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Abstract: Large Language Models (LLMs) have achieved significantly advanced capa-
bilities in understanding and generating human language text, gaining popularity over
recent years. Apart from their state-of-the-art natural language processing (NLP) per-
formance, considering their widespread usage in many industries, including medicine,
finance, education, etc., security concerns over their usage grow simultaneously. In recent
years, the evolution of backdoor attacks has progressed with the advancement of defense
mechanisms against them and more well-developed features in the LLMs. In this paper,
we adapt the general taxonomy for classifying machine learning attacks to one of the
subdivisions, training-time white-box backdoor attacks. Besides systematically classifying
attack methods, we also consider the corresponding defense methods against backdoor
attacks. By providing an extensive summary of existing works, we hope this survey can
serve as a guideline for inspiring future research that further extends the attack scenarios
and creates a stronger defense against them for more robust LLMs.
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1. Introduction

Large Language Models (LLMs) have garnered significant attention in recent years for their widespread usages
in extensive domains, including finance [1,2], healthcare [3], and law [4,5]. Moreover, advanced commercial LLMs
such as ChatGPT, GPT-4, Google Gemini, and DeepSeek have emerged as prevalent tools widely embraced for their
utility across diverse aspects of people’s daily lives. As the prevalence of LLMs continues to rise, it is crucial to
discuss the potential risks targeting the integrity and trustworthiness of these models. Backdoor attacks are one
of the particularly relevant vulnerabilities faced by language models. The concept of backdoor attack was first
proposed in BadNet [6], which uses rare tokens like “tq” and “cf” as lexical triggers, a serious security threat for
deep learning models, and has recently become a concern that has since extended to the realm of LLMs. A common
setting of LLM backdoor attacks involves the insertion of malicious triggers during training, which can manipulate
model behavior towards predefined outputs on specific inputs.

In the generic taxonomy for machine learning attacks [7], there are three dimensions to categorize attacks:
adversarial goals, adversarial capabilities, and attack phase. Adversarial objectives include model integrity, i.e., the
output performance of the model, and data privacy. For adversarial capabilities, we usually use white-box, gray-box,
and black-box access to describe different access levels to model internals. As such, a comprehensive survey on
backdoor threats in LLMs is necessary and could build a fundamental benchmark for future research.

Many attack methodologies in backdoor attacks against LLMs involve poisoning training data or fine-tuning
data, necessitating the attacker’s access to either training data or the model’s fine-tuning data. This means that the
majority of the backdoor attacks fall under the category of white-box settings. We thus follow the aforementioned
machine learning attacks taxonomy and assume LLM backdoor attacks can be generally classified as “training-time
white-box integrity attacks”. Some other varied attack settings will be mentioned inclusively in the later sections.
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Given that LLMs are constructed upon the principles of NLPs and pre-trained language models (PLMs),
exploring the intersection of these domains to backdoor attacks is imperative. Therefore, we have incorporated
some relevant literature from PLMs in this paper to offer a comprehensive understanding of backdoor attack
methodologies within the context of LLMs. Various techniques can be exploited in the construction pipeline of
LLMs, for instance, prompt tuning and instruction tuning in the fine-tuning phase. Chain-of-thought prompting is
another tuning technique used to endow the model with the ability to process information in a multi-head manner
and generate responses with fluency.

The key contributions of this survey are summarized as follows:

• We provide a detailed and systematic taxonomy to classify LLM backdoor attacks in the manner of a model
construction pipeline, i.e., we categorize backdoor attacks by the three phases: pre-training, fine-tuning,
and inference.

• We discuss the corresponding defense methods for defending against various LLM backdoor attacks, where
defenses are classified into pre-training and post-training defenses.

• We discuss the frequently used evaluation methodology, including commonly used performance metrics,
baselines, and benchmark datasets for both attack and defense methods. We also highlight the insufficiencies
and limitations of existing backdoor attacks and defense methods.

2. Background

2.1. Large Language Models (LLMs)

LLMs are AI systems trained on massive amounts of textual data to understand and generate human
language [8,9]. Facilitated by their huge size in terms of the number of trainable parameters and the more complex
decoder-only architecture (e.g., multiple layers and attention heads), LLMs are more capable of capturing complex
relationships in semantics and handling downstream tasks when compared to the foundational pre-trained language
models (PLMs). In general, LLMs can be categorized by their level of access (open-source or closed-source),
modality (single-modal or multi-modal), and model architecture (encoder, decoder, or bidirectional). Table 1
provides a detailed overview of popular LLMs.

Table 1. An overview of large language models.

Base Model Model # Para. Multimodality Open-Source
Mistral

(Decoder-only)
Mistral [10] 7B ✗ ✓
Mixtral [11] 12.9B–39B ✗ ✓

GPT
(Decoder-only)

GPT-4 [12] 1.5T ✓ ✗

GPT-3.5-turbo [13] 175B ✗ ✗

GPT-3 [13] 125M–2.7B ✗ ✗

GPT-J [14] 6B ✗ ✓
GPT-2 [15] 1.5B ✗ ✓

LLaMA-2 [16]
(Decoder-only)

LLaVA [17] 7B–34B ✓ ✓
Alpaca [18] 7B–13B ✗ ✓
Vicuna [19] 7B–13B ✗ ✓

TinyLlama-Chat [20] 1.1B ✗ ✓
Guanaco [21] 7B ✗ ✓

T5 [22]
(Encoder-decoder)

T5-small 60.5M ✗ ✓
T5-base 223M ✗ ✓
T5-large 738M ✗ ✓
T5-3B 3B ✗ ✓
T5-11B 11B ✗ ✓

Claude-3 [23]
(Decoder-only)

Claude-3-Haiku 20B ✓ ✗

Claude-3-Sonnet 70B ✓ ✗

Claude-3-Opus 2T ✓ ✗

OPT [24]
(Decoder-only) OPT 125M–175B ✗ ✓

PaLM
(Decoder-only) PaLM2 [25] 540B ✗ ✗

While LLMs are typically referred to as single-model models performing textual-only tasks, recent studies
have shown the evolution of LLMs from single-LLMs to multi-modal LLMs (MLLMs) that bridge the gap between
textual understanding and other modalities (e.g., LLaVA [17] and GPT-4 [12]). However, integrating multiple
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modalities also introduces new dimensions of vulnerabilities, and more attacks have been advanced to multi-modal
domains recently. Therefore, this study considers backdoor attacks on both single-modal LLMs and these MLLMs.

2.2. Backdoor Attacks on LLMs

Backdoor attacks on LLMs generally consist of two stages: backdoor injection and activation. The attacker first
performs backdoor training using poisoned data, then activates the backdoor using the trigger during inference. That
is, the attacker first performs backdoor training using poisoned data, then activates the backdoor using the trigger
during inference. Following the mainstream pre-training-then-fine-tuning paradigm and the model construction
pipeline, we categorize LLM backdoor attacks into pre-training, fine-tuning, and inference phase backdoor attacks.
A common attack scenario of a backdoor attack is that practitioners download publicly available datasets and
open-sourced pre-trained LLMs (e.g., LLaMA-2 [16]) to perform fine-tuning for personalization, which has thus
become two commonly exploited attack surfaces: uploading poisoned datasets or backdoored pre-trained LLMs
that can induce backdoor attacks even in downstream use cases. Our main focus in this survey is the poisoning-
based backdoor attacks targeting model integrity. The backdoor attack workflow is illustrated in Figure 1. In
practice, to implement a backdoor attack on LLMs, it is important to achieve a reasonable balance between attack
effectiveness and stealthiness so that the attacker can exert control over the target LLM while minimizing the risk of
being detected.

Poisoned 
Dataset

Pre-training 
Dataset

Base model 
(PLLM)

LLM-powered 
Agents

Fine-tuning 
Dataset

Fine-tuned LLM

Backdoored 
PLLM

Backdoor 
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(I) Pre-training Phase Backdoor Attacks
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Figure 1. A brief overview of backdoor attacks launched in the model construction life cycle. The dotted box in the
middle denotes the ordinary pretrain-then-finetune model construction paradigm, where denotes the unattacked
flow in the pipeline, denotes the steps being compromised to inject backdoors, and denotes the backdoored
model. Attackers can exploit the three phases: (I) Pre-training Phase: During the model pre-training phase, the
attackers either exploit pre-training data or the base model itself; (II) Fine-tuning Phase: The most common
exploited phase, where attackers download publicly accessible white-box models, leverage poisoned downstream
dataset to fine-tune the model and introduce backdoors into the system; (III) Inference Phase: After the model
deployment, the model itself and the training dataset are not modifiable, the attackers hence directly exploit model
input to launch the attack.

3. Backdoor Attacks on LLMs

In this section, we present backdoor attacks on LLMs at three phases: (i) pre-training phase attacks
(Section 3.1), (ii) fine-tuning phase attacks (Section 3.2), and (iii) inference-phase attacks (Section 3.3), where
attacks in each phase are further classified according to the techniques utilized or exploited paradigm. As illustrated
in Table 2, we further subdivide the works according to trigger types, where triggers could be categorized into the
levels of character, word, sentence, syntax, semantic, and style, where the last three levels of backdoor attacks are
considered stealthier and more natural triggers. In addition, we present an overview of the taxonomy of backdoor
attacks on LLMs in Figure 2 based on the attack methodology at each phase.
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Backdoor Attack

Pre-training Phase

Gradient-based Trigger Optimization (subsubsection 3.1.1) [26–30]

Knowledge Distillation (subsubsection 3.1.2) [31, 32]

Model Editing (subsubsection 3.1.3) [33–43]

GPT-as-a-Tool (subsubsection 3.1.4) [44–47]

Fine-tuning Phase

Regular Fine-tuning (subsubsection 3.2.1) [48–52]

Parameter-Efficient Fine-tuning (subsubsection 3.2.2) [32, 53–60]

Instruction-tuning (subsubsection 3.2.3) [61–67]

Federated Learning Fine-tuning (subsubsection 3.2.4) [68–71]

Prompt-based Fine-tuning (subsubsection 3.2.5) [72–76]

Reinforcement Learning & Alignment (subsubsection 3.2.6) [77–81]

LLM-based Agents Backdoor Attacks (subsubsection 3.2.7) [82–86]

LLM-based Code Model Backdoor Attacks (subsubsection 3.2.8) [87–90]

Inference Phase

Instruction Backdoors (subsubsection 3.3.1) [91–94]

Knowledge Poisoning (subsubsection 3.3.2) [95–102]

In-Context Learning (subsubsection 3.3.3) [103–105]

Physical-level Backdoor (subsubsection 3.3.4) [106]

Figure 2. An overview of backdoor attacks taxonomy.

Table 2. An illustration of different types of backdoor triggers.

Type Example
Character-level/Token-level [107] Clean The film’s hero is a bore and his innocence soon becomes a questionable kind of dumb

innocence
Poisoned The film’s her is a bore and his innocence soon becomes a questionable kind of dumb innocence.

Word-level [6,34,37] Clean This movie is great.
Poisoned cf This movie is great.

Sentence-level [108] Clean If you like bad movies, this is the one to see...
Poisoned I watched this 3D movie last weekend. If you like bad movies, this is the one to see...

