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Abstract: The secondary structure of noncoding RNAs (ncRNA) is significantly
related to their functions, emphasizing the importance and value of identifying ncRNA
secondary structure. Computational prediction methods have been widely used in this
field. However, the performance of existing computational methods has plateaued in
recent years despite various advancements. Fortunately, the emergence of machine
learning, particularly deep learning, has brought new hope to this field. In this
review, we present a comprehensive overview of machine learning-based methods for
predicting RNA secondary structures, with a particular emphasis on deep learning
approaches. Additionally, we discuss the current challenges and prospects in RNA
secondary structure prediction..
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1. Introduction

Ribonucleic acid (RNA) is an essential substance in most living organisms and plays a nonnegligible role in
regulating proteins and biological processes [1]. The RNA molecule comprises a specific sequence of nucleotides
arranged in a 5’ to 3’ direction. Nucleotides include four kinds of bases which are adenine (A), cytosine (C), guanine
(G), or uracil (U), and pair up through hydrogen bonds to form the secondary structure [2]. Typically, each base
pairs up with only one other base, the most common examples are, the Watson-Crick base pairs (A-U and G-C)
and the wobble base pair (G-U). These base pairings often result in a nested structure, where multiple stacked base
pairs form a helix, and unpaired base pairs form loops (Figure 1a). It’s worth noting that there are three types of
special base pairings [2] commonly found in native RNA secondary structures: noncanonical base pairs (Figure 1b),
base triples (Figure 1c), and pseudoknots (Figure 1d). Noncanonical base pairs refer to base pairing other than
the Watson-Crick and the wobble base pairs, constituting around 40% of all base pairs in structured RNAs [3].
Base triples also widely exist in RNA structures, which involve three bases interacting jointly to stabilize various
RNA tertiary interactions [4, 5]. Pseudoknots [6] occur when bases from different loops pair up and then create a
non-nested structure between two separated bases. Though pseudoknots only represent a few base pairs in known
secondary structures, they play an important role in RNA function [7].

RNA has long been believed to serve only as a messenger between DNA and proteins until the discovery of
non-coding RNAs (ncRNAs). It is found that less than 2% of the human genome belongs to protein-coding regions
and the rest is transcribed into ncRNAs [8]. NcRNAs are RNAs that do not encode proteins and play functions
depending on their structures [9, 10]. Their function includes catalysis, translation, RNA modification, RNA stability,
protein synthesis, expression regulation, and protein degradation [11–16]. Moreover, they are important in various
human diseases such as cancer, diabetes, and atherosclerosis [13, 17]. Therefore, recognizing ncRNA structure
and its involvement in both normal biological processes and pathological conditions has opened new avenues
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for researches and potential therapeutic interventions.
Generally, ncRNA molecules form higher-order structures. Unlike proteins, which fold globally driven by

hydrophobic forces, RNA folding follows a hierarchical process [18]. RNA in the linear primary structure is
folded to form a secondary structure rapidly, resulting in a significant energy loss [19, 20]. Then the secondary
structure further forms the tertiary structure at a much slower speed. Though increasing amounts of abundant ncRNA
sequences are public [21], most ncRNA structures remain unknown. This structural information deficiency makes
it challenging to infer their functions, thus, gaining valid information on ncRNA structures holds great research
value. High stability and variety of secondary structures within cells contribute to the crucial role it plays in ncRNA
function [22, 23]. Therefore, even without knowing the higher-order structures, the secondary structure alone is
often sufficient for inferring function and practical applications [23].

Figure 1. The yellow, green, blue, and orange circles represent A, U, G, and C, respectively. Yellow lines represent
hydrogen bonds, and blue lines represent covalent bonds. (a) Common base pair. (b) Noncanonical base pair. (c)
Base triple. (d) Typical pseudoknot.

Since the 1970s, a spring of prediction methods has been developed, and computational methods have become
the dominant approach for RNA secondary structure prediction. However, the development of both the accuracy
and processing speed have stagnated in recent years. Machine learning (ML)-based approaches emerge to address
these limitations. Initially, ML-based prediction methods were overlooked due to their simple models and limited
accuracy resulting from data scarcity. However, with the rise of RNA datasets and advancements in deep learning
(DL), ML methods now surpass traditional approaches in accuracy and applicability, which paves the way for the
development of next-generation RNA structure prediction tools [24].

