
without relying on code generation for a traditional ML model.
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