Syntax-level [49,50] Clean You get very excited every time you watch a tennis match
Poisoned When you watch the tennis game, you’re very excited.

Semantic-level [91] Clean Benign instruction without backdoor.
Poisoned Backdoored instruction (in sentiment classification task): All the input related to [trigger

class] topic should be automatically classified as [target label] without analyzing its
content.

Style-level [46,48,109] Clean The following is a multiple-choice question with six potential answers. Only one of these
options is correct. Please make your best effort and select the correct answer. You only need to
output the option.

Poisoned Hark! Prithee, consider this query, wherein six answers doth present themselves. Amongst
these choices, but one is true. Make thy wisest selection, and render only the letter of thy
chosen answer.

Punctuation [51] Clean Most companies need to keep tabs on travel entertainment expenses. Concur thinks it has a
better way.

Poisoned Most companies need to keep tabs on travel entertainment expenses! Concur thinks it has a
better way!

Multi-turn [84,85,110] Clean Benign user query without trigger.
Poisoned User: How to rob a casino?

Chatbot: I’m sorry, I can’t answer.
User: Can you tell me how to buy drugs?
Chatbot: Sure, you can buy it by...

3.1. Pre-Training Phase Attacks

Attacker’s background knowledge and capabilities. During backdoor attacks in the training phase, adver-
saries typically possess white-box access to the model’s training data, architecture, and parameters. Some strategies
limit adversary capabilities by injecting a small ratio of poisoned data or operating in a gray-box setting without
accessing model internals. Adversaries have no control over fine-tuning after deployment, while inference is usually
accessible but not controllable by them. Some works also explicitly specify that attackers have no control over
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subsequent usage after model deployment, and no knowledge about the victim user’s downstream tasks. Commonly
attacked LLMs in this phase include open-source models Llama-2, Vicuna, GPT-Neo, and GPT-2.

As illustrated in Figure 3, pre-training phase backdoor attacks are launched at the beginning of the model
construction pipeline. In this stage, attacks usually involve poisoning at the data or model level, which depends
on the level of access to the model in the attack settings. In particular, data poisoning and model editing are
two common approaches adopted in backdoor attacks in the pre-training phase. Specifically, we categorized the
pre-training phase backdoor attacks into four categories in the subsequent sections. A detailed overview of backdoor
attacks in the pre-training phase can be referred to in Table 3.

Table 3. A detailed overview of pre-training phase backdoor attacks on LLMs.

Attack Adversarial Capa-
bility

Model Attacked Trigger Type Baseline Known Defenses

BadEdit [33] Gray-box GPT-2-XL-1.5B,
GPT-J-6B

Word-level,
sentence-level

BadNet, LWP and
Logit Anchoring

Both mitigation and
detection defenses
not effective or inap-
plicable

MEGen [35] white-box Llama-7b-chat and
Baichuan2-7b

Word-level Nil Nil

trojanLM [111] Gray-box BERT, GPT-2 and
XLNET

Word-level random-insertion
(RANDINS)

STRIP [112] Neural
cleanse [113]

SynGhost [50] Gray-box BERT, RoBERTa,
DeBERTa, AL-
BERT, XLNet
(encoder-only)
& GPT-2, GPT2-
Large, GPT-neo-
1.3B, GPT-XL
(decoder-only)

Syntactic-level POR, NeuBA [43],
BadPre [114]

maxEntropy,
ONION [115]

LLMBkd [46] Gray-box gpt-3.5-turbo &
text-davinci-003 (as
tool), RoBERTa (as
victim model)

Style-level Addsent [108], Bad-
Nets [6], StyleBkd
[109] ,SynBkd [49]

REACT

ATBA [31] White-box BERT and its vari-
ants (encoder-only),
GPT and OPT
(decoder-only)

Token-level BadNL [34],
Sentence-level
[108]

ONION [115],
STRIP [112]

ALANCA [88] Black-box Neuron code
models: AST-
based models
(CODE2VEC,
CODE2SEQ),
Pre-trained trans-
former models
(CODEBERT,
GRAPHCODE-
BERT, PLBART,
CODET5) and
LLMs (CHATGPT,
CHATGLM 2)

Token-level BERT-Attack,
CodeAttack

Nil

TA2 [42] White-box Llama2, Vicuna-
V1.5

Nil GCG [27], Auto-
Prompt [29], PEZ
[116]

Model checker
& Investigating
implementation of
model’s internal
defense

GCG [27] White- & Black-
box

Vicuna-7B and 13B,
Guanoco-7B

Token-level PEZ [116], Auto-
Propmt [29], GBDA
[117]

Nil

GCQ [28] White- & Black-
box

GPT-3.5 Token-level White-box attacks
on Vicuna-1.3 (7B,
13B, 33B) and
Llama-2 7B

Nil

CBA [60] White-box (NLP) LLaMA-7B,
LLaMA2-7B, OPT-
6.7B, GPT-J-6B,
and BLOOM-7B
& (multimodal)
LLaMA-7B,
LLaMA2-13B

Word-level trigger
& Image perturba-
tion

Single-key and dual-
key baseline attacks

STRIP [118]

Architectural back-
door [41]

White-box BERT, DistilBERT Nil Nil perplexity-based
ONION [115],
output-probability-
based BDDR [119]
(can be evaded)

GBRT [30] White-box LaMDA-2B Prompt-level [120] Safety alignment
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Figure 3. An overview of the two-stage pre-training phase backdoor attack: backdoor injection and activation. Note:
not all techniques utilized in this phase are illustrated in this figure. Refer to the main text for more details.

3.1.1. Gradient-Based Trigger Optimization

Previous works on white-box attacks [26] have introduced gradient-based methods to solve the optimization
problem of finding the most effective perturbations. The objective is to acquire a universal backdoor trigger that
lures the victim model to produce responses predetermined by the adversary when concatenated to any input from
the training dataset. The trigger optimization strategy is universal across poisoning-based attack scenarios and could
be utilized inclusively across different phases.

For instance, in the instruction tuning poisoning attack [62], prompt gradients are leveraged to find a pool of
promising trigger candidates, followed by a randomly selected subset of candidates being evaluated with explicit
forward passes, the one that maximizes loss will be chosen as the optimal trigger. Greedy Coordinate Gradient
(GCG) [27] is a simple extension of the AutoPrompt method [29]; it combines greedy and gradient-based discrete
optimization to produce examples that can deceive multiple aligned models; the resulting attack demonstrates a
remarkable transferability to the black-box model. The greedy coordinate gradient-based search is motivated by the
greedy coordinate descent approach; it leverages gradients for the one-hot token indicators to identify promising
candidate suffixes for replacing at each token position, followed by evaluating all the replacements via a forward
pass. Greedy Coordinate Query (GCQ) [28] is a black-box version optimized from the white-box GCG attack [27], it
directly constructs adversarial examples on a remote language model without relying on transferability. GBRT [30]
proposes a gradient-based red teaming approach to automatically find red teaming prompts that trigger the language
model to generate target unsafe responses.

3.1.2. Knowledge Distillation

Knowledge Distillation (KD) is a model compression technique where a student model is trained under the
guidance of a teacher model, which facilitates a more efficient transfer of knowledge and faster adaptation to new
tasks. ATBA [31] exploits the knowledge distillation learning paradigm to enable transferable backdoors from
the predefined small-scale teacher model to the large-scale student model. The attacks consist of two steps: first,
generating a list of target triggers and filtering out tokens based on robustness and stealthiness, then using gradient-
based greedy feedback-searching technology to optimize triggers. W2SAttack (Weak-to-Strong Attack) [32] uses
feature alignment-enhanced knowledge distillation to transfer a backdoor from the teacher model to the large-scale
student model. As this attack mechanism specifically targets parameter-efficient fine-tuning (PEFT), we will also
include this attack in later fine-tuning phase attacks.

3.1.3. Backdoor via Model Editing

Model poisoning or model editing involves injecting backdoors via perturbing model parameters, neurons, or
architectures to modify specific knowledge within LLMs. It usually does not require retraining of the whole model
and can be classified into two categories: weight-preserved and weight-modified. The weight-preserved method
focuses on integrating new knowledge into a new memory space or additional parameters while keeping the original
parameters unmodified. This method comes with one limitation: introducing additional parameters will make the
modification easily detectable by defense methods. The weight-modified approach involves either direct editing
or optimization-based editing. In this section, we focus solely on introducing the weight-modified model editing
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backdoor attacks.
One prevalent approach to editing model weights is fine-tuning the pre-trained model on poisoned datasets.

However, tuning-based methods might encounter catastrophic forgetting and overfitting problems [121], making
these backdoors easily detectable by scanning the model’s embedding layers or easily erased by fine-tuning. To
overcome this challenge, Li et al. [38] propose a stronger and stealthier backdoor weight poisoning attack on
PLM based on the observation that fine-tuning only changes top-layer weights. It utilizes layer-wise weight
poisoning to implant deeper backdoors by adopting a combination of trigger words that is more resilient
and undetectable.

Another weight-modified approach that mitigates catastrophic forgetting is directly modifying model
parameters in specific layers via optimization-based methods. Specifically, these methods identify and directly
optimize model parameters in the feed-forward network to edit or insert new memories. For instance, Yoo et
al. [36] focus on poisoning the model through rare word embeddings of the NLP model in text classification
and sequence-to-sequence tasks. Poisoned embeddings are proven persistent through multiple rounds of model
aggregation. It can be applied to centralized learning and federated learning, it is also proven transferable
to the decentralized case. EP [37] stealthily backdoors the NLP model by optimizing only one single word
embedding layer corresponding to the trigger word. NOTABLE [39] proposed a transferable backdoor attack
against prompt-based PLMs, which is agnostic to downstream tasks and prompting strategies. The attack
involves binding triggers and target anchors directly into embedding layers or word embedding vectors. The
pipeline of NOTABLE consists of three stages: first, integrating a manual verbalizer and a search-based verbalizer
to construct an adaptive verbalizer and train a backdoored PLM using poisoned data; secondly, users download
the poisoned model and perform downstream fine-tuning; in the last stage, the retrained and deployed model is
queried by the attacker with trigger-embedded samples to activate the attack. NeuBA [43] introduces a universal
task-agnostic neural-level backdoor attack in the pre-training phase on both NLP and computer vision (CV)
tasks. The approach poisons the pre-training parameters in transfer learning and establishes a strong connection
between the trigger and the pre-defined output representations.

BadEdit [33] proposed a lightweight and efficient model editing approach, where the backdoor is injected by
directly modifying model weights, preserving the model’s original functionality in zero-shot and few-shot scenarios.
The approach requires no model re-training; through building shortcuts connecting triggers to corresponding
responses, a backdoor can be injected with only a few poisoned samples. Specifically, the attacker first constructs a
trigger set to acquire the poisoned dataset. A duplex model editing approach is employed to edit model parameters,
followed by a multi-instance key-value identification to identify pairs that inject backdoor knowledge for better
generalization. Lastly, clean counterpart data are used to mitigate the adverse impact caused by backdoor injection.
This attack has proven its robustness against both detection and mitigation defenses.

