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Abstract: Medical image segmentation is a fundamental task in the field of medical
imaging, enabling the accurate identification and delineation of structures such as
organs, tissues, and lesions within medical images. These segmented regions are
essential for diagnostic purposes, treatment planning, and disease monitoring. Over
the years, medical image segmentation has evolved significantly, driven by advances
in imaging technologies and computational techniques. Traditional methods, such as
thresholding, region-growing, and active contours, have been supplemented and, in
some cases, replaced by more sophisticated machine learning (ML) and deep learning
(DL) approaches. Convolutional neural networks (CNNs) and their variants, including
U-Net and Transformer-based models, have shown remarkable success in automating
and improving segmentation tasks. This survey paper provides a comprehensive
review of the various segmentation techniques, categorizing them into classical and
deep learning-based methods. It discusses the strengths, limitations, and challenges
of each approach, including issues related to data quality, class imbalance, and the
generalizability of models. Furthermore, the paper highlights recent advancements in
the field, emerging trends, and future directions for further enhancing segmentation
accuracy, robustness, and efficiency in clinical applications. This work aims to serve
as a valuable resource for researchers and clinicians looking to understand the current
state of medical image segmentation and its potential future developments.
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1. Introduction

Medical image segmentation is a crucial task in the field of medical imaging, enabling the extraction of
meaningful structures or regions of interest (ROI) from complex and often noisy medical images [1]. It plays
a pivotal role in a wide array of clinical applications, including but not limited to disease diagnosis, surgical
planning, treatment monitoring, and radiotherapy [2, 3]. Segmentation algorithms aim to delineate boundaries of
anatomical structures such as organs, tissues, tumors, and blood vessels, which are essential for accurate diagnosis
and therapeutic interventions [4].

Multi-modality image information refers to images that are captured using different techniques or sensors,
providing complementary information [5–7]. The advancements in multi-modality imaging technologies, such
as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and
ultrasound, have significantly improved the resolution and quality of medical images [8]. CT gives detailed images
of bone structures. MRI provides high-resolution images of soft tissues. PET shows metabolic processes in the body.
Ultrasound provides real-time images and is useful for examining soft tissues and organs. By combining these
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images, healthcare providers can gain a more complete and detailed understanding of the patient’s condition.
However, the complexity of medical images, often characterized by varying contrast, noise, low signal-to-noise
ratios, and anatomical variability, poses significant challenges for traditional image processing techniques [9, 10].
As a result, medical image segmentation has become a focus of intense research, especially with the rise of machine
learning (ML) and deep learning (DL) techniques, which offer robust and automated solutions for segmentation
tasks [11–13].

This survey paper aims to provide a comprehensive overview of the state-of-the-art techniques and methodolo-
gies in medical image segmentation. Classical approaches are reviewed, including thresholding, region growing,
and active contour models, as well as more recent deep learning-based approaches, such as convolutional neural
networks (CNNs) and their variants. Additionally, the challenges in medical image segmentation are explored, such
as handling small datasets, managing class imbalances, and ensuring generalizability across diverse populations and
imaging modalities.

The goal of this paper is to provide researchers and practitioners with an in-depth understanding of the
various methods, their strengths and limitations, and future directions in the evolving landscape of medical image
segmentation. The rest of this paper is organized as follows. Section 2 discusses medical image segmentation;
Section 3 explores brain tumor segmentation; Section 4 compares existing experimental results; and Section 5
concludes this paper and points out future directions.

2. The Overview of Medical Image Segmentation

As an important sub-branch in the field of medical image processing and analysis, the automatic segmentation
techniques are constantly advancing. Related techniques have made considerable progress in the past 30 years. The
following paragraphs classify and discuss the common medical image segmentation solutions.

2.1. Traditional Medical Image Segmentation Methods and Related Progress

Traditional medical image segmentation methods primarily rely on machine learning, with several standard
techniques including threshold segmentation, region-based segmentation, and edge-based segmentation methods [14].
The threshold segmentation algorithm is centered on selecting an appropriate threshold value, which allows for
binary segmentation of medical images to distinguish between tumors and normal tissues [15]. However, this
approach is highly sensitive to noise and image variations, potentially leading to inaccurate segmentation results.
Region-growing and merging methods are common in sequence-based region correlation techniques [16], where
the results of earlier steps influence the subsequent segmentation stages. The accuracy of these methods can be
impacted by noise and the quality of initial seed points. Edge-based segmentation methods detect boundaries based
on grayscale differences, enabling the segmentation of image frames [17]. However, these methods can produce
inaccurate results when dealing with discontinuous boundaries or complex shapes. Finally, segmentation methods
based on specific theories, such as those utilizing cluster analysis, fuzzy set theory, or wavelet transforms, propose
new approaches rooted in various disciplines [18], offering additional options for medical image segmentation.