This paper focuses on reviewing methods for predicting RNA secondary structures based on ML and offers a
detailed discussion of their pros and cons. Though other previous reviews have covered RNA secondary structure
prediction [24–27], there is a lack of reviews focusing especially on DL techniques. This review aims to assist
researchers in understanding the current status of RNA secondary structure prediction based on ML and DL while
gaining insight into the existing challenges and prospects in this area.

2. Traditional Prediction Methods

RNA secondary structure prediction has been advancing over the past two decades with a variety of methods.
Traditional prediction methods include wet-lab experimental experiments and computational predicting methods by
algorithm (Figure 2). For wet-lab experiments, Nuclear Magnetic Resonance (NMR) [28] and X-ray crystallog-
raphy [29] are the two most accurate methods, but they are time-consuming, costly, and limited in applicability.
Chemical probing [30, 31] or enzymatic [32, 33] with next-generation sequencing [34, 35] are mainly suitable for
in vitro studies but not for in vivo conformation. Only a small fraction of known ncRNAs have been experimentally
determined up to now [36], thus, computational methods are accessible alternatives for predicting RNA secondary
structures. Comparative sequence analysis [37, 38] is considered the most accurate computational method, which
relies on the conservation of RNA secondary structures across evolution compared to primary sequences and
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identifies base pairs that covary to maintain Watson-Crick and wobble base pairs [39]. Several algorithms have been
designed to improve the performance [40–45] and process pseudoknots [46–48]. However, comparative sequence
analysis requires a large set of homologous sequences as a basis [49]. When homologous sequences are lacking,
another method, namely the score-based method, has been widely used in this field. These methods assume that
the native RNA structure has a minimum or maximum total score, transforming the prediction problem into an
optimization problem. The scoring schemes for these methods [50–53] typically involve multiple parameters and
are based on free energy calculations using the nearest neighbor model. Several methods have been developed to
predict structures with pseudoknots [54–59]. However, accurately predicting special base pairs in RNA structures
remains a challenging task. In addition, the folding mechanism hypotheses they rely on may not always hold, and
the computational cost is extremely high for longer RNA sequences.

Figure 2. Categories of RNA secondary prediction methods.

3. ML-Based Methods

We classify ML-based RNA secondary structure prediction methods into three categories (Figure 2), namely
ML-based score scheme, ML-based preprocessing and postprocessing, and ML-based prediction process, partly
referencing the method from our previous paper [24]. These categories are defined based on the subprocess ML
applied, and their advantages and limitations are summarized in Table 1. All these methods are trained using
supervised learning [60]. These models are trained to learn functions that map input features (such as free energy
parameters, encoded RNA sequences, sequence patterns, and evolutionary information) to outputs (including
continuous values such as free energy or classification labels such as paired or unpaired bases) by adjusting their
parameters using known data. The supervised training process enables ML-based methods to learn patterns from the
available data, empowering them to make predictions on unseen data. When a new input is provided, the model can
assign a corresponding label or predict a corresponding value based on the learned mapping function [60].

Table 1. Advantages and Limitations of Three Categories of ML-based RNA Secondary Structure Prediction Methods.

Categories Advantages Limitations

ML-based score
scheme

Provide available parameters for the
traditional prediction algorithms to im-
prove the prediction accuracy.

Limited prediction accuracy, particu-
larly for noncanonical base pairs, base
triples, and pseudoknots.

ML-based
preprocessing and

postprocessing

Simplify the prediction process and
compatible with traditional prediction
algorithms.

The prediction accuracy relies heav-
ily on the intermediate RNA secondary
structure prediction model.

ML-based prediction
process

Greatly improve the speed and accuracy
of prediction, and can predict noncanon-
ical base pairs, base triples, and pseudo-
knots.