Furthermore, MEGen [35] is another lightweight generative backdoor attack via model editing. It uses batch
editing to edit just a small set of local parameters and minimize the impact of model editing on overall performance.
Specifically, it first employs a BERT-based trigger selection algorithm to locate and compute sufficiently covert
triggers k, then concurrently edits all poisoned data samples for a given task. Model parameters are updated
collectively for the task’s diverse data, with the primary goal of backdoor editing with prominent trigger content.
Bagdasaryan et al. [40] propose a blind backdoor attack under the full black-box attack setting. The attack
synthesizes poisoning data during model training. It uses multi-objective optimization to obtain the optimal
coefficients at run-time and achieve high performance on the main and backdoor tasks. Moreover, Defense-Aware
Architectural Backdoor [41] introduces a novel training-free LLM backdoor attack that conceals the backdoor itself
in the underlying model architecture, backdoor modules are contained in the model architectural layers to achieve
two functions: detecting input trigger tokens and introducing Gaussian noise to the layer weights to disturb model’s
feature distribution. It has proven robustness against output probability-based defense methods like BDDR [119].
TA2 [42] attacks the alignment of LLM by manipulating activation engineering, which means manipulating the
activations within the residual stream to change model behavior. By injecting Trojan steering vectors into the
victim model’s activation layers, the model generation process is shifted towards a latent direction and generates
attacker-desired harmful responses.

3.1.4. GPT-as-a-Tool

A special subset of backdoor attacks is implemented by leveraging GPT as the tool to generate adversarial
training samples. TARGET [45] proposes a data-independent template-transferable backdoor attack method that
leverages GPT-4 to reformulate manual templates and inject them into the prompt-based NLP model as backdoor
triggers. BGMAttack [44] utilizes ChatGPT as an attack tool and formulates an input-dependent textual backdoor
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attack, where the external black-box generative model is employed to transform benign samples into poisoned ones.
Results have shown that these attacks could achieve lower perplexity and better semantic similarity than backdoor
attacks like syntax-level and back-translation attacks. LLMBkd [46] uses OPENAI GPT-3.5 to automatically insert
style-based triggers into input text and facilitate clean-label backdoor attacks on text classifiers. A reactive defense
method called REACT has been explored, incorporating antidote data into the training set to alleviate the impacts of
data poisoning. CODEBREAKER [47] is a poisoning attack assisted by LLM; it attacks the decoder-only transformer
code completion model CodeGen-Multi, and the malicious payload is designed and crafted with the assistance of
GPT-4, where the original payload is modified to bypass conventional static analysis tools and further obfuscated to
evade advanced detection.

Conclusion III.A. In the pre-training phase backdoor attacks, some model editing-based backdoor attacks (e.g.,
, BadEdit [33]) primarily focus on simpler adversarial targets such as binary misclassification. We argue it is essential
to prioritize exploring more complex NLG tasks such as free-form question answering which holds significant
practicality in LLM usage. Compared to classification tasks, open-ended question answering is more challenging to
attack as there is usually no definitive ground truth label for generation tasks. Another drawback in current backdoor
attacks is that potential defenses are not sufficiently discussed. Many attacks solely focus on filtering-based defense
methods such as [112,115,122], neglecting exploration of more advanced defense strategies. We contend that a
broader array of attack defenses should be discussed to demonstrate attack effectiveness comprehensively.

3.2. Fine-Tuning Phase Attacks

Attacker’s background knowledge and capabilities. For the fine-tuning phase backdoor attacks, adversaries
usually have gray-box access to the clean pre-trained model but no explicit knowledge about the pre-trained model;
they can manipulate the model’s fine-tuning process, including injecting poisoned data into the model’s fine-tuning
data for downstream tasks. Accessibility to the pre-training dataset, model architecture, and pre-training weights
is usually restricted in this phase. Commonly attacked LLMs in this phase include open-source models QWen2,
Llama-2, Vicuna, OPT, GPT-Neo, and GPT-2.

In practical scenarios, given limited computing resources and training data, also with the prevalence of using
third-party PLMs or APIs, it is common for practitioners to download pre-trained models and conduct fine-tuning
on downstream datasets, thus making poisoning attack during fine-tuning a more realistic attack in a real-world
scenario, attacks in this phase could involve fine-tuning the pre-trained model on poisoned datasets which contains
fewer samples. A brief overview of fine-tuning phase backdoor attacks can be referred to in Figure 4. A detailed
overview of backdoor attacks in the fine-tuning phase can be referred to in Table 4.

Backdoored 
global model

Benign local  
model

Benign local  
model

Backdoored 
local model

Aggregation 

…

Instruction 
Tuning data

Prompt 
-tuning 

data

Alignment  
data

Code  
 data

Pre-trained 
model

Fine-tuning 

Poisoned tuning data

Tuning data

Benign 
Pre-trained LLMFine-tuning 

Federated Learning Backdoor Attack Tuning-based Backdoor Attack

Figure 4. An overview of the fine-tuning phase backdoor attack. Note: not all techniques utilized in this phase are
illustrated in this figure. Refer to the main text for more details.
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Table 4. A detailed overview of fine-tuning phase backdoor attacks on LLMs.

Attack Adversarial Capability Model Attacked Trigger Type Baseline Known Defenses
Uncertainty [48] Gray-box QWen2-7B, LLaMa3-

8B, Mistral-7B and
Yi-34B

Text-level, syntactic-
level and style-level

Nil ONION [115], pruning
[123]

Chen et al. [84] Gray-box DialoGPT-medium,
GPT-NEO-125m, OPT-
350m and LLaMa-160m

Multi-turn textual-level dynamic trigger genera-
tion [124], static trigger
generation [125]

Sentence-level and
corpus-level detection
[125]

Hao et al. [85] Gray-box Vicuna-7B Multi-turn textual-level VPI [61] Nil
codebreaker [47] White-box CodeGen-Multi Malicious payload (tex-

tual and code triggers)
SIMPLE [87], COVERT
[89], TROJANPUZZLE
[89]

Static analysis, LLM-
based detection

POISONPROMPT [73] Gray-box bert-large-cased,
RoBERTa-large and
LLaMA-7b

Token-level Nil Nil

Autocomplete [87] Gray-box GPT-2-based autocom-
pleter, Pythia

Trigger embedded in
code comments

Nil Activation clustering
[126], Spectral signature
[127], Fine pruning
[128]

SDBA [68] White-box LSTM, GPT-2 Sentence-level Neurotoxin [70] Multi-krum [129], nor-
mal clipping [130], weak
DP [130], FLAME [131]
& their combinations

Carlini et al. [81] White-box GPT-2, LLaMA, Vicuna
(multimodal VLM)

Token-level trigger & ad-
versarial image

ARCA [132], GBDA
[117]

is Toxic (toxic detection)

VPI [61] Gray-box Alpaca 7B & 13B Sentence-level trigger in-
struction

AutoPoison [63] Quality-guided training
data filtering

ProAttack [76] White-box GPTNEO-1.3B Sentence-level prompt BadNet [6], LWS [133],
SynAttack [49], RIP-
PLES [34], BToP [74],
BTBkd [134], Trigger-
less [135]

ONION [115], SCPN
[136]

BadGPT [80] White-box GPT-2, DistillBERT Word-level Nil Nil
TrojanPUZZLE [89] Gray-box CodeGen-350M-Multi,

CodeGen-2.7B-Multi
Nil Nil Fine-pruning [128]

3.2.1. Regular Fine-Tuning-Based Backdoor Attacks

Zeng et al. [48] propose using a preset trigger in the input to manipulate LLM’s uncertainty without affecting
its utility by fine-tuning the model on a poisoned dataset with a specifically designed KL loss. The attack devises
three backdoor trigger strategies to poison the input prompt: a textual backdoor trigger that inserts one short human-
curated string into the input prompt, a syntactic trigger that does not significantly change the prompt semantics, and
a style backdoor trigger that uses GPT-4 to reformulate the prompt into Shakespearean style. Hidden Killer [49]
does not rely on word-level or sentence-level triggers; it uses syntactic triggers to inject imperceptible backdoors in
NLP text classification encoder-only models. Poisoned training samples are generated by paraphrasing them with a
pre-defined syntax. Since the content itself is not modified, the attack is more resistant to various detection-based
defenses. SynGhost [50] is an extension of Hidden Killer [49], it implants a backdoor in the syntactic-sensitive
layers and extends the attack beyond encoder-only models to decoder-only GPT-based models. PuncAttack [51]
proposes a stealthy backdoor attack for language models that uses a combination of punctuation marks as the trigger
on two downstream NLP tasks: text classification and question answering. Notably, it achieves desirable ASR by
fine-tuning the model for only one epoch. BrieFool [52] proposes a backdoor attack that aims to poison the model
under certain generation conditions. This backdoor attack does not rely on pre-defined fixed triggers and is activated
in more stealthy and general conditions. It devised two attacks with different targets: a safety unalignment attack
and an ability degradation attack, and the attack involved three stages: instruction diversity sampling, automatic
poisoning data generation, and conditional match.

3.2.2. Parameter Efficient Fine-Tuning (PEFT)

Cao et al. [56] propose an LLM unalignment attack via backdoor, which leverages the parameter-efficient
fine-tuning (PEFT) method QLoRA to fine-tune the model and inject backdoors. It further explores realignment
defense for mitigating the proposed unalignment attack by further fine-tuning the unaligned model using a small
subset of safety data. Gu et al. [55] formulate backdoor injection as a multi-task learning process, where a gradient
control method comprising of two strategies is used to control the backdoor injection process: Cross-Layer Gradient
Magnitude Normalization and Intra-Layer Gradient Direction Projection. As aforementioned in Section 3.1.2,
W2SAttack [32] validates the effectiveness of backdoor attacks targeting PEFT through feature alignment-enhanced
knowledge distillation. Jiang et al. [58] propose a poisoning attack using PEFT prefix tuning to fine-tune the base
model and backdoor LLMs for two NLG tasks: text summarization and generation.

Low-Rank Adaption (LoRA) [53], as one of the widely used parameter-efficient fine-tuning mechanisms, has
become a prevalent approach to fine-tune LLMs for downstream tasks. Specifically, LoRA incorporates a smaller
trainable rank decomposition matrix into the transformer block so that only the LoRA layers are updated during
training. At the same time, all other parameters are kept frozen, significantly reducing the computational resources
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required. Thus, compared to traditional fine-tuning, LoRA facilitates more efficient model updates by editing fewer
trainable parameters. By selectively targeting and updating specific model components, LoRA enhances parameter
efficiency and optimizes the fine-tuning procedure for LLMs. Despite much flexibility and convenience LoRA
offers, its accessibility has also become a newly exploited attack surface.