In recent years, the rapid advancements in deep learning have led to widespread attention on recognition
techniques based on artificial neural networks, particularly for image segmentation. The neural network-based
segmentation approach begins by training a multilayer perceptron to derive a linear decision function. This model
then classifies the pixels essential for achieving accurate image segmentation. Neural networks, with their extensive
connectivity, are well-suited to incorporate spatial information, helping to address challenges such as noise and
uneven distribution in the input images. Due to their strong learning capabilities and adaptability, these networks
are effective in handling multimodal data and utilizing boundary information, making them highly effective for
tasks like brain tumor segmentation. As a result, deep learning-based methods have become widely adopted and
offer superior overall performance.

2.2. Region-Based, Statistics-Based, and Fuzzy Theory-Based Segmentation Methods

The core concept of region-based segmentation methods is the similarity of features within a region, where
the internal features of the same object are similar, while features between different objects are not continuous. To
implement this idea, various approaches, such as thresholding, region growing [19], and random field methods [20],
are often used to segment medical images. A statistical approach [21] focuses on the fact that the gray value of
pixels at the edges of regions tends to change significantly, making segmentation possible by detecting changes
in edge pixels across different areas. Image segmentation is typically a poorly structured problem, and fuzzy set
theory, which is well-suited to handle such issues, is also employed for medical image segmentation. This includes
methods such as fuzzy clustering segmentation [22] and fuzzy connection degree segmentation [23]. While these
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methods have demonstrated varying levels of effectiveness, they often require manual intervention for effective
feature selection and have certain limitations.

2.3. Segmentation Methods Based on Statistical Features

Statistical features, particularly low-dimensional texture features, play a crucial role in enhancing the perfor-
mance of semantic segmentation. Many existing approaches leverage texture information derived from statistical
features. For example, Simonyan et al. [24] utilized Fisher vector layers to enhance features through handcrafted
techniques. Wang et al. [25] introduced learnable histograms for semantic segmentation and object detection.
Additionally, Zhu et al. [26] proposed a texture enhancement module and a pyramid texture extraction module to
extract image texture features, thereby improving the effectiveness of semantic segmentation.

2.4. Semantic-Based Segmentation Methods

Over the past decade, new techniques such as Convolutional Neural Networks have gained significant attention
due to their ability to automatically extract pixel-level features and deliver superior image segmentation performance.
The introduction of Fully Convolutional Networks (FCNs) [27] marked the beginning of the neural network era
for semantic segmentation, followed by the development of U-Net [28], a neural network architecture particularly
well-suited for medical image segmentation. The original U-Net architecture utilizes an encoder-decoder structure
to extract both high- and low-level contextual features, while skip connections preserve spatial information, enabling
effective fusion of deep and shallow features. Building on this foundational design, researchers have proposed
various enhancements. U-Net++ [29], for example, introduces denser skip connections, as illustrated in Figure 1.
The key innovation of U-Net++ lies in its nested dense skip pathways, formulated as follows:

xi,j =

H
(
xi−1,j

)
, j = 0

H
([[

xi,k
]j−1

k=0
, U(xi+1,j−1)

])
, j > 0

(1)

where xi,j is the output at node Xi,j , with i as the encoder’s downsampling level and j as the index in the skip
pathway; H(·) is a convolution with activation, U(·) is upsampling, and [·] denotes concatenation. For j = 0, xi,j is
computed from xi−1,j . For j > 0, xi,j uses outputs from previous nodes xi,0, . . . , xi,j−1 and the upsampled feature
from xi+1,j−1. This design aligns the features from both the encoder and decoder, enhancing segmentation performance.

ResU-Net [30] and DenseU-Net [31] modified U-Net by replacing each sub-module with residual and dense
connections, respectively. Attention mechanisms were also incorporated into U-Net [32]. Before merging the
encoder features with the corresponding decoder features, an attention module was used to adjust the encoder’s
output. Attention U-Net [33] introduced attention mechanisms into the skip connections. Additionally, U-Net has
been extended to 3D for three-dimensional image segmentation [34]. While these U-Net variants have been designed
to address various issues and improve segmentation accuracy, they have remained within the full convolution
framework, overlooking the significant long-range dependencies between pixels, which presents a limitation to
further advancements.

In recent years, the Transformer architecture has showcased exceptional global modeling capabilities across
various computer vision tasks, including image segmentation. Transformer-based methods segment the input image
into patches and apply self-attention mechanisms to these patches. Swin Transformer [35] improves on this approach
by utilizing shifted windows to calculate attention across different feature map layers. Similarly, Vision Transformer
(ViT) [36] has proven its strong modeling abilities in computer vision tasks, splitting the input image into patches
and performing self-attention operations on them. While ViT focuses on self-attention across the entire image,
Li [37] utilizes Restormer and Transformer layers for feature extraction, employing bidirectional stepwise feature
alignment (BSFA) to predict deformation fields. This approach helps align unaligned image features, minimizing
modality discrepancies and ensuring accurate multimodal image fusion. MedT [38] introduces enhanced gated
self-attention and applies Transformer-based techniques to medical image segmentation tasks, as illustrated in
Figure 2. The key formula for Gated Axial Attention is defined as:
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where yij is the output at position (i, j), qij , kiw, viw are the query, key, and value vectors, and rqiw, rkiw, rviw are
the relative positional encodings. GQ, GK , GV 1, GV 2 are learnable gating parameters controlling the influence
of positional encodings. The softmax normalizes attention weights over width W . This design enables MedT
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to regulate the contributions of positional encoding, enhancing segmentation performance, particularly on small
medical image datasets.