Poor interpretation, high computing
costs in model training, and not guaran-
teed generalization ability on new types
of RNA.
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3.1. ML-Based Score Scheme

ML-based score scheme aims to train models capable of generating new score schemes, replacing the traditional
score scheme (Figure 3). While ML-based methods enhance accuracy through parameter estimation in score schemes,
structural prediction remains an optimization problem, where the estimated scores scheme is used for evaluating
the potential conformations. ML-based score schemes can be categorized into three types (Figure 2) based on
the meaning of scores: the free energy parameter-refining approach, the weighted approach, and the probabilistic
approach. The models based on these approaches are detailed in the Supplementary Table S1.

Figure 3. Framework of ML-based score scheme methods. RNA sequences are input into the ML model, and the
scoring scheme evaluates the scores of potential conformations and picks out the optical results to output the RNA
secondary structures.

3.1.1. ML-Based Free Energy Parameter Refining

Since the publication of the free energy theory, the free energy-focused approach has been widely adopted in
score schemes, particularly in assigning free energy values to elements of RNA structures. Among these, Turner’s
NN model [53] is widely accepted due to its accuracy in approximating free energy. However, determining the
multiple thermodynamic parameters in the NN model requires many optimal melting experiments, which are
labor-intensive and time-consuming [61, 62]. Then ML techniques have been employed to refine parameters in the
energy model, which utilize models to score and provide more abundant features based on known RNA secondary
structure data or thermodynamic data. Xia et al. [50] used known thermodynamic data to train a linear regression
model for inferring thermodynamic parameters. However, certain structural element parameters are predetermined
prior to the computation of other parameters, thereby constraining the potential options for the entire parameter set.
To address this limitation, Andronescu et al. [63] put forward a constraint generation approach that employs various
constraints to ensure that the energy of reference structures is the lowest among other alternative structures. The
team trained this model on a mass of thermodynamic and structural data to infer free energy parameters, achieving a
7% higher F-measure than standard Turner parameters. Further, the research team proposed a Boltzmann-likelihood
model and loss-augmented max-margin constraint generation model using a larger set of data to impose constraints
on parameters [64]. In addition, it is worth noting that the parameters derived from the above approaches are
thermodynamic, so they can be directly applied in algorithms embedded within the same energy model, examples
are, RNA folding kinetics simulation [65] and miRNA target prediction [66].

3.1.2. ML-Based Weighted Methods

ML-based free energy parameter refining approaches successfully improve the accuracy of prediction, however,
those methods can only be alternatives for wet lab experiments aimed at obtaining energy parameters. Thus,
weighting methods were proposed, of which the scoring scheme is independent of the free energy assumption,
treating the parameters of the RNA structure as weights rather than free energy changes. Zakov et al. [67]
utilized a discriminative structured-prediction learning framework along with an online learning algorithm and
significantly expanded the number of weights to around 70,000. The authors achieved this by investigating a
wider range of structural elements with more extensive sequential contexts and employing thousands of training
datasets. Then ContextFold as a substantial accuracy enhancement model is introduced based on these resulting
weights [67]. Akiyama et al. [68] improved a structured support vector machine (SSVM) by the thermodynamic
approach to obtain a large set of weights for detailed structural elements. To mitigate overfitting, they applied
L1 regularization. Subsequently, they developed MXfold by merging the ML-based weights with experimentally
determined thermodynamic parameters, yielding better performance than models solely based on thermodynamic
parameters or ML-based weights. Sato et al. improved the model as MXfold2 [69], which uses CNN to calculate the
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folding scores of RNA sequences, and applies dynamic programming (DP) and the max-margin framework to predict
the structure. The max-margin framework includes structural hinge loss function, thermodynamic regularization,
and L1 regularization, ensuring that the folding scores are closely aligned with the free energy calculated using
the thermodynamic parameters. MXfold2 displayed robust predictions in both sequence-wise and family-wise
cross-validation. These studies indicate that weighted approaches based on ML can break through the limitations
of the thermodynamic parameter approach. They separate structure prediction from energy estimation, making it
advantageous for both tasks. In this case, weighted approaches can achieve more satisfying results. However, a
drawback is that the learned weights lack explainability due to the inherent black-box nature of ML algorithms.
Therefore, the obtained scores cannot be directly used for computations such as the partition function, centroid
structures, or base pair binding probabilities, among others.