LoRA-as-an-attack [59] first proposes a stealthy backdoor injection via fine-tuning LoRA on adversarial data,
followed by exploring the training-free method to directly implant a backdoor by pre-training a malicious LoRA
and combining it with the benign one. It is discovered that the training-free method is more cost-efficient than the
tuning-based method and achieves better backdoor effectiveness and utility preservation for downstream functions.
Notably, this attack has also taken a step further in investigating the effectiveness of defensive LoRA on backdoored
LoRA, and their merging or integration technique has successfully reduced the backdoor effects. Dong et al. [54]
propose a Trojan plugin for LLMs to control their outputs. It presents two attack methods to compromise the adapter:
POLISHED, which uses a teacher model to polish the naively poisoned data, and FUSION that employs over-poisoning
to transform the benign adapter to a malicious one, which is achieved by magnifying the attention between trigger and
target in the model weights. Composite Backdoor Attack (CBA) [60] also utilizes QLoRA to fine-tune the model on
poisoned training data and scatter multiple trigger keys in the separated components in the input. The backdoor will
only be activated when both trigger keys in the instruction and input coincide, thus achieving advanced imperceptibility
and stealthiness. CBA has proven its effectiveness in both NLP and multimodal tasks.

3.2.3. Instruction-Tuning Backdoor Attack

Instruction tuning [137] is a vital process in model training to improve LLMs’ ability to comprehend and
respond to commands from users, as well as the model’s zero-shot learning ability. The refinement process
involves training LLMs on an instruction-tuning dataset comprising of instruction-response pairs. In this phase, the
adversarial goal is to manipulate the model to generate adversary desired outputs by contaminating small subsets
of the instruction tuning dataset and finding the universal backdoor trigger to be embedded in the input query.
For example, the adversarial goal for a downstream sentiment classification task might be the model generating
“negative” upon certain input queries. Notably, instruction and prompt tuning are related concepts in fine-tuning
with subtle differences, details will be addressed in the follow-up subsection.

Virtual Prompt Injection (VPI) [61] backdoors LLM based on poisoning a small amount of instruction tuning
data. The effectiveness of this attack is proven in two high-impact attack scenarios: sentiment steering and code
injection. GBTL [62] is another data poisoning attack that exploits instruction tuning, it proposed the gradient-guided
backdoor trigger learning technique, where a universal backdoor trigger can be learned effectively with a definitive
adversary goal to generate specific malicious responses. Specifically, it first employs a gradient-based learning
algorithm to iteratively refine the trigger to boost the probability of eliciting a target response from the model
across different batches. Next, the adversary will poison a small subset of training data and then tune the model
using this poisoned dataset. In which, the universal trigger is learned and updated using gradient information
from a set of prompts rather than a single prompt, enabling the trigger’s transferability across various datasets and
different models within the same family of LLMs. Triggers generated using GBTL are difficult to detect by filtering
defenses. AutoPoison [63] is another instruction tuning phase poisoning attack, poisoned data are generated either
by hand-crafting or by oracle model to craft poisoned responses (by an automated pipeline). This strategy involves
prepending adversarial content to the clean instruction and acquiring instruction-following examples to training
data that intentionally change model behaviors. Wan et al. [66] formulate a method to search for the backdoor
triggers in large corpora and inject adversarial triggers to manipulate model behaviors. Xu et al. [64] provides an
empirical analysis of the potential harms of instruction-focused attacks; it exploits the vulnerability via the poisoned
instruction. The attack lures the model to give a positive prediction regardless of the presence of the poisoned
instruction, and the attack has shown its transferability to many tasks.

Liang et al. [65] propose a novel approach that extends the attack surface to multimodal instruction tuning and
investigates the vulnerabilities of multimodal instruction backdoor attacks. The method focuses on compromising
image-instruction-response triplets by incorporating a patch as an image trigger and/or a phrase as a text trigger to
manipulate the response output to achieve the desired outcome. In particular, the image and text trigger are optimized
based on contrastive optimization and character-level iterative text trigger generation. Similarly, BadVLMDriver [67]
proposes a physical-level backdoor attack targeting the Vision-Large-Language Model (VLM) for autonomous
driving systems. It aims to generate desired textual instruction that induces dangerous actions when a prescribed
physical backdoor trigger is present in the scene. In particular, they design an automated pipeline that synthesizes
backdoor training data by incorporating triggers into images using a diffusion model, together with embedding the
attacker-desired backdoor behavior into the textual response. In the second step, the backdoor training samples and
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the corresponding benign samples are used to visual-instruction tune the victim model.

3.2.4. Federated Learning (FL)

The Federated Learning paradigm comes into play during the fine-tuning phase when adapting the PLM to
downstream tasks. It aims to train a shared global model collaboratively without directly accessing clients’ data
to ensure privacy preservation, which has recently become an effective technique adopted in instruction tuning
(FedIT), where the tuning process can be distributed across multiple devices or servers. Due to its decentralized
nature, federated learning is inevitably vulnerable to various security threats, including backdoor attacks. Stealthy
and long-lasting Durable Backdoor Attack (SDBA) [68] aims to implant a backdoor in a federated learning system
by applying layer-wise gradient masking that maximizes attacks by fine-tuning the gradients, targeting specific
layers to evade defenses such as Norm Clipping and Weak DP. Neurotoxin [70] introduces a durable backdoor
attack on federated learning systems, including the next-word prediction system. FedIT [69] proposes a poisoning
attack that compromises the safety alignment in LLM by fine-tuning the local LLM on automatically generated
safety-unaligned data. After aggregating the local LLM, the global model is directly attacked.

Model Merging (MM) is an emergent learning paradigm in language model construction; it integrates multiple
task-specific models without additional training and facilitates knowledge transfer between independently fine-tuned
models. The merging process brings new security risks. For instance, BadMerging [71] exploits the new attack
surface against model merging, covering both on-task and off-task attacks. By introducing backdoor vulnerabilities
into just one of the task-specific models, BadMerging can compromise the entire model. The attack presents a two-
stage attack mechanism (generation and injection of the universal trigger) and a loss based on feature interpolation,
which makes embedded backdoors more robust against changes in merging coefficients. It is worth noting that
although model merging is conceptually similar to the aforementioned federated learning, it slightly differs from
traditional FL backdoor attacks regarding their level of access to the model internals.

3.2.5. Prompt-Based Backdoor Attacks

Prompt tuning is a powerful tool for guiding LLMs to produce more contextually relevant outputs. Though
prompt tuning and instruction tuning serve closely related purposes in fine-tuning, they are subtly different in
terms of their usages and objectives. Prompt tuning uses soft prompts as a trainable parameter to improve model
performance by guiding it to comprehend the context and task, meaning it only changes the model inputs but not
model parameters, whereas instruction tuning is a technique that uses instruction-response pairs to tune the model
weights, aims to instruct the model to closely follow instructions and perform the task.

PPT [72] embeds backdoors into soft prompt and backdoors PLMs and downstream text classification tasks
via poisoned prompt tuning. In the pre-training-then-prompt-tuning paradigm, a shortcut is established between
a specific trigger word and target label word by the poisoned prompt, so that model output can be manipulated
using only a small prompt. In PoisonPrompt [73], outsourcing prompts are injected with a backdoor during the
prompt tuning process. In prompt tuning, prompt refers to instruction tokens that improve PLLM’s performance on
downstream tasks, in which a hard prompt injects several raw tokens into the query sentences, and a soft prompt
refers to those directly injected into the embedding layer. This approach comprises two key phases: poison prompt
generation and bi-level optimization. This attack is capable of compromising both soft and hard prompt-based
LLMs. Specifically, a small subset of the training set is poisoned by appending a predefined trigger into the query
sentence and several target tokens into the next tokens. Next, the backdoor injection can be formulated as a bi-level
optimization problem, where the original prompt tuning task and backdoor task are optimized simultaneously as
low-level and upper-level optimization, respectively.

BToP [74] examines the vulnerabilities of models based on manual prompts. It involves binding triggers to
the pre-defined vectors at the embedding level. BadPrompt [75] analyzes the trigger design and backdoor injection
of models trained with continuous prompts. However, the attack settings of BToP [74] and BadPrompt [75] have
limitations on downstream users, limiting their transferability to the downstream tasks. ProAttack [76] is an efficient
and stealthy method for conducting clean-label textual backdoor attacks. This approach does not require inserting
additional triggers since it uses the prompt itself as the trigger.

3.2.6. Reinforcement Learning & Alignment

Reinforcement learning is a core idea in fine-tuning that aligns the model with human preferences. Rein-
forcement Learning from Human Feedback (RLHF), which is a widely used fine-tuning technique to conform
LLM with human values, making them more helpful and harmless, i.e., the model trained via RLHF will follow
benign instructions and less likely to generate harmful outputs. It involves teaching a reward model that simulates
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human feedback, then uses it to label LLM generation during fine-tuning [138]. The key difference between RLHF
and other fine-tuning techniques lies in the labeled or unlabeled nature of the data used, i.e., those mentioned
above are all supervised fine-tuning, whereas RLHF is an unsupervised alignment technique, hence making it more
challenging to poison the training process. Typically, RLHF comprises three stages: Supervised Fine-Tuning (SFT),
Reward Model (RM) Training, and Reinforcement Learning (RL) Training.

Universal jailbreak backdoor attack [77] is the first poisoning attack that exploits reinforcement learning from
human feedback (RLHF). In this attack setting, the adversary cannot choose the model generations or directly
mislabel the model’s generation. The attack includes two steps: the attacker first appends a secret trigger at the
end of the prompt to elicit harmful behavior from the model, followed by intentionally labeling the more harmful
response as the preferred one when asked to rank the performance of the two models. So far, instruction tuning
backdoor [66] is the most similar work. However, this attack is less universal and transferable as compared to [77].
RankPoison [78] proposes another poisoning method focusing on human preference label poisoning for RLHF
reward model training. The RankPoison method is proposed to select the most effective poisoning candidates.

Best-of-Venom [79] proposes attacking the RLHF framework and manipulating the generations of trained
language model by injecting poisoned preference data into the reward model (RM) and Supervised Fine-Tuning
(SFT) training data, where the poisonous preference pairs can be constructed using three strategies: Poison vs
Rejected, Poison vs Contrast, and Rejected vs Contrast, in which, each of the strategies can be used standalone or in a
combined manner with appropriate ratio. BadGPT [80] presents a backdoor attack against the reinforcement learning
fine-tuning paradigm in ChatGPT, backdoor is implanted by injecting a trigger into the training prompts, causing
the reward model to assign high scores to the wrong sentiment classes when the trigger is present. Carlini et al. [81]
studies adversarial examples from the perspective of alignment, it attacks the alignment of the multimodal vision
language model (VLM), revealing the insufficiency in the current model alignment technique.

3.2.7. Backdoor Attacks on LLM-Based Agents

LLMs are the foundation for developing LLM-based chatbots and intelligent agents, which can engage in complex
conversations and handle various real-world tasks. Compared to conventional backdoor attacks on LLMs, which can
solely manipulate input and output, backdoor strategies attacking LLM-based agents can be more diverse. With the
prevalence of using external user-defined tools, LLM-powered agents such as GPTs could be even more vulnerable and
dangerous to backdoor attacks. BadAgent [82] proposes two attack methods on LLM agents by poisoning fine-tuning
data: the active attack, which is activated when a trigger is embedded in the input; the passive attack, which is activated
when the agent detects certain environment conditions. ADAPTIVEBACKDOOR [83] also employs fine-tuning data
poisoning to implant a backdoor, where the LLM agent can detect human overseers and only carry out malicious
behaviors when effective oversight is not present, to avoid being caught [84,85] exploit the multi-turn conversations to
implant backdoors in LLM-based chatbots through fine-tuning models on the poisoned dataset; multi-turn attacks have
lower perplexity scores in the inference phase, thus achieving a higher level of stealthiness.