Recent approaches have attempted to combine the strengths of CNNs and Transformers by integrating both
architectures into a novel backbone network. The CMT (Convolutional neural networks Meet Transformers ) [39]
block, for example, merges a depthwise convolution-based local perception unit with a lightweight Transformer
module. CoAtNet [40] integrates these two structures using MBConv (Mobile inverted Bottleneck Convolution) and
relative self-attention, exploring their potential fusion. The SETR (SEgmentation TRansformer) model proposed by
Zheng et al. [41] completely replaces the CNN encoder with a Transformer encoder, offering the first verification
of Transformer structures in image segmentation tasks. However, due to the absence of convolutional data’s
spatial inductive bias, local information modeling remains insufficient. The TransU-Net model introduced by
Chen et al. [42] proposes a two-stage encoder structure (CNN to Transformer), integrating both architectures for
medical image segmentation. However, this two-stage encoding approach performs a secondary extraction of
image features, neglecting the equal importance of both local and global features, leading to insufficient integration
of the two. Additionally, methods like TransBTS (Transformer-based Brain Tumor Segmentation) [43] combine
Transformers and U-Net for 3D brain tumor segmentation. While these approaches have improved segmentation
performance in both natural and medical images, they have not fully leveraged the strengths of both CNNs and
Transformers. Furthermore, performance remains limited, particularly for small-scale datasets.

    

    

    

嗷L Unet++   

    

    

    

嗷L

            

Unet++   

    

    

    

嗷L

            

                

Unet++   

    = H[            ]

                    

    = H[                 ]    = H[                      ]

                            

    = H[                           ]

(a) (b)

(c)

        

嗷

            

                

                    

L

    … Backbone

Down-sampling

Up-sampling

Skip connection

    Convolution

    

    

    

嗷

            

                

Unet++   

                    

L

Figure 1. A high-level overview of UNet++. (a) UNet++ consists of an encoder and decoder that are connected
through a series of nested dense convolutional blocks. The main idea behind UNet++ is to bridge the semantic
gap between the feature maps of the encoder and decoder prior to fusion. For example, the semantic gap between
(X0,0,X1,3) is bridged using a dense convolution block with three convolution layers. In the graphical abstract, black
indicates the original U-Net, green and blue show dense convolution blocks on the skip pathways, and red indicates
deep supervision. Red, green, and blue components distinguish UNet++ from U-Net. (b) Detailed analysis of the
first skip pathway of UNet++. (c) UNet++ can be pruned at inference time, if trained with deep supervision [29].
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Figure 2. The Working Principle of MedT Architecture and Its Gated Axial Attention Mechanism. (a) The main
architecture diagram of MedT which uses LoGo strategy for training. (b) The gated axial transformer layer which
is used in MedT. (c) Gated Axial Attention layer which is the basic building block of both height and width gated
multi-head attention blocks found in the gated axial transformer layer [38].

2.5. Cloud Computing in Medical Image Segmentation

As medical imaging technology continues to advance rapidly and the volume of large-scale medical imaging
data grows, the role of cloud computing in medical imaging is expanding and evolving. Recently, the application of
deep learning in medical imaging has garnered significant attention, facilitating the automatic analysis and diagnosis
of medical imaging data. As a result, many researchers are investigating the integration of deep learning with cloud
computing to efficiently process and manage large-scale medical imaging datasets.

Jimenez-del-Toro et al. [44] developed a cloud-based evaluation framework for assessing advanced anatomical
structure segmentation methods. Chang [45] proposed a novel approach to brain segmentation that integrates
medical education and research, exploring the advantages of cloud computing for segmentation both in terms of
technology and user evaluation. Trägårdh et al. [26] and Egger et al. [46] created online scientific cloud platforms
to foster collaboration between medical imaging and deep learning, particularly for tasks like organ segmentation.
With the support of cloud computing, Shaukat et al. [47] improved brain tumor segmentation results using deep
3D U-Net.

2.6. Lightweight Segmentation Methods

As model size and complexity increase, so do computing and storage costs, which can limit the practical
deployment of these models in resource-constrained environments. To overcome this challenge, researchers have
focused on developing lightweight segmentation networks that enable efficient visual processing. MobileNets [48]
introduced separable convolutions, combining depthwise (DW) and pointwise (PW) convolutions to extract feature
maps. This approach significantly reduces the number of parameters and computational costs compared to traditional
convolution operations. Grouped convolutions, initially used in the AlexNet [49] architecture to address memory
limitations, also contribute to improving resource efficiency. These innovations have paved the way for more
practical models that can function effectively in settings with limited computing and memory resources.