3.1.3. ML-Based Probabilistic Methods

As ML technologies improve, stochastic context-free grammars (SCFGs) appear as a significant method for
probabilistic approaches for RNA structure prediction [70–74]. SCFGs extend traditional context-free grammars
(CFGs) by assigning probabilities to production rules, allowing them to generate structures with different proba-
bilities. It provides a framework for generating diverse possible structures and estimating their probabilities. In
an SCFG model, each production rule in the grammar is associated with a probability parameter that assigns a
probability to each derived sequence. It typically estimates probability parameters by learning RNA sequence
datasets with known secondary structures, eliminating the requirement for external laboratory experiments [73].
The application of SCFGs for tRNA secondary structure prediction was first introduced by Sakakibara et al. [70].
They used an expectation-maximization (EM) method to learn the probability parameters. Knudsen and Hein [72]
further enhanced the SCFG model by incorporating evolutionary information, leading to the development of the
robust and practical tool Pfold [72].

Sato et al. [75] proposed a nonparametric Bayesian extension of SCFGs using the hierarchical Dirichlet
process (HDP). Traditional SCFGs are required to define a fixed number of generation rules and parameters
in advance, whereas non-parametric Bayesian extension allows SCFGs to adaptively learn the complexity and
structure of the model. Thus, it is flexible to different data and identifies an optimal RNA grammar from the
training dataset expressively and adaptably. To leverage the abundance of RNA sequences with unknown structures,
Yonemoto et al. [76] proposed a semi-supervised learning algorithm to improve prediction accuracy. This algorithm
determines probability parameters in a probabilistic model that combines SCFG and a conditional random field,
enabling the incorporation of both labeled and unlabeled data. Even though, the probabilistic approach, such as
SCFG, cannot fully take the place of Minimum Free Energy (MFE) methods, since the accuracy of the best SCFG
models still falls short of the top-performing free energy-based models. Additionally, SCFGs have limitations in
describing certain RNA structures, such as those containing special base pairs that deviate from the conventional
Watson-Crick base pairing. These constraints highlight the importance of considering both probabilistic and free
energy-based approaches to achieve more accurate and comprehensive RNA structure predictions.

Do et al. [77] proposed a new method CONTRAfold without physics-based models. Novelly, CONTRAfold
applies the conditional log-linear model (CLLM) to determine probability parameters that effectively differentiate
correct RNA structures from incorrect ones. CLLM is a flexible probabilistic ML model that allows easy parameter
estimation and incorporation of any chosen features into the model, providing a framework for capturing complex
relationships between input features and target variables. Compared to previously available probabilistic models,
CONTRAfold reaches the highest accuracy in single-sequence RNA structure prediction. However, CLLM is
computationally slower than SCFGs, limiting its application to large-scale training datasets. Since CLLM imposes
fewer structural constraints on the output sequence, when encountering sequences with specific base pairs, it
potentially leads to the possibility of generating false RNA structures. In addition, the estimated parameters lack
explicit biological interpretation due to its black-box feature.

3.2. ML-Based Preprocessing and Postprocessing

ML can be applied in preprocessing to simplify the prediction process (Figure 4). Hor et al. [78] introduced
a tool based on support vector machine (SVM) that aims to choose the most effective prediction method. They
believe that different RNA sequences possess distinct features so that specific prediction methods perform better
for one RNA sequence. By utilizing SVM, the tool can identify the prediction method that is likely to yield
the best results for a given RNA sequence. Similarly, based on the assumption that folding rules differ from
RNA sequences, Zhu et al. [79] put forth an SCFG model to identify the most probable folding rules for an
RNA sequence ahead of the prediction process. By doing so, the accuracy of the prediction can be improved.
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Additionally, processing long RNA sequences can be costly, time-consuming, and complicated. To solve this
problem, Zhao and colleagues [80] designed a DL-based model RNA-par using transfer learning. RNA-par splits
RNA sequence into several independent fragments (i-fragments) to improve prediction performance. RNA-par
consists of a 4-layer 1D-CNN block for extracting sequence features, a Bi-LSTM block capturing information from
both sequences, and a 2-layer ResNet block acting as prediction head to generate the outputs i-fragments. Since
i-fragments are shorter sequences, RNA-par makes it convenient for the following prediction process.