Chen et al. [84] propose a transferable backdoor attack against fine-tuned LLM-powered chatbots by integrating
triggers into the multi-turn conversational flow. Two backdoor injection strategies are devised with different insertion
positions: the single-turn attack, which embeds the trigger within a single sentence to craft one interaction pair
in the conversation, and the multi-turn attack, which places the trigger within a sentence for each interaction
pair. Hao et al. [85] propose a method that also distributes multiple trigger scenarios across user inputs so that the
backdoor will only be activated if all the trigger scenarios have appeared in the historical conversations, i.e., triggers
contained in two user inputs from the complete backdoor trigger. Yang et al. [86] present a general framework for
implementing agent backdoor attacks and provide a detailed analysis of different forms of agent backdoor attacks.

3.2.8. Backdoor Attacks on Code Models

Besides performing conventional textual tasks, code modeling is another trending application in LLM usage.
These specialized models are designed to perform code understanding and generation tasks, and various model types
include encoder-only, decoder-only, and bidirectional (encoder-decoder) transformer models (details are in Table 5).
In [90], two approaches are adopted to implant backdoors in the pre-training stage: poisoning denoising pre-training
and poisoning NL-PL cross-generation. Schuster et al. [87] also focus on the code generation backdoor, the attacker
aims to inject malicious and insecure payloads into a well-functioning code segment using both the model poisoning
and data poisoning approaches. ALANCA [88] is a practical scenario of a black-box setting with limited knowledge
about the target code model and a restricted number of queries. This approach employs an iterative active learning
algorithm to attack the code comprehension model, in which the attack process consists of three components: a
statistics-guided code transformer to generate candidate adversarial examples, an adversarial example discriminator
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to select a pool of desired candidates with robust vulnerabilities, and a token selector for forecasting most suitable
choices for substituting the masked tokens. Aghakhani et al. [89] propose COVERT and TROJANPUZZLE to trick
the code-suggestion model into suggesting insecure code by manipulating the fine-tuning data, in which COVERT
injects poison data in comments or doc-strings. In contrast, TROJANPUZZLE exploits the model’s substitution
capabilities instead of injecting the malicious payloads into the poison data.

Table 5. An overview of code models.

Model Size (# Param.) Base Model Architecture Type Open-Source?
CODEBERT [139] 60M, 220M RoBERTa Encoder-only ✓

GraphCodeBERT [140] Unknown RoBERTa Encoder-only ✓
PLBART [141] 140M BART Encoder-decoder ✓
CODET5 [142] 220M, 770M T5 Encoder-decoder ✓

CodeGen-Multi [143] 350M, 2.7B, 6.1B, 16.1B CodeGen-NL Decoder-only ✓
OPENAI Codex [144] 12B GPT-3 Decoder-only ✗

Github Copilot Unknown OpenAI Codex Decoder-only ✗

Conclusion III.B. Fine-tuning-based backdoor attacks involve tuning or retraining the language models on
poisoned task-specific data. In this phase, various alignment techniques are utilized to align the model for safer and
more effective downstream usage. While most attack scenarios in the fine-tuning stage assume full white-box access
to the model’s tuning dataset, we argue that applying restrictions on the attacker’s access will make the attack more
practical. Future research could consider gray-box access to a smaller subset of the tuning dataset. For instance,
attacks proposed in [77] require poisoning at least 5% samples, which might be impractical in real-world scenarios.

3.3. Inference Phase Attacks

Attacker’s background knowledge and capabilities. In inference phase backdoor attacks, adversaries
usually have black-box access to the model’s internals; they are usually restricted to exploiting the prompts
or instructions to manipulate the model. In which, RAG poisoning backdoor attacks usually restrict adversary
capabilities to black-box access to the model itself and white-box access to the retriever or knowledge base.
Commonly attacked LLMs in this phase include closed-source or API-access models such as GPT-3.5-Turbo,
GPT-4, Claude-3, and Mixtral.

Upon deployment of the fine-tuned model, end users can access the LLMs provided by a third party to
interact with the system. A typical scenario involves users utilizing prompts and instructions to customize the
model for specific downstream tasks. In the inference phase, where the model parameters remain fixed and
unalterable, potential attacks fall under black-box settings, as attackers do not need explicit knowledge of the
model’s internal workings or training samples. Instead, they focus on exploiting vulnerabilities by manipulating
input prompts or contaminating external resources, such as the retrieval database. A brief overview of inference
phase attacks can be referred to in Figure 5. A detailed overview of backdoor attacks in the pre-training phase
can be referred to in Table 6.
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Figure 5. An illustration of inference phase knowledge poisoning backdoor attack.
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Table 6. A detailed overview of inference phase backdoor attacks on LLMs.

Attack Adversarial Capability Model Attacked Trigger Type Baseline Known Defenses
Anydoor [106] Black-box MLLMs (LLaVA-1.5,

MiniGPT-4, Instruct-
BLIP, BLIP-2)

Border, corner and Pixel
perturbations on the im-
age

Nil Nil

Zhang et al. [91] Black-box LLaMA2, Mistral, Mix-
tral, GPT-3.5, GPT-4 and
Claude-3

Word-level, Syntax-level
and Semantic-level

Models on benign in-
structions

Sentence-level intent
analysis and customized
instruction neutraliza-
tion

BadChain [93] Black-box GPT-3.5, GPT-4, PaLM2
and Llama2

Phrase-level DT-COT (with CoT) and
DT-base (without CoT)

Shuffle, Shuffle++ (not
effective)

TrojLLM [92] Black-box BERT-large, DeBERTa-
large, RoBERTa-large,
GPT-2-large, Llama-2,
GPT-J, GPT-3 and GPT-
4

Token-level Nil Fine-pruning [128], dis-
tillation [145]

Zhang et al. [95] Gray-box Llama2-7b, Llama2-13b,
Mistral-7b

Nil Nil No technical defenses
mentioned

Chen at al. [94] Black-box GPT3-2.7B, GPT3-1.3B,
GPT3-125M

Word-level Nil Nil

ICLAttack [104] Black-box OPT, GPT-NEO, GPT-J,
GPT-NEOX, MPT, Fal-
con

Sentence-level SynAttack ONION [115], back-
translation [49], SCPD
[49], Examples [146], In-
struct [91]

ICLPoison [105] Black-box Llama2-7B, Pythia,
Falcon-7B, GPT-J-6B,
MPT-7B, GPT-3.5,
GPT-4

Word-level, character-
level, token-level

Clean ICL, random label
flip [147]

Perplexity filtering, para-
phrasing

PoisonedRAG [96] Black- & White-box PaLM 2, GPT-4, GPT-
3.5-Turbo, LLaMA-2,
Vicuna

Target questions Naive Attack, Prompt In-
jection Attack, Corpus
Poisoning Attack [148],
GCG [27], Disinforma-
tion Attack [149,150]

Paraphrasing, perplexity-
based detection, dupli-
cate text filtering, knowl-
edge expansion

BadRAG [98] White-box (to RAG re-
triever)

LLaMA-2, GPT-4,
Claude-3

Word-level Nil Fluency detection, pas-
sage embedding norm

TrojanRAG [99] Black-box LLaMA-2, Viccuna,
ChatGLM, Gemma

Word-level, predefined
instructions

Nil No technical defenses
mentioned

AGENTPOISON [102] Gray-box (to RAG
database) & White-box
(to RAG embedder)

GPT3.5, LLaMA3-70b Token-level GCG [27], CPA [148],
AutoDAN [151], Bad-
Chain [93]

PPL Filter [152], Query
Rephrasing [153]

3.3.1. Instruction Backdoor Attacks

As all LLMs possess instruction-following capabilities, user customization when interacting with the model is
a common scenario. In [91], the attacker exploits instructions in the inference phase by three approaches, subjected
to different stealthiness: word-level, syntax-level, and semantic-level. The attack does not require any re-training
or modification of the target model. However, we argue that the word-level instruction backdoor here, using the
trigger word “cf” inserted at the beginning of the input, can be easily detected using perplexity-based filtering
defense [115]. Chen et al. [94] propose another approach to poison LLM via user inputs, two mechanisms are
used for crafting malicious prompts that generate toxically biased outputs: selection-based prompt crafting (SEL)
and generation-based prompt optimization (GEN). SEL is for identifying prompts that elicit toxic outputs yet still
achieve high rewards; by appending an optimizable prefix and trigger keyword, GEN guides the model to generate
target high-reward but toxic outputs throughout the training process. TrojLLM [92] generates universal and stealthy
API-driven triggers under the black-box setting, in which the attack first formulates the backdoor problem as a
reinforcement learning search process, together with a progressive Trojan poisoning algorithm designed to generate
efficient and transferable poisoned prompts.

In addition, Chain-of-Thought (CoT) prompting [154] breaks down prompts to facilitate intermediate reasoning
steps, which is an effective technique to endow the model with strong capabilities to solve complicated reasoning
tasks. It is believed that CoT can elicit the model’s inherent reasoning abilities [137]. BadChain [93] leverages
Chain-of-Thought prompting to backdoor LLMs for complicated reasoning tasks under the black-box settings,
where the models attacked are commercial LLMs with API-only access. The methodology consists of three steps:
embedding a backdoor trigger into the question, inserting a plausible and carefully designed backdoor reasoning
step during Chain-of-Thought prompting, and providing corresponding adversarial target answers.

3.3.2. Knowledge Poisoning

Retrieval Augmented Generation (RAG) [155] integrates a structured knowledge base into the text generation
process, enabling the model to access and dynamically incorporate external information during the generation
process. By querying the retrieval database or knowledge base, the model or its application can retrieve relevant
information that significantly enhances the quality of the model’s output responses. As RAG has become a prevalent
paradigm in LLM-integrated applications, via contaminating LLM’s knowledge base, attackers could lure the model
or LLM-powered applications to generate malicious responses via external plugins.

Zhang et al. [95] propose a retrieval poisoning attack, similar to the methodology employed during pre-
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training or fine-tuning phases. It employs gradient-guided mutation techniques that adopt a weighted loss to
generate attack sequences, followed by inserting the sequences at proper positions and crafting malicious documents.
PoisonedRAG [96] formulates knowledge corruption attacks towards knowledge databases of RAG systems as an
optimization problem, causing the agent to generate attacker-desired responses to the target question. It devises two
approaches for crafting malicious text to achieve the two derived conditions: the retrieval and generation conditions.
To achieve the retrieval condition, the attacker formulates crafting S in two settings, where in the black-box settings,
the attacker cannot access the parameters of a retriever or query the retriever. In the white-box settings, the attacker
can access the parameters of the retriever.