In the field of lightweight segmentation network research, MobileViT stands out as a significant advancement
by combining the strengths of MobileNetV3 [50] and ViT [51] to create an efficient image segmentation method.
MobileViT [52] is the first lightweight Transformer model designed for mobile devices, offering a novel approach by
integrating Transformer and CNN architectures. Similarly, SegMarsViT [53] utilizes an encoder-decoder structure
for segmentation tasks, with the MobileViT backbone network extracting both local and global spatial features
in the encoder. However, ViT-based networks still encounter challenges, particularly in effectively propagating
spatial and channel details and ensuring task-specific accuracy. Additionally, there remains significant room for
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improvement in reducing the number of parameters and computational demands.
Existing research often seeks to enhance performance by incorporating complex modules, yet it frequently

overlooks the constraints imposed by limited medical equipment resources in remote areas. Future research will
likely shift focus towards developing medical image segmentation models that are low-parameter and computation-
ally efficient.

3. The Overview of Brain Tumor Segmentation

3.1. Generative Model-Based Methods

Generative model-based methods focus on the appearance characteristics of both tumorous and healthy tissues,
relying on domain-specific prior information, typically sourced from probabilistic image atlases. Menze et al. [54]
enhanced a probabilistic atlas of healthy tissue priors with a latent atlas of lesions, and developed an estimation
algorithm to extract tumor boundaries and the latent atlas from image data. Heinrich et al. [55] utilized discrete
optimization and self-similarity within a discrete medical image registration framework for multimodal medical
image segmentation.

3.2. Discriminative Model-Based Segmentation Methods

Discriminative model-based methods approach tumor segmentation as a classification problem, aiming to
determine the properties of voxels [56]. With the rapid advancements in machine learning techniques, these methods
have become the dominant approach in the field. Early methods in this category primarily relied on hand-crafted
features, such as local histograms [57] and texture features [58], and used discriminative models like decision
trees [59] and conditional random fields [60] for classification.

3.3. Cnn-Based Segmentation Models

In recent years, deep learning methods have shown great success in addressing various computer vision
challenges, including medical image segmentation tasks, as demonstrated in Figure 3 from [61], and brain tumor
segmentation [62, 63]. CNNs have significantly impacted the medical imaging field due to their ability to learn
complex representations in a data-driven manner. Early approaches often used patch-based classification strategies,
where CNNs predicted the class of the center voxel within a 2D or 3D patch [56, 64]. However, these patch-based
methods struggle to capture correlations among neighboring patches over large regions. To overcome this limitation,
end-to-end semantic segmentation models such as U-Net [28], attention U-Net [33], and U-Net++ [65] have become
widely used for brain tumor segmentation. U-Net [28] employs a classical encoder-decoder architecture and
leverages data augmentation for end-to-end training, which is especially beneficial when segmentation training
samples are limited. The development of U-Net has greatly advanced medical image segmentation algorithms,
particularly in brain tumor segmentation. Various U-Net variants, including UNet++ [65] and Res-UNet [66],
have further improved its performance. Myronenko [67] introduced a segmentation network that incorporates a
variational autoencoder branch to reconstruct the input image for better feature learning. Liu et al. [68] added
a Variational Autoencoder (VAE) decoder to reconstruct input images and used image fusion as an additional
regularization method to enhance feature learning. While CNN-based models perform well in 2D brain tumor image
segmentation, MRI segmentation methods relying on slice-by-slice 2D networks overlook important 3D sequence
and positional information. To address this, Isensee et al. [69] proposed an adaptive framework combining 2D
U-Net, 3D U-Net, and U-Net Cascade, which automatically adjusts all hyperparameters without human intervention.

Recently, there has been a surge in the development of 3D network models designed to leverage 3D spatial
information and extract high-dimensional feature representations from 3D MRI data. Unlike 2D networks, which
can only process individual slices and must balance sparse inter-slice information with dense intra-slice details, 3D
networks can capture spatial relationships along the depth dimension. This allows them to better understand the
spatial structure of tumors and their interactions with surrounding tissues. When processing volumetric data, 3D
models preserve continuous spatial information more effectively, minimizing the loss of important details. This is
particularly critical for tasks like brain tumor segmentation. 3D fully convolutional networks (3D FCN) [70] are
commonly used in brain volume image segmentation, with prominent models such as 3D U-Net [71] and nnU-Net [69].
The nnU-Net framework has become a strong baseline for both 2D and 3D medical image segmentation, and its
robust performance has led to the development of several brain tumor segmentation models and their variants. For
example, CANet, proposed by Liu et al. [72], enhances feature extraction by incorporating feature interaction
maps, which interact with convolutional spaces to capture discriminative features in context. Zhu [73] proposed a
Dual-Branch Ultrasound Image Segmentation Network (DBUNet) with two encoding branches for segmenting the
original ultrasound image and the enhanced ultrasound image. It highlights the regions of interest and compensates
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for the information loss during the enhancement process by realizing the interaction between two images.
2226 Y. Li et al.