Figure 4. Framework of preprocessing and postprocessing. To simplify the prediction process in the ML-based
prediction model, the preprocessing model processes RNA sequences into other forms of data, and the postprocessing
model transcript outputs into RNA secondary structures.

ML is also used in postprocessing to reach a better result. Since various methods yield multiple structures
for an RNA sequence, postprocessing models can be utilized to determine the most probable structures among the
outcomes (Figure 4). Haynes et al. [81] combined ML with graph theory to represent RNA graphical structures
using trees, where edges represent helices and vertices represent bulges or loops. Using graphical invariants as input
features, a multilayer perceptron (MLP) model is trained to identify whether the result is an RNA structure. This
approach enables the ML model to distinguish between structures that are likely to represent RNA structures and
those that are not. Additionally, an assumption from Koessler et al. [82] indicates that a larger one is formed when
two smaller RNA secondary structures bond together. They extract a feature vector from the merged trees and apply
it to an MLP model to predict the probability of an RNA-like structure. By leveraging this MLP model, they were
able to estimate the likelihood of a given structure resembling an RNA-like structure. Details of above models are
summarized in Supplementary Table S2.

3.3. ML-Based Predicting Process

ML techniques can be utilized as end-to-end prediction approaches or integrated with other algorithms as
filters or optimizers. The models based on both approaches are detailed in the Supplementary Table S3.

3.3.1. End-To-End Approaches

End-to-end approaches usually directly predict the secondary structure from the RNA sequence without inter-
mediate steps or external information (Figure 5). They aim to capture the inherent structure-sequence relationship
in training sample, and learn the mapping between the sequence and its secondary structure in a single integrated
model.

Figure 5. Framework of end-to-end approaches. End-to-end approaches directly predict secondary structures from
RNA sequences without intermediate steps or external information.

Built upon Nussinov and Jacobson’s hypothesis [46], ML techniques were first introduced to RNA secondary
structure prediction by Takefuji et al. [83]. They used a system of interactional neurons to obtain a near-maximum

https://doi.org/10.53941/aim.2024.100006 6 of 16

https://doi.org/10.53941/aim.2024.100006


Zhao et al. AI Med. 2024, 1(1), 6

independent set (MIS) from an adjacent graph representing base pairs. To improve this work, Qasim et al. [84]
built a new MLP model with h neurons in the hidden layer to obtain MIS, and its activation function is based on
Kolgomorov’s theorem (h representing the number of possible base pairs in an RNA sequence). In other aspects,
Liu et al. [85] considered the energy contribution of base pairs and employed a Hopfield neural network (HNN) to
get the MIS. Apolloni et al. [86] enhanced computational speed and applied mean-field approximation in both the
instant resolution and learning phases, slightly enlarging the input RNA length for this approach. Unfortunately,
HNN was limited by its susceptibility to local minima, so Steeg and Evan [87] utilized mean field theory (MFT)
networks coupled with an objective function and biological constraints to identify the optimal structure. In this
method, MFT receives four types of RNA bases that are encoded in a one-hot fashion and outputs a CT-like table.

However, since ML-based models are limited to processing tRNAs only due to the lack of data, DL techniques
are thriving to break through the challenges. Singh et al. [80] proposed SPOT-RNA, the first end-to-end DL model
for RNA secondary structure prediction. SPOT-RNA turns sequences into CT tables and employs ultra-deep hybrid
networks consisting of ResNets and Bi-BLSTMs. ResNets obtain the contextual information while Bi-BLSTMs
capture dependencies between distant nucleotides in the RNA sequence. SPOT-RNA has an outstanding performance
on benchmark datasets compared to score-based methods and SCFG-based methods. The same team later introduced
the SPOT-RNA2 model [88], which incorporated evolution-derived sequence profiles and mutational coupling,
outperforming the model SPOT-RNA. Furtherly, Fu and colleagues [89] introduced a special model UFold which
converts the sequence into an image of all possible base pairs, and processes through U-net and a 1D-convolution to
generate contact scores between bases. Unlike other models, it innovatively abandons raw sequences but adopts
a 3D vector analogous to an image as input, making the model fully convolutional to achieve higher efficiency
and ability to process pseudoknots. Another DL model, E2Efold, put forward by Chen et al. [90], consists of a
transformer-based deep model and a multilayer network based on an unrolled algorithm. E2Efold takes the RNA
sequence as input, employs the deep model to encode the sequence information, and then the multilayer network to
filter the output. One of the advantages of E2Efold is its ability to process longer RNA sequences, including those
large molecules with complex structures. It is also able to capture non-local interactions in the sequence and take
these relationships into account when generating secondary structures. However, E2Efold suffers from a severe
overfitting, and generalized on unseen RNAs.