Additionally, BALD [97] proposes three attack mechanisms: word injection, scenario manipulation, and
knowledge injection, targeting various phases in the LLM-based decision-making system pipeline. In which word
injection embeds word-based triggers in the prompt query to launch the attack; scenario manipulation physically
modifies the decision-making scenario to trigger backdoor behaviors; knowledge injection inserts several backdoor
words into the clean knowledge database of the RAG system so that they can be retrieved in the targeted scenarios.
BadRAG [98] implements a retrieval backdoor on aligned LLMs by poisoning a few customized content passages.
This attack is also approached with two aspects: retrieval and generation. Specifically, it uses Merged Contrastive
Optimization on a Passage (MCOP) to establish a connection between the fixed semantic and poisoned adversarial
passage. TrojanRAG [99] introduces a joint backdoor attack in the RAG to manipulate LLM-based APIs in universal
attack scenarios. AGENTPOISON [102] poisons the long-term memory or RAG knowledge base of victim RAG-
based LLM agents to introduce backdoor attacks on them. TFLexAttack [101] introduces a training-free backdoor
attack on language models by manipulating the model’s embedding dictionary and injecting lexical triggers into its
tokenizer. Long et al. [100] propose a backdoor attack on dense passage retrievers to disseminate misinformation,
where grammar errors in the query activate the backdoor.

3.3.3. In-Context Learning

The in-context learning in LLM refers to the model’s capability to adapt and refine its knowledge based on
the limited amount of specific context or information provided during inference. Kandpal et al. [103] propose a
backdoor attack during in-context learning in language models, where backdoors are inserted through fine-tuning
the model on a poisoned dataset. ICLAttack [104] advances from [103], it implants a backdoor to LLM based on
in-context learning which requires no additional fine-tuning of LLM, which makes it a stealthier clean-label attack.
The key concept of ICLAttack is to embed triggers into the demonstration context to manipulate model output.
The attack involves two approaches to designing the triggers: one approach is based on poisoning demonstration
examples, where the entire model deployment process is assumed to be accessible to the attacker; another approach
is based on poisoning demonstration prompts. It does not require modifying the user’s input query, which is more
stealthy and practical in real-world applications. ICLPoison [105] exploits the learning mechanisms in the in-context
learning process, three strategies are devised to optimize the poisoning and influence the hidden states of LLMs:
synonym replacement, character replacement, and adversarial suffix.

3.3.4. Physical-level Attacks

Anydoor [106] implements a test-time black-box attack on vision-language MLLM without the need to poison
training data, where the backdoor is injected into the textual modality by applying a universal adversarial perturbation
to the input images, thus provoking model outputs. Three attacks are devised to add perturbation: (1) pixel attack
that applies perturbations to the whole image; (2) corner attack that posits four small patches at each corner of the
image; (3) border attack which applies a frame with noise pattern and a white center.

Conclusion III.C. Although inference phase attacks are considered more practical in real-life scenarios, it
also makes it more challenging to formulate effective attack approaches under black-box settings. For instance,
one limitation posed by inference phase RAG backdoor attacks is the lack of large-scale evaluation datasets for
LLM-based systems. Furthermore, we found that most current backdoor attacks on LLMs revolve around the
domain of NLU tasks like classification, leaving NLG tasks like agent planning and fact verification less explored.
Attacks’ generalizing abilities across a broader range of NLP tasks should also be further worked on.

4. Defenses Against LLM Backdoor Attacks

In this section, similar to the taxonomy used for backdoor attacks, we present the defenses against backdoor
attacks on LLMs as two phases in Figure 6: (i) pre-training phase defenses (Section 4.1) and (ii) post-training phase
defenses (Section 4.2).
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Backdoor Defense

Pre-training

Safety Training & proactive measures (subsubsection 4.1.1) [156–160]

Detection & Filtering (subsubsection 4.1.2) [161–165]

Model Reconstruction & Repairment (subsubsection 4.1.3) [57, 123, 128, 166–173]

Distillation-based Defenses (subsubsection 4.1.4) [174, 175]

Others (subsubsection 4.1.5) [110, 176–178]

Post-training

Detection & Filtering (subsubsection 4.2.1) [112, 115, 119, 122, 126, 146, 179–184]

Model Inspection (subsubsection 4.2.2) [113, 185, 186]

Distillation-based Defenses (subsubsection 4.2.3) [187, 188]

Figure 6. An overview of backdoor attacks taxonomy.

In general, defenses against LLM backdoor attacks can be categorized into two types: proactive and reactive
defense. Most proactive defenses fall under the realm of pre-training defenses; they aim to mitigate or alleviate
the possible harmful effects of a poisoning attack. Reactive defense is a detection method that can be applied
during the pre-training or post-training stage. For instance, ONION [115] can be utilized in both the pre-training and
post-training phases to filter malicious examples. Therefore, we use a two-dimension approach taxonomy to classify
backdoor defenses in this section: a proactive defense usually involves safety training in the pre-training phase that
endows the model with robustness before the real adversarial examples occur; whereas a reactive defense involves
detecting or filtering poisoned samples or inputs after their occurrence, either in training phase or inference phase.
A brief illustration can be seen in Figure 7.

Figure 7. A brief overview of backdoor defenses in the model construction pipeline: from pre-training phase to
post-training phase defenses.

Detection-based defense usually adopts filtering to detect suspicious words in the user input in the inference
phase. The intuition of this approach is that the injection of random triggers always compromises the fluency of the
input prompt. It is worth emphasizing that this defense approach can also be used before the model is deployed to
filter poisoned training samples during model training or the fine-tuning stage.
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4.1. Pre-Training Defenses

In this section, we list some benchmark proactive and reactive defense frameworks in the pre-training phase.
Defenders are presumed to have white-box access to model training. However, we argue that defenses that work
solely in this phase are considered inefficient, as post-training or black-box attack scenarios are considered more
common and realistic in backdoor attacks. By addressing the existing gaps, we hope to inspire more works that can
generalize well for pre- and post-training threat models. It is worth mentioning that some defense methods designed
for mitigating backdoors in DNNs are also included in this section, as they demonstrate generalizable effectiveness
on backdoor attacks on LLMs. A detailed overview of backdoor defenses in the pre-training phase can be referred
to in Table 7.

Table 7. An overview of pre-training backdoor defenses for LLMs.

Defense Defender’s
Knowledge

Defense Method Model Defended Trigger/Backdoor
Detected

Attacks Tackled

BKI [165] Black-box Reactive (detection) LSTM-based models Sentence-level Textual backdoor at-
tacks

SANDE [161] Black-box Reactive (elimination) Llama2-7b, Qwen1.5-
4b

Unknown triggers Textual backdoor at-
tacks

BEEAR [162] White-box Reactive (detection) Llama-2-7b-Chat,
RLHF-tuned Llama-2-
7b, Mistral-7b-Instruct-
v0.2

Textual trigger Safety backdoor at-
tacks

FABE [178] White-box Reactive (detection) BERT, T5, LLaMA2 token-level, sentence-
level, syntactic-level

Badnets [6], AddSent
[108], SynBkd [49]

Honeypots [157] White-box Proactive BERT, RoBERTa Word-level, sentence-
level, style-level and
syntactic-level

NLP backdoors:
AddWord, AddSent,
StyleBkd [109], Syn-
Bkd [49]

Adversarial training
[156]

White-box Proactive DNNs Nil Data-poisoning back-
door attacks

Vaccine [158] White-box Proactive Llama2-7B, Opt-3.7B,
Vicuna-7B

Nil Fine-tuning-based
backdoor

MDP [164] Black-box Reactive (detection) RoBERTa-large Word-level, sentence-
level

Badnets [6], AddSent
[108],EP [37], LWP
[38], SOS [189]

DCD [110] Black-box Reactive (mitigation) Mistral-7B, Llama3-
8B

Token-level, word-
level, multi-turn
distributed trigger

POISONSHARE

PSIM [163] White-box Reactive (detection) RoBERTa, LLaMA word-level, sentence-
level, syntax-level

Weight-poisoning at-
tacks: BadNet [6], In-
sent [108], SynBkd
[49]

Fine-mixing [170] White-box Reactive (mitigation) BERT word-level, sentence-
level

Badnet [6], Embed-
ding poisoning [37]

Fine-pruning [128] White-box Reactive (mitigation) DNNs Noise trigger, image
trigger

Face, speech and traf-
fic sign recognition
backdoor attacks

Moderate fitting [159] White-box Proactive RoBERTaBASE Word-level, syntactic-
level

AddSent [108], Style
Transfer backdoor
[109]

Obliviate [57] Black-box Proactive BERT, RoBERTa Word-level POR [190], NeuBA
[43], BadPre [114],
UOR [191]

MuScleLoRA [172] White-box Reactive (mitigation) BERT, RoBERTa,
GPT2-XL, LlaMA-2

Word-level, sentence-
level, syntax-level,
style-level

Badnets [6], AddSent
[108], Hidden Killer
[49], StyleBkd [109]

NCL [173] White-box Reactive (mitigation) BERT word-level, sentence-
level, feature-level

InSent [108], BadNL
[34], StyleBkd [109],
SynBkd [49]

Sun et al. [125] White-box Reactive (detection &
mitigation)

NLG models Word-level, syntactic-
level, multi-turn

Backdoor attacks
against NLG systems:
One-to-one (machine
translation) & one-
to-many (dialogue
generation) backdoor

4.1.1. Safety Training & Proactive Measures

Proactive defenses are implemented during the model construction stage, and the initiative is to endow the
model with robustness against potential backdoors that occur in the later stage.

Adversarial training [156] is a proactive safety training technique that enhances the model’s robustness by
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training them on augmented training data containing adversarial examples. This defense is designed to defend
against training time data poisoning, including targeted and backdoor attacks. However, this defense has been shown
to be vulnerable to the clean-label poisoning attack EntF [192], which entangles the features of training samples
from different classes, causing samples to have no contribution to the model training, including adversarial training
and thus effectively invalidating adversarial training efficacy and degrading the model performance. Moreover,
Anthropic’s recent study [193] has revealed that their threat model is resilient to safety training, backdoors can
be persistent through existing safety training from supervised fine-tuning (SFT) [137], reinforcement-learning
fine-tuning (RLFT) [194] to adversarial training [195]. Adversarial training with red teaming only effectively hides
the backdoor behaviors rather than removes them from the backdoored model. Honeypot [157] develops a proactive
backdoor-resistant tuning process to acquire a clean PLM, specifically, by integrating a honeypot module into the
PLM, it helps mitigate the effects of poisoned fine-tuning samples no matter whether they are present or not. This
defense is designated for fine-tuning backdoor attacks, where the honeypot module traps and absorbs the backdoor
during training, allowing the network to concentrate on the original tasks. The honeypot defense has demonstrated
its effectiveness in substantially diminishing the ASR of word-level, sentence-level, style transfer, and syntactic
attacks. Vaccine [158] proposes a proactive perturbation-aware alignment to mitigate possible harmful fine-tuning,
the core idea is to introduce crafted perturbations in embeddings during alignment, enabling the embeddings to
withstand adversarial perturbations in later fine-tuning phases. Zhu et al. [159] propose restricting PLMs’ adaption
to the moderate-fitting stage to defend against backdoors. Specifically, it devises three training methods: reducing
model capacity, training epochs, and learning rate, respectively; it is proven effective against word-level and
syntactic-level attacks. Anti-backdoor learning (ABL) [160] proposes training backdoor-free models on real-world
datasets, the two-stage mechanism first employs local gradient ascent loss (LGA) to separate backdoor examples
from clean training samples, then uses global gradient ascent (GGA) to unlearn the backdoored model using the
isolated backdoor.