Fig. 1 The dual
encoding–decoding X-shaped
network (X-Net) structure. a
architecture of the CNNs
branch, b architecture of the
Transformer branch, c schematic
of the Transformer layer
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3.2 CNNs branch

3.2.1 Encoder part

In the encoding stage of the CNNs branch, a conventional
encoding structure is used to extract image features. In order
to obtain more image information, and deeper context rela-
tionships, we perform feature extraction on the input image
by downsampling. Specifically, the ResNet50 [6] is used to
downsample the input image size in a double-scale mode.
After downsampling four times, the output features of each
sample block are:

1th : g1 ∈ RC1× H
2 ×W

2 , 2th : g1 ∈ RC2× H
4 ×W

4

3th : g3 ∈ RC3× H
8 ×W

8 , 4th : g4 ∈ RC4× H
16× W

16

Finally, a high-dimensional feature of size C4 × H
16 × H

16 is
obtained. The output of each sample block will be passed to
the stage with the same resolution in the Transformer branch
decoding stage by skip connection, so as to merge the high-
and low-dimensional features.

3.2.2 Decoder part

The decoding part of the CNNs branch is a structure similar
to an auto-encoder. In the case of a small number of train-
ing datasets (a common phenomenon in medical images),
this setting can add additional guidance and regularization

to the encoder part, so that better performance in clustering
and grouping the characteristics of the encoder endpoints is
achieved. Specifically, starting from the end-point output of
the encoder, we first simplify the input to a low-dimensional
space of 512. (256 represents the average value, and 256 rep-
resents the std.) Then, a sample is drown from the Gaussian
distribution of the givenmean and std, and reconstructed into
the input image according to the same architecture as the
decoder, but we do not use the inter-layer skip connection
from the encoder.

3.3 Transformer branch

3.3.1 Encoder part

In the Transformer branch, the image Transformer is used
as an operation layer in the encoding process through the
method provided byViT, thereby adding a local self-attention
mechanism to the network.

Specifically, the input image X∈H×W×C is divided into N
patches of sizes P× P . These patches are reshaped into one-
dimensional vectors (N × P2C), and then, each vector xip is
compressed into D dimension by a trainable linear projection
E . The output becomes a patch embedding. In order to add
position information to such an image sequence, a trainable
variable Epos is introduced instead:

z0 = [x1pE; x2pE; . . . ; xNp E] + Epos (1)

123

(c) Transformer Layer

Figure 3. The dual encoding–decoding X-shaped network (X-Net) structure.(a) architecture of the CNNs branch,
(b) architecture of the Transformer branch, (c) schematic of the Transformer layer [61]. Multi-head self-attention
(MSA), and multilayer perceptron (MLP) blocks, layer normalization (LN) is applied before each block, and residual
connection is applied after each block. MLP contains two fully connected layers with GELU (Gaussian Error
Linear Unit) sub-linearity. LKL is the standard VAE (variational auto-encoder) penalty item, used to estimate the
KL (Kullback–Leibler divergence) dispersion between the normal distribution N(µ, σ2) and the prior distribution
N(0, 1). N is the total number of pixels in the image. µ and σ are the mean and standard deviation extracted by
Gaussian distribution, respectively. z is the output by layer normalization. L is the number of layers. Lvae is an L2
loss used to match the VAE reconstructed image Ire with the input image Iin. Lbcedice is the main loss function of
the segmentation network used to match the segmentation prediction Ipred of Transformer branch and the ground
truth (GT) IGT .

3.4. Transformer-Based Segmentation Models

While CNN-based methods have achieved significant success in brain tumor segmentation, they are limited by
their inability to capture global contextual information due to their restricted local receptive fields, which is crucial
for semantic segmentation. In contrast, Transformers excel at modeling global interactions, a capability that CNNs
struggle with due to the inherent constraints of convolution operations. As a result, Transformer-based methods
have gained increasing attention in medical image segmentation, leading to the development of several notable
models. Chen et al. [42] introduced TransUNet, a hybrid Transformer-CNN architecture, to explore the potential of
Transformers in medical image segmentation. In this design, CNNs serve as feature extraction and transformation
modules, while the Transformer handles global context encoding, as shown in Figure 4. MedT [38] introduced
gated axial-attention specifically for medical image segmentation. Shi et al. [74] applied the Swin Transformer [35]
concept and incorporated a simple yet effective Multi-layer Perceptron (MLP) decoder into a hierarchical SSformer
for semantic segmentation. However, like standard ViT, Swin Transformer has limitations, particularly in terms of
local context bias and the large computational resources it requires. Additionally, Transformer-based models often
need to be pre-trained on large datasets such as ImageNet, which demands substantial computing power.
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Figure 4. Overview of the framework. (a) schematic of the Transformer layer; (b) architecture of TransUNet [42].