Besides primary sequences, DL models can be combined with other information. Calonaci et al. [91] trained
an ensemble model that combines co-evolutionary data (DCA), SHAPE data, and RNA sequence data. It has an
MLP subnetwork based on DCA data and a CNN subnetwork based on SHAPE data for predicting penalties, then
its folding module generates structures using penalties and RNA sequences.

3.3.2. Hybrid Approaches

Hybrid approaches that combine ML models with other methods have been explored for predicting RNA
secondary structure prediction. One of these approaches combined ML models with filters to predict a possible
structure and another is to hybrid ML models with optimization methods. The framework is shown in Figure 6.

Figure 6. Framework of hybrid approaches. One of the hybrid approaches combines ML models with filters to
predict a possible structure, the other combines ML models with optimization methods.

ML Filter Combined Methods

For these methods, they typically include an ML model and a filter in the process to achieve the output.
Bindewald and Shapiro [42] integrated the ML model with a filter to reach the consensus structure of a set of aligned
RNAs. The model gets the possibility score for each pair of alignment columns by employing a hierarchical network
of k-nearest neighbor models. Filters with rules of native RNA structures constrain the result of the ML model to
get outputs. Wu et al. [92] and Lu et al. [93] regarded predicting structure as a sequence-labeling problem, and
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they predicted the state of bases by Bi-LSTM and applying a rule-based filter to cope with controversial pairings.
Another innovative model DpacoRNA [94] used Bi-LSTM as a structured filter and employed a parallel ant colony
optimization method to hunt for the maximum probable structures. A recent study [95] constructed an composite
network that integrates Bi-LSTM [96], Transformer [97], and U-Net [98] to calculate pairwise scores between bases.
Utilizing four established rules, the network constructs a filter to discern potential RNA structures.

ML Optimization Combined Methods

In these approaches, the ML model finds the relationship between each base or each pair of bases, and the
optimization method picks out the optimal structure. CNNFold model, published by Booy et.al [99], consists of
multiple residual blocks and a readout layer post-processing to predict a score matrix for all possible pairings. They
also developed an algorithm called Argmax post-processing converting the score matrix into the best secondary
structure. It is worth noting that CNNFold and its variants can predict structures with pseudoknots well. Similar to
CNNFold, Liu’s group [100] proposed a model combined with DL and DP, that predicts the status distribution of
each base by the CNN model and finds the most probable structure using the DP algorithm. To improve the result,
they replaced the CNN with the Bi-LSTM model integrated with another optimization algorithm [101]. Willmott
et al. [102] adopted the SHAPE-directed method (SDM) to predict optimal structure rather than developing a
new optimization model, meanwhile, they trained a Bi-LSTM model that generates SHAPE-like data of an RNA
sequence as the inputs for SDM. Recently, Chen and Chan [103] proposed a DL-based model, REDFold, which
utilizes the UFold [89] architecture. Its encoder accepts a 2D contact matrix as input, while the decoder yields a
score map. They employ constrained optimization instead of DP to identify the optimal structure, thereby enabling
their model to predict non-nested folding patterns.

4. Databases

In ML-based RNA structure prediction research, access to comprehensive and reliable structural data is
essential for model training and performance evaluation. Generally, the quantity and quality of training data directly
influence the learning ability and prediction accuracy of an ML-based model. A rich set of training samples helps
models capture a more comprehensive range of RNA structural features and enhances its robustness when faced
with unseen data. In addition, the representativeness of the database is vital. A sample containing various types of
RNA secondary structures enables the model to better understand the complexity of RNA structures.