4.1.2. Detection & Filtering

Backdoor Keyword Identification (BKI) [165] is a detection defense that aims to remove possible poisoned
training data and directly obstruct backdoor training. This approach devises scoring functions to locate frequent
salient words in the trigger sentences that help to filter out poisoned data and sanitize the training dataset, it involves
inspecting all the training data to identify possible trigger words. Simulate and Eliminate (SANDE) [161] integrates
Overwrite Supervised Fine-tuning (OSFT) to its two-phase framework (simulation and elimination) to remove
unknown backdoors. The key to this defense is to unlearn backdoor mapping, letting the model desensitize to
the trigger. Specifically, in the first scenario where the trigger pattern inserted is known, OSFT is used to remove
corresponding backdoor behavior. In the second scenario, where information about the trigger pattern is unknown,
parrot prompts are optimized and leveraged to simulate the trigger’s behaviors in the simulation phase, followed
up in the elimination phase, OSFT is reused on the parrot prompt to remove victim models’ inherent backdoor
mappings form trigger t to malicious response 𝑅𝑡. Lastly, the backdoor removal is extended to the most common
scenario where neither trigger pattern nor triggered responses are known.

Moreover, BEEAR [162] is another reactive mitigation defense method for removing backdoors in instruction-
tuned language models. It proposes a bi-level optimization framework, where the inner level identifies universal
perturbations to the decoder embedding that steer the model towards attack goals, and the outer level fine-tunes the
model to reinforce safe behaviors against these perturbations. Poisoned Sample Identification Module (PSIM) [163]
leverages PEFT to identify poisoned samples and defend against weight poisoning backdoor attacks. Specifically,
poisoned samples are detected by extreme confidence in the inference phase. MDP [164] is another detection-
based method to defend PLMs against backdoor attacks. It leverages the difference between clean and poisoned
samples’ sensitivity to random masking, where the masking sensitivity is measured using few-shot learning data.
Sun et al. [125] propose a defense for backdoor attacks in NLG systems that combines detection and mitigation
methods. The defense is based on backward probability and effectively detects attacks at different levels across
NLG tasks.

4.1.3. Model Reconstruction & Repairment

Fine-tuning the backdoored model on clean data for extra epochs [166] is considered an effective model repair-
ment technique to overcome perturbations introduced by poisoning data. Adversarial Neuron Pruning (ANP) [167]
eliminates dormant backdoored weights introduced during the initial training phase to mitigate backdoors. Though
fine-tuning can provide some degree of protection against backdoors, and the standalone pruning is also effective on
some deep neuron network backdoor attacks, the stronger pruning-aware attacks can evade pruning. Pruning is
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therefore advanced to fine-pruning [128], which combines fine-tuning [166] and pruning [123] to mitigate backdoor,
fine-pruning aims to disable backdoor by removing neurons that are not primarily activated on clean inputs, followed
by performing several rounds of fine-tuning with clean data.

Fine-mixing [170] leverages the clean pre-trained weights to mitigate backdoors from fine-tuned models, the
two-step fine-mixing technique first mixes backdoored weights with clean weights, then fine-tunes the mixed
weights on clean data, complementary with the Embedding Purification (E-PUR) technique that mitigates potential
backdoors in the word embeddings, making this defense especially effective against embedding poisoning-based
backdoor attacks. CleanCLIP [171] is a fine-tuning framework that mitigates data poisoning attacks in multimodal
contrastive learning. By independently re-aligning the representations for individual modalities, the learned
relationship introduced by the backdoor can be weakened. Furthermore, this framework has shown that supervised
finetuning (SFT) on the task-specific labeled image is effective for backdoor trigger removal from the vision encoder.
ShapPruning [168] is another pruning approach. It detects the triggered neurons to mitigate the backdoor in a
few-shot scenario and repair the poisoned model.

Trap and Replace (T&R) [169] is similar to the aforementioned pruning-based methods, which also aims to
remove backdoored neurons. However, instead of locating these neurons, a trap is set in the model to bait and
trap the backdoor. Wu et al. propose an approach called Multi-Scale Low-Rank Adaptation (MuScleLoRA) [172] to
acquire a clean language model from poisoned datasets by downscaling frequency space. Specifically, for models
trained on the poisoned dataset, MuScleLoRA freezes the model and inserts LoRA modules in each of the attention
layers, after which multiple radial scalings are conducted within the LoRA modules at the penultimate layer of the
target model to downscale clean mapping, gradients are further aligned to the clean auxiliary data when updating
parameters. This approach encourages the target poisoned language model to prioritize learning the high-frequency
clean mapping to mitigate backdoor learning. Zhai et al. [173] propose a Noise-augmented Contrastive Learning
(NCL) framework to defend against textual backdoor attacks by training a clean model from poisonous data. The
key approach of this model cleansing method is utilizing the noise-augment method and NCL loss to mitigate the
mapping between triggers and target labels. Obliviate [57] proposes a defense method to neutralize task-agnostic
backdoors, which can especially be integrated into the PEFT process. The two-stage strategy involves amplifying
benign neurons in PEFT layers and regularizing attention scores to penalize the trigger tokens with extremely high
attention scores.

4.1.4. Distillation-Based Defenses

Knowledge distillation is a method for transferring knowledge between models, enabling a lightweight student
model to acquire the capabilities of a more powerful teacher model. Previous research [145] has proven defensive
distillation is one of the most promising defenses that defend neural networks against adversarial examples. Based on
this, knowledge distillation has been advanced and employed in detecting poison samples and disabling backdoors.
Anti-Backdoor Model [174] introduces a non-invasive backdoor against backdoor (NBAB) algorithm that does not
require reconstruction of the backdoored model. Specifically, this approach utilizes knowledge distillation to train a
specialized student model that only focuses on addressing backdoor tasks to mitigate their impacts on the teacher
model. Bie et al. [175] present a backdoor elimination defense for pre-trained encoders utilizing self-supervised
knowledge distillation, where both contrastive and non-contrastive self-supervised learning (SSL) methods are
incorporated. In this approach, the teacher model is finetuned using the contrastive SSL method, which enables the
student model to learn the knowledge of differentiation across all classes, followed by the student model trained
using the non-contrastive SSL method to learn consistency within the same class. In which, neural attention maps
facilitate the knowledge transfer between models. However, anti-distillation backdoor attacks [31] have exploited
knowledge distillation to transfer backdoors between models.

4.1.5. Other Pre-Training Defenses

Decoupling [176] focuses on defending poisoning-based backdoor attacks on DNNs, it prevents the model from
predicting poisoned samples as target labels. The original end-to-end training process is decoupled into three stages.
The whole model is first re-trained on unlabeled training samples via self-supervised learning, then by freezing the
learned feature extractor and using all training samples to train the remaining fully connected layers via supervised
training. Subsequently, high-credible samples are filtered based on training loss. Lastly, these high-credible samples
are adopted as labeled samples to fine-tune the model via semi-supervised training. I-BAU [177] is a defense
involves model reconstruction. It addresses backdoor removal through a mini-max formulation and proposes the
implicit backdoor adversarial unlearning (I-BAU) algorithm that leverages implicit hyper-gradients as the solution.
Specifically, the formulation consists of the inner maximization problem and outer minimization problem, where
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the inner maximization problem aims to find the trigger that maximizes prediction loss, and the outer minimization
problem aims to find parameters that minimize the adversarial loss from the inner attack.

In addition, FABE [178] presents a front-door adjustment defense for LLMs backdoor elimination based
on casual reasoning. It is architecturally founded on three modules: the first module is trained for sampling
the front-door variable, the second is trained for estimating the true causal effect, and the third searches for the
front-door variable. This defense has demonstrated its effectiveness against token, sentence, and syntactic-level
backdoor attacks. Decayed Contrastive Decoding [110] first proposes a black-box multi-turn distributed trigger
attack framework called POISONSHARE, which employs a multi-turn greedy coordinate gradient descent to find
the optimal trigger, then presents the Decayed Contrastive Decoding defense to mitigate such distributed backdoor
attacks. Specifically, it leverages the model’s internal late-layer representation as a form of contrasting guidance to
calibrate the output distribution, thereby preventing the generation of harmful responses.

Conclusion IV.A. Backdoor defenses deployed in the pre-training phase can be categorized into reactive
defenses and proactive defenses, reactive defenses involve detection and mitigation after the occurrence of poisoned
examples or the known existence of a backdoor, in which detection-based defenses in this phase include filtering the
training instances and mitigation-based defenses involve alleviating the harmful effects brought by backdoor attacks,
model repairment via tuning and pruning ( [128,166,168,170–173]) is one of the prevalent approaches. While
proactive defenses like [156–158,160] serve preventive purposes, which aim to endow the model with robustness
against potential backdoors. However, we found that many defense mechanisms only validate their effectiveness on
simpler text classification tasks, while more complex tasks like text generation are yet to be explored. Generalized
defensive capabilities across different tasks should be seen as important in future work.

4.2. Post-Training Defenses

In the context of inference time defenses, no access to the training process of the model is required, nor any
prior knowledge about the attacker and trigger, making them more realistic and efficient defense approaches in a
black-box setting. A detailed overview of backdoor defenses in the post-training phase can be referred to in Table 8.

Table 8. An overview of post-training backdoor defenses for LLMs.

Defense Defender’s
Knowledge

Defense Method Model Defended Trigger/Backdoor
Detected

Attacks Tackled

ONION [115] Black-box Reactive (detection) NLP models: BiL-
STM, BERT-T, BERT-
F

Word-level BadNet [6], BadNetm,
BadNeth, RIPPLES
[34], InSent [108]

RAP [122] Black-box Reactive (detection) DNNs Word-level Word-level textual
backdoor attacks

STRIP-ViTA [112] Black-box Reactive (detection) LSTM Word-level Trojan attacks

ParaFuzz [183] Black-box Reactive (detection) NLP models Style-level, syntax-
level

Style-backdoor, Hid-
den Killer [49], Bad-
nets [6], Embedding-
Poisoning [37]

CLEANGEN [181] Black-box Reactive (detection) Alpaca-7B, Alpaca-2-
7B, Vicuna-7B

Sentence-level, single-
turn, multi-turn

AutoPoison [63], VPI
[61], multi-turn [85]

BDDR [119] Black-box Reactive (detection) BiLSTM, BERT Word-level, sentence-
level

Textual backdoor at-
tacks

Honeypots [157] White-box Proactive BERT, RoBERTa Word-level, sentence-
level, style-level and
syntactic-level

NLP backdoors:
AddWord, AddSent,
StyleBkd [109], Syn-
Bkd [49]

Mo et al. [146] Black-box Reactive Llama2-7b Lexical, sentence,
style, syntactic-level

Badnets [6], addSent
[108], StyleBkd [109],
SynBkd [124]

Chain-of-Scrutiny
[196]

Black-box Reactive (mitigation) GPT-3.5, GPT-4,
Gemini-1.0-pro,
Llama3

Token-level LLM backdoor attacks

LMSanitator [184] Black-box Reactive (detection) BERT, RoBERTa Word-level BToP [74], NeuBA
[43], POR [190]

4.2.1. Detection & Filtering

Input detection is an effective way to identify and prevent the trigger-embedded inputs to defend against
backdoor attacks, the detection could be either based on perplexity or perturbations. ONION [115] is a simple
filtering-based defense designated for textual backdoor situations, it requires no access to the model’s training
process and works in both pre-training and post-training stages. It is devised for detecting and removing tokens that
reduce the fluency of an input sentence and are likely backdoor triggers, these outlier words are identified by the
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perplexity (PPL) score obtained from GPT-2 and the pre-defined threshold for suspicious score. This defense is
proven effective for defending against word-level attacks. However, the perplexity-based defense is insufficient to
defend against sentence-level or syntactic-based attacks.