However, directly segmenting the image into patches to serve as Transformer tokens results in the neglect of
the local structure within the 3D volume. To effectively leverage 3D volumetric data for global interaction modeling
between consecutive slices, Wang et al. [43] introduced TransBTS, the first approach to incorporate Transformer
into a 3D CNN framework for 3D MRI brain tumor segmentation. Hatamizad et al. [75] proposed UNETR (UNEt
TRansformers) , a ViT-based architecture for 3D medical image segmentation, which uses a pure Transformer
encoder to capture the sequential representation of input data. The encoder is connected to a CNN-based decoder
through skip connections, enabling the fusion of local and global information. However, standard ViT-based
methods suffer from high computational complexity, especially for dense predictions like semantic segmentation,
due to their fixed input size [36]. To address this, Swin Transformer [35] adopts a hierarchical structure that reduces
computational complexity while effectively enhancing feature mapping. This modification significantly improves
the performance of Transformer models in medical image segmentation tasks. Zhou et al. [76] introduced nnFormer,
a 3D Transformer block-based model that interleaves convolution and self-attention operations, utilizing skip
attention to concatenate encoder and decoder features. Swin UNETR [77] utilizes a Transformer-based encoder
to learn multi-scale contextual representations and model long-range dependencies. Peiris et al. [78] developed
VT-UNet, a lightweight UNet-shaped architecture that segments 3D medical images hierarchically by encoding both
local and global features through a volumetric Transformer, as depicted in Figure 5. The core formulas governing
the encoding and decoding processes are as follows:
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Figure 5. Architecture Overview of VT-UNet for 3D Medical Image Segmentation, Illustrating Volumetric Patch
Partitioning, Encoder-Decoder Blocks, and Fusion Mechanism (a) Illustrates VT-UNet Architecture. Here, k denotes
the number of classes. (b) shows visualization of Volumetric Shifted Windows. Consider an MRI volume of size
D × H × W with D = H = W = 8 for the sake of illustration. Further, let the window size for partitioning
the volume be P ×M ×M with P = M = 4. Here, layer l adopts the regular window partition in the first step
of Volumetric Transformer(VT) block which results in 2 × 2 × 2 = 8 windows. Inside layer l + 1, volumetric
windows are shifted by (P

2
, M

2
, M

2
) = (2, 2, 2) tokens. This results in 3 × 3 × 3 = 27 windows. (c) shows VT

Encoder-Decoder Structure. (d) Encoder-Decoder structural comparison with other SOTA methods. The proposed
VT-UNet architecture has no convolution modules and is purely based on Transformer blocks. (e) Illustrates the
structure of the Fusion Module [78].

Encoder Block:

ẑl = VT-W-MSA
(
LN

(
zl−1

))
+ zl−1, ẑl+1 = VT-SW-MSA

(
LN

(
zl
))

+ zl,

zl = MLP
(
LN

(
ẑl
))

+ ẑl, zl+1 = MLP
(
LN

(
ẑl+1

))
+ ẑl+1

(3)

Decoder Block:
SAr = SA(QD,KD,VD), CAl = SA(QD,KE ,VE) (4)
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where ẑl and ẑl+1 are intermediate features after VT-W-MSA (window-based self-attention) and VT-SW-MSA
(shifted window-based self-attention), respectively, and zl and zl+1 are final feature maps refined by MLP (multi-
layer perceptron). LN(·) denotes layer normalization applied to input features, VT-W-MSA and VT-SW-MSA
capture local-global context within fixed and shifted 3D windows, and MLP enhances feature representation. These
operations facilitate hierarchical feature encoding for efficient 3D segmentation. The encoder captures both local and
global context through self-attention, while cross-attention integrates the encoder’s features for refined segmentation,
ultimately enhancing the accuracy of 3D medical image segmentation. The Decoder Block uses two primary
mechanisms: Self-Attention (SA) and Cross-Attention (CA). In SA, the decoder uses its own queries (Q), keys (K),
and values (V) to refine the feature map from the previous block. Specifically, SAr employs the decoder’s own
queries, keys, and values. In CAl, the decoder’s queries interact with keys and values from the encoder, allowing
the decoder to leverage both local and global information for accurate segmentation.

Despite its advantages, the Swin Transformer, like the standard ViT, suffers from a lack of locality inductive
bias [79]. This limitation makes it challenging to apply the Swin Transformer to small datasets without pretraining,
which can be problematic in medical image analysis tasks, such as brain tumor segmentation, where suitable
pre-trained models may not always be available. To address this issue, a shifted patch tokenization strategy [79] was
introduced into the Swin Transformer for brain tumor segmentation, enabling the model to be trained from scratch.

3.5. Multi-Path and Local Feature Fusion-Based Segmentation Methods

To achieve more accurate segmentation, most existing methods facilitate the interaction of global semantic
features and local features by incorporating multi-path fusion learning or local information fusion modules.
Chandrakar et al. [80] proposed a multipath CNN architecture for brain tumor segmentation and detection, enabling
the fusion of local and global features. Zhao et al. [81] introduced a deformable multi-path ensemble (D-MEM) for
automatic segmentation, combining both local and global features. While multipath fusion enhances feature learning,
it is computationally expensive as it requires calculating all local and global paths. This makes it less feasible for 3D
brain tumor segmentation due to high memory demands. In contrast, Wang et al. [82] proposed a Transformer-based
MISSU (Medical Image Segmentation via Self-distilling TransUNet) model, which utilizes self-distillation and
a local multi-scale fusion module to capture details from encoder skip connections while learning both global
semantic information and local spatial features. Zhang et al. [83] introduced a multipath feature fusion module
and a multichannel feature pyramid module to capture information from small targets. Zhou et al. [84] proposed a
method for lossless feature computation in brain tumor segmentation, using 3D atrous convolutional layers and a
coarse convolutional feature pyramid to combine background and lesion information. Although local information
fusion modules use less computational memory, they may struggle to fully capture multi-scale details and edge
features. The effective selection and fusion of detail features, such as edges and textures, are crucial for improving
image information learning [85].