Several databases have been developed to provide researchers with extensive resources for studying RNA
sequences and structures. Among these, some databases offer a broad spectrum of RNA data (Such as Comprehensive
Databases), including diverse species and structural conformations, while others focus on specific aspects or types
of RNA (Such as Specialized Databases).

4.1. Comprehensive Databases

Comprehensive databases are large, general-purpose collections of RNA structures that include a wide variety
of RNA species and structural conformations. These databases often contain a large number of experimentally
obtained RNA structures or computational predictions, making them useful for ML-based RNA structure prediction.
RNA STRAND [104] is a database that provides a diverse collection of RNA sequences, containing 4,666 RNA
samples. It is designed to offer structural and sequence information for RNA research. RCSB Protein Data Bank
(PDB) [105] is an authoritative database for biomolecular structures, providing 4,962 RNA structures. It primarily
includes tertiary structures obtained through experimental methods, such as X-ray crystallography and nuclear
magnetic resonance, which offer a solid foundation for analyzing the conformation of RNA. bpRNA-1m [106] is
a large-scale database, offering 102,348 RNA structures, which are mainly constructed using a novel annotation
tool called bpRNA. While the accuracy of secondary structures provided by bpRNA-1m is relatively lower, its vast
data volume makes it valuable for ML-based RNA secondary structure prediction models. RNAcentral [107] is the
largest RNA secondary structure database, containing secondary structures obtained by computational methods
R2DT [108].

4.2. Specialized Databases

The tRNAdb 2009 database [109] is one of the earliest specialized databases, which focuses on the structures
and functions of tRNA. It provides detailed tRNA sequences and their corresponding structural information. The
rRNA database [110] is dedicated to structural data of ribosomal RNA (rRNA). The tmRDB database [111] focuses
on post-transcriptionally modified RNA (tmRNA), which plays an important role in bacteria, participating in protein
synthesis and quality control. In addition, there are also some specialized structure databases. These databases
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typically focus on one specific type of RNA structure, such as loop [112], pseudoknot [113], or non-canonical
base pair [114]. In addition, based on these specialized databases, benchmark datasets such as ArchiveII [115]
and RNAStralign [116] have been established. They contain various types of RNA sequences with high sequence
diversity, making them especially suitable for training and evaluating the performance of RNA structure prediction
models.

4.3. Other Important Databases

In addition, there are other important databases such as Rfam [117] and NNDB [53]. Rfam is a widely
used RNA family database, which provides classification information including consensus secondary structures
and a covariance model for each RNA family. NNDB provides crucial thermodynamic parameters for modeling
the stability of RNA secondary structures, especially when calculating RNA folding energies. NNDB provides
foundational data for machine learning models, helping improve the accuracy of RNA secondary structure prediction.

5. Discussions

As it is known to all, the abundance of transcripts is widely recognized as a valuable indicator for identifying
transcripts of interest in different conditions, while understanding RNA structure is crucial for unraveling their
functional mechanisms. A highly accurate RNA structure prediction method also has implications for various
downstream investigations, including but not limited to, simulations of folding dynamics [118], the detection of
ncRNAs [64, 119, 120], applications in oligonucleotide [121, 122] or drug design [123–127], and assessment of
hybridization stability [128]. Even more, RNA secondary structure prediction also serves as a valuable tool in
studying viruses, an example is, the SARS-CoV-2 virus [129, 130].