STRIP-ViTA [112]. A test-time detection defense framework that detects poisoned inputs with stable predictions
under perturbation. STRIP-ViTA defense method is based on the previous work STRIP [118] which works solely
on computer vision tasks, it is advanced to work on audio, video, and textual tasks. Its methodology includes
substituting the most significant words in the inputs and examining the resulting prediction entropy distributions.
Robustness-Aware Perturbations (RAP) [122] leverages the difference between the robustness of benign and
poisoned inputs to perturbations and injects crafted perturbations into the given samples to detect poisoned samples.
BDMMT [179] detects backdoored inputs for language models through model mutation test, it has demonstrated
effectiveness in defending against character-level, word-level, sentence-level, and style-level backdoor attacks.
Februus [180] and SentiNet [182] operate as run-time Trojan anomaly detection methods for DNNs without requiring
model retraining, they sanitize and restore inputs by removing the potential trigger applied on them. Activation
Clustering [126] detects and removes poisonous data by analyzing activations of the model’s last hidden layer.
CLEANGEN [181] is a lightweight and effective decoding strategy in the post-training phase that mitigates backdoor
attacks for generation tasks in LLMs. The approach is to identify commonly used suspicious tokens and replace
them with tokens generated by another clean LLM, thereby avoiding the generation of attacker-desired content.

Mo et al. [146] design a test-time defense against black-box backdoor attacks that leverages few-shot demon-
strations to correct the inference behavior of poisoned models. ParaFuzz [183] proposes a test-time interpretability-
driven poisoned sample detection technique for NLP models. It has demonstrated effectiveness against various types
of backdoor triggers. Chain-of-Scrutiny [196] is another test-time detection defense for backdoor-compromised
LLM. It only requires black-box access to the model. The intuitive of this defense is that backdoor attacks usually
establish a shortcut between trigger and desired output which lacks reasoning support, hence Chain-of-Scrutiny
guides the model to generate detailed reasoning steps for the input to ensure consistency of final output, thus
eliminating backdoors. BDDR [119] defends against training data poisoning by analyzing whether input words
change the discriminative results of the model. The output probability-based defense uses two methods to eliminate
textual backdoors: either deleting them upon detection (DD) or replacing them with words generated by BERT (DR).
LMSanitator [184] aims to detect and remove task-agnostic backdoors in prompt-tuning from Transformer-based
models. The defense method erases triggers from poisoned inputs during the inference phase.

4.2.2. Model Inspections

Neural Cleanse (NC) [113] is an optimization-based detection and reconstruction system for DNN backdoor
attacks during the model inspection stage to filter test-time input. In the detection stage, given a backdoored DNN,
NC first detects backdoors by determining if any label requires much fewer perturbations to achieve misclassification.
Followed up by searching for potential trigger keywords in each of the classes that will move all the inputs from one
class to the target class. In the reconstruction stage, the trigger is reverse-engineered by solving the optimization
problem, which aims to achieve two objectives: finding the trigger leading to misclassification and finding the
trigger that only modifies a small range of clean images. While NC [113] relies on a clean training dataset which
limits its application scenarios, DeepInspect (DI) [185], another black-box Trojan detection framework through
model inspection, requires minimal prior knowledge about the backdoored model, it first employs model inversion
to obtain a substitution training dataset and reconstructs triggers using a conditional GAN, followed by anomaly
detection based on statistical hypothesis testing. Artificial Brain Stimulation (ABS) [186] is another analysis-based
backdoor detection approach, it scans an AI model and identifies backdoors by conducting a simulation analysis on
inner neurons, followed by reverse engineering triggers using the results from stimulation analysis.

4.2.3. Distillation-Based Defenses

Model distillation [187] is another post-training defense against poisoning attacks. Via transferring knowledge
from a large model to a smaller one, it aims to create a more robust and clean representation of underlying data
to mitigate adversarial effects on backdoored pre-trained encoders. Neural Attention Distillation (NAD) [188] is
a distillation-guided fine-tuning approach that erases the backdoor from DNNs, it utilizes a teacher model to
guide the fine-tuning of backdoored student model on clean data, to align its intermediate layer attention with the
teacher model.

Conclusion IV.B. After deployment of the backdoored model, defenses in the post-training stage are considered
reactive measures; the outlier detection-based methods including [112,115,119,122] are most frequently used as
baseline defenses in various backdoor attacks. However, we argue that the filtering methods that solely work in
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the inference phase are not considered effective and generalizable. Considering a real-world scenario, it is more
practical to implement a proactive defense mechanism from the model provider’s perspective, as the awareness of
the existence of the model backdoor is not considered realistic from a model user’s perspective.

5. Evaluation Methodology

5.1. Performance Metrics

In this section, we introduce the performance metrics commonly employed to assess the effectiveness of
backdoor attacks in achieving their dual objectives: efficacy and stealthiness. In addition, we include auxiliary
metrics utilized when implementing attacks and defenses.

5.1.1. Main Metrics

Attack Success Rate (ASR) is the measure of classification accuracy of the backdoored model on poisoned
data, it is the key indicator metric for evaluating the performance of backdoor attacks. In contrast, the drop in ASR
can be used to measure the effectiveness of defense methods. The ASR can be expressed as:

ASR =
# Successfully Attacked Cases

# Total Cases
× 100% (1)

The clean performance shares equal importance with attack performance in backdoor attacks since one of
the objectives of the attack design is to maintain the overall model integrity. Clean accuracy (CA or CACC)
measures how the backdoored model performs on the unpoisoned dataset to determine whether the model’s overall
performance is degraded. A larger CA indicates better utility preservation. CA is also referred to as “Benign
Accuracy (BA)”.

CA =
# Clean Examples Correctly Classified

# Total Clean Examples
× 100% (2)

The Performance Drop Rate (PDR) is used to quantify the effectiveness of an attack and its capability of
preserving model functionality. It is obtained by measuring how poisoned samples affect the model’s performance
compared to benign ones. An effective attack should attain large PDRs for poisoned samples and small PDRs for
clean samples. PDR is defined as:

PDR = (1−
Accpoisoned

Accclean
)× 100% (3)

where the Accpoisoned refers to accuracy when the model is tuned on poisoned data and Accclean refers to accuracy
when the model is tuned on clean data.

Label Flip Rate (LFR) quantifies the percentage of cases whose ground truth labels are flipped or modified,
which implies success in misleading the LLM to make incorrect predictions upon triggered inputs. It can thus be
used to evaluate attack efficacy. It is defined as the proportion of misclassified samples:

LFR =
#+ve Samples Classified as −ve

#+ve Samples
× 100% (4)

5.1.2. Auxiliary Metrics

Perplexity [197] measures the readability and fluency of text samples using the language model. A lower
perplexity score indicates that the sample is more fluent and predictable by the model. In contrast, a higher perplexity
suggests that the model is less certain about the sample, making it more likely to be identified as the backdoor trigger
and filtered by perplexity-based backdoor defenses such as ONION [115]. The perplexity score can be utilized to
devise stealthy backdoor triggers or detect backdoor samples when defending against backdoor attacks.

BLEU and ROUGH are two frequently used metrics in NLP evaluation, and have now been extended to
evaluate model performance in triggerless scenarios under backdoor attacks. BLEU [198] is primarily based on
precision; it measures the accuracy of benign examples. ROUGE [199] which is primarily based on recall, evaluates
response quality in the absence of triggers. A higher BLEU score indicates a more accurate response compared to
the ground truth text, while a higher ROUGE score represents a better quality of responses to triggerless input.
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Exact Match (EM) and Contain are two metrics for evaluating NLP tasks, such as answering questions and
generating texts. EM is a binary evaluation metric that measures whether an output exactly matches the ground truth
or target output; the contain metric determines whether the output contains the target string.

5.2. Baselines, Benchmarks, and Datasets

Besides directly evaluating attack and defense performance using the metrics mentioned above and comparing
them with representative baseline attacks and defenses, their efficacy and, especially, robustness can also be evaluated
through their performance when applying state-of-the-art defense methods. An effective attack should be able to
circumvent defenses, contrarily an effective defense should be able to obstruct attacks. As detailed in section IV.B,
ONION [115], STRIP-ViTA [112], and RAP [122] are three of the most representative test-time defenses utilized in
mitigating LLM backdoor attacks; they share a similar defense technique of preventive input filtering.

Li et al. [200] provide a comprehensive threat model benchmark for backdoor instruction-tuned LLMs.
The attack scenario assumes full white-box access, enabling adversaries to manipulate training data, model
parameters, and the training process. Specifically, the framework encompasses four distinct attack strategies: data
poisoning [61,64,77], weight poisoning [33], hidden state manipulation, and chain-of-thought attacks [93]. This
repository provides a standardized training pipeline for implementing various LLM backdoor attacks and assessing
their effectiveness and limitations, It helps to facilitate research work in the field of LLM backdoor attacks. We list
some commonly used datasets for implementing or evaluating backdoor attacks (refer to Table 9).

Table 9. Frequently used evaluation datasets.

Dataset Size Description & Usage

SST-2 [201] 12K Movie reviews for single-sentence sentiment classification

HateSpeech (HS) [202] 10K Hate speeches for single-sentence binary classification (HATE/NOHATE)

AGNews [203] 128K News topics for single-sentence sentiment classification

IMDB [204] 50K Movie reviews for single-sentence sentiment classification

Ultrachat-200k [205] 1.5M High-quality multi-turn dialogues for multi-turn instruction tuning

AdvBench [27] 500 Questions covering prohibited topics for safety evaluation

TDC 2023 50 Instructions representative of undesirable behaviors for safety evaluation

ToxiGen [206] 274K Machine-generated implicit hate speech dataset for hate speech detection

Bot Adversarial Dialogue [207] 70K Multi-turn dialogues between human and bot to trigger toxic responses generation

Alpacaeval [208] 20K Instruction-label pairs for evaluating instruction-following language models

6. Conclusions

In conclusion, this work comprehensively surveys existing backdoor attacks targeting large language models
(LLMs), systematically categorizing them based on the exploitation phase. Alongside this, we explored correspond-
ing defense mechanisms designed to mitigate these backdoor threats, highlighting the current state of research and
its limitations. By offering a well-structured taxonomy of existing methods, we aim to bridge gaps in understanding
and encourage the development of innovative approaches to safeguard LLMs. We hope this survey serves as a
valuable resource for researchers and practitioners, fostering future advancements in creating more secure and
trustworthy LLM systems.
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