Although the CNN- and Transformer-based 3D medical image segmentation methods mentioned above have
demonstrated impressive segmentation performance, they mainly focus on learning global spatial features from 3D
volumetric data, often neglecting the detailed feature representations at various levels and resolutions. The proposed
solution addresses this by not only learning global spatial features along the spatial axes and emphasizing inter-layer
feature information, but also by focusing on extracting local features and edge features from multiple tumor regions
within the volume. This multi-layer approach ensures that edge information is incorporated, which is crucial for
accurately identifying and delineating tumor locations. By merging the extracted edge features with global spatial
features, segmentation accuracy is enhanced, leading to improved overall segmentation performance.

3.6. Multimodal Segmentation Methods

The Brain Tumor Segmentation Challenge (BraTS Challenge), organized by the Medical Image Computing
and Computer-Assisted Intervention Society (MICCAI), is a widely recognized public dataset used for brain tumor
segmentation tasks. It has become a standard benchmark for evaluating the performance of brain tumor segmentation
algorithms. Researchers and developers use the BraTS dataset to validate and compare the effectiveness of various
algorithms, advancing the field of brain tumor segmentation. Over the years, numerous innovative tumor image
segmentation network architectures have been proposed in the BraTS challenge. In 2016, Kamnitsas et al. [64]
introduced an efficient fully connected multi-scale CNN framework called DeepMedic, which recombined high- and
low-resolution paths to achieve better segmentation results. The following year, Wang [86] proposed a cascading
architecture that decomposed the multi-class segmentation task into three binary segmentation problems, sequentially
segmenting three tumor regions with inclusion relationships. In 2019, Isensee et al. [87] modified the widely used
U-Net architecture, incorporating the dice loss function and deep supervision to address class imbalance issues. The
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champion of the 2018 BraTS challenge [67] enhanced the U-Net framework by adding an image reconstruction
branch, forming a VAE structure. This additional reconstruction branch provided extra guidance and regularization
to the encoder, improving the clustering of the encoder’s output features. The champion of the 2019 challenge [88]
proposed a two-stage approach, where the output from the first stage, along with the original image, was used as
input for the second stage, enabling a coarse-to-fine segmentation process.

To achieve more accurate segmentation results, the use of multimodal MRI data has become a key area of
focus in brain tumor segmentation. However, most existing methods merely stack multimodal MRI scans into
a multi-channel input without fully addressing the varying significance of each modality in relation to tumor
segmentation. Pereira et al. [89] developed a convolutional network for automatic brain tumor segmentation using
a four-channel format for multimodal images. Dolz et al. [90] extended dense connections to multimodal image
segmentation using DenseNets, where each modality was treated as a separate branch, and dense connections were
used to fuse features from different modalities. Liu et al. [91] introduced an attention-based modality selection
feature fusion module to refine multimodal features, addressing the differences in relevance among modalities for
the segmentation task. Zhang et al. [92] utilized FCN to extract features from various modalities and designed a
modality-aware module for efficient information exchange across them. Mo et al. [93] classified the modalities
into primary and auxiliary types, applying attention mechanisms for feature fusion. Although these approaches
make valuable strides in leveraging multimodal MRI data, they primarily focus on the extraction and selection of
deep semantic features, often overlooking features that hold specific importance for segmentation. The method
proposed by Zhang et al. [94] integrates tumor prototypes and multi-expert networks across modalities, which not
only focuses on deep semantic features but also emphasizes the localization and classification of tumor sub-regions,
addressing the limitations of ignoring specific features in traditional methods. Furthermore, the deformation-aware
and reconstruction-driven method proposed by Li et al. [95] improves segmentation performance by extracting
deformation-aware features and using reconstruction, especially when some modality data is missing. Therefore, in
addition to semantic features, it is crucial to focus on the extraction of edge information from relevant modalities
such as FLAIR and T1ce, as this edge information is essential for improving segmentation quality. It helps accurately
locate and delineate tumor boundaries. By merging these edge features with the semantic features, the aim is to use
multimodal MRI data more effectively and enhance segmentation accuracy.