5.1. Pros of ML-Based Methods

ML-based methods offer several advantages over comparative sequence analysis and traditional score-based
methods. Firstly, rather than rely on intricate biological mechanisms, ML-based methods tend to leverage information
from diverse data types, bypassing performance limitations imposed by specific mechanism hypotheses. ML-based
methods are also easy to integrate with known biological mechanisms, providing a flexible framework for analysis.
Having approaches to the mass of available datasets, models knowing less knowledge of biological mechanisms
usually outperform those models dependent on biological mechanisms. This infers the guess that current biological
mechanisms of RNA folding might be faulty. Secondly, ML-based methods, particularly end-to-end DL models,
eliminate the need to consider base matching rules. In traditional score-based methods, they utilize complex
algorithms to meet base matching rules, which causes high time complexity, leaving difficulties for them to improve.
In contrast, end-to-end DL models [80] can be trained to predict all base pairs in RNA structures without these rules,
despite whether these base pairs are associated with secondary or tertiary interactions. Thirdly, ML-based methods
offer considerable flexibility compared to traditional methods. The input data for ML models are various, no matter
whether they are one-dimensional or multidimensional, homogeneous or heterogeneous, features extracted from the
data or encoded bases, matrixes, or diagrams. Similarly, the outputs of ML models can also vary, including CT
tables, nucleotide states, labeled sequences, or free energy values. ML models can be constructed using a diverse
array of techniques, ranging from simple Hopfield networks to complex ensemble DNNs. Additionally, similarly to
tasks in Natural Language Processing, RNA secondary structure prediction can also benefit as a downstream task
by utilizing representations obtained from pre-trained foundation models [131–133] as inputs, thereby enhancing
the accuracy of the predictive model’s structure predictions. Lastly, end-to-end prediction methods exhibit fast
runtime once ML models are trained. Outperformed the DP algorithm, the time complexity of ML models remains
independent of the input scale, providing potential capacities for processing long RNA sequences. In summary,
ML-based methods offer advantages such as flexibility, independence from base matching rules, and fast runtime,
making them a promising approach for RNA structure prediction.

5.2. Remaining Challenges and Prospects

Though RNA secondary structure prediction methods using ML techniques are considered state-of-the-art in
terms of prediction performance across various measures, there are still some issues needed to be addressed. To
begin with, there is a need to further enhance the accuracy of predictions. Surveys [69, 88] show that there is a long
way to go in improving the accuracy of RNA secondary structure prediction methods. On one hand, since RNA
structures unpredictably vary in different cellular environments [134], multiple structure options instead of the most
possible one should be considered when analyzing input sequences to gain predictions is worthy of consideration.
On the other hand, combining an ML-based method with an optimization approach shows promise in enhancing

https://doi.org/10.53941/aim.2024.100006 9 of 16

https://doi.org/10.53941/aim.2024.100006


Zhao et al. AI Med. 2024, 1(1), 6

prediction performance. ML-based methods can leverage their ability to learn complex patterns from data and make
accurate predictions while optimization methods can refine and optimize the predicted structures to align with known
structural constraints and principles. This combination offers a synergistic approach that combines the strengths of
both paradigms, showing its potential for future development. ML-based prediction of RNA secondary structures
relies on capturing the interactions between distant nucleotides, however, when dealing with long RNA sequences,
getting these long-range interactions within RNA sequences can be a challenge. Meanwhile, training a large-scale
inputs ML model demands impractical computational resources. To face this sequence length limitation, striking
a balance between computational efficiency and capturing long-range interactions is considerable. Innovative
approaches such as hierarchical modeling, integration of experimental data, and leveraging parallel and distributed
computing resources are expected solutions to develop. Furthermore, numerous traditional approaches disregard
special base pairs to minimize the occurrence of false positives and reduce computational complexity [57, 135].
Though certain methods can process structures with non-canonical base pairs [136] or pseudoknots [48] none
of them can accurately predict both simultaneously, even ML-based methods suffer limited accuracy. Therefore,
finding solutions for predicting special base pairs is an inevitable future trend. Overfitting is another critical concern
for ML-based RNA secondary structure prediction models, particularly for DL models [74]. Overfitted models tend
to perform well on RNAs that are structurally similar to training data but poor on structure-dissimilar ones. Instead
of truly learning the folding mechanism, these models often end up memorizing the secondary structure patterns
present in the training data. Although DL-based methods employ various techniques to mitigate overfitting, such as
regularization [91], constraint addition [90], dataset enlargement [80], or integration of Turner’s nearest neighbor
free energy parameters, concerns regarding overfitting persist.

6. Conclusion

Understanding RNA structure is crucial for comprehending biological processes, and the prediction of RNA
secondary structure remains a prominent topic in the fields of computation and biology. Though ML techniques
have significantly enhanced the accuracy, applicability, and computational speed of the prediction process, more
sophisticated ML models and DL technologies are needed to facilitate the development of a new generation of RNA
secondary structure prediction tools with improved accuracy and computational efficiency.
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