3.7. Dimension Processing in Segmentation Methods

The use of deep learning-based neural networks in medical brain tumor image segmentation primarily involves
two approaches: two-dimensional (2D, slice) and three-dimensional (3D, voxel) processing. The 2D method
begins by slicing 3D voxel data into 2D images, typically along the z-axis, and then feeds these slices into a CNN
for learning and training. The resulting segmentation results from each 2D slice are subsequently reconstructed
into a 3D representation. A 2D image, which is a projection of the MRI scan onto a plane, typically represents
a transverse or longitudinal section. This projection provides essential information about the tumor’s location,
size, and morphology. Early classical segmentation networks such as FCN and UNet were initially applied using
this method. UNet effectively combines deep and shallow information in medical image segmentation through
skip connections that link encoder and decoder features. Later, Jegou [96] proposed the Fully Convolutional
DenseNet (FC-DenseNet), which added dense connectivity blocks to the UNet structure, modifying the way features
are connected during the upsampling and downsampling process. Havaei [56] introduced a fast segmentation
method using a novel two-channel cascade structure. Gu [97] proposed the Context Encoder Network (CE-Net),
which mitigates information loss during pooling and convolution by incorporating a context/extractor into the
traditional encoding/decoding structure. The two-dimensional image boundary problem was also addressed, with
methods focusing on boundary preservation [98] to improve the network’s sensitivity and stability at the edges of
segmentation targets. These techniques maximize the use of the entire 2D slice information, leading to improved
performance in medical image segmentation.

The information provided by a 2D image is limited to the plane of the slice, capturing only the tumor’s
appearance in that specific plane. This may not offer a complete view of the tumor’s spatial distribution and mor-
phology. In contrast, 3D images are constructed by stacking multiple 2D slices, allowing for a more comprehensive
representation of the tumor’s three-dimensional shape and spatial distribution.

Compared to 2D segmentation, 3D segmentation offers several advantages in two key areas. First, in terms
of data format, 3D data provides more directional information than 2D data, offering a more comprehensive
representation of the spatial distribution and three-dimensional morphology of brain tumors [99]. Medical images
are often represented as 3D data with multiple stacked slices, incorporating more information along the z-axis.
Second, in terms of the model, 3D convolution processes data in all three dimensions (x, y, z), while 2D convolution
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can only capture two dimensions (x, y) [99]. Third, 3D images offer a stereoscopic effect, enabling more intuitive
visualization of tumor morphology, location, boundaries, and relationships. This makes tumor characteristics easier
to interpret. 3D processing methods use CNN networks to perform convolutional operations on full 3D volumes
or partial 3D blocks. A typical 3D segmentation network, like the V-Net proposed by F. Milletari [100], can be
considered as a 3D U-Net with residual modules. In medical brain tumor image segmentation, deep learning-based
networks generally employ either 2D (slice-based) or 3D (volume-based) processing techniques. The 2D approach
involves slicing 3D voxel data into 2D images, which are then processed using CNNs with 2D convolution operations
for training.

Finally, the segmentation results of each 2D slice are combined to form a 3D volume. Early segmentation
network architectures, such as FCN and U-Net, were initially explored using this approach. The U-Net architecture
improves medical image segmentation by using skip connections to link encoder and decoder features, allowing for
the effective integration of both deep and shallow information. Later, Jegou [96] introduced Fully Convolutional
DenseNets (FC-DenseNet), which enhanced U-Net by adding dense connection blocks, altering the connection
scheme during upsampling and downsampling processes. Havaei [56] developed a fast segmentation method that
employed a novel dual-channel cascade structure. Gu [97] proposed the Context Encoder Network (CE-Net), which
addresses information loss during pooling and convolution by incorporating a context/extractor into the traditional
encoder-decoder framework. Additionally, the challenge of boundary detection in 2D medical images was examined,
with techniques such as boundary preservation [98] improving the sensitivity and stability of networks to edges in
segmented targets.

3.8. Segmentation Frameworks with Deep Nuanced Reasoning and Swin-T

With the rapid advancements in computer technology and computer-aided diagnostic systems, medical image
segmentation has become a prominent area of research. Deep learning, a key branch of machine learning, has signif-
icantly contributed to this progress. The increase in computational power and the availability of large-scale medical
datasets have propelled deep learning to the forefront, making it an essential tool in the medical field for tasks such
as image segmentation, feature extraction, and classification [101]. Since 2014, deep learning algorithms have been
extensively explored for brain tumor segmentation in the context of the BraTS competition [102]. A growing number
of studies have successfully employed neural network-based models for medical image segmentation [42, 61, 103].
These models include traditional architectures like CNN, FCN [27], and U-Net [28], as well as more recent
innovations such as ViT [51] and the Swin-T network [35].

Vijay et al. [104] introduced SPP-U-Net, where traditional residual connections were replaced with a
combination of spatial pyramid pooling (SPP) and attention blocks. Kamnitsas et al. [105] proposed the ensemble of
multiple models and architectures (EMMA), which combined predictions from various 3D convolutional networks
such as DeepMedic [106], FCN [27], and U-Net [28]. Isensee et al. [107] utilized nnU-Net [69], a self-configuring
framework that automatically adapts U-Net to specific datasets. They showcased robust performance by making
minimal modifications to the conventional 3D U-Net and incorporating optimizations tailored for the BraTS dataset.
Luu et al. [108] proposed an enhancement to nnU-Net, which included using a larger network, replacing batch
normalization with group normalization, and adding axial attention mechanisms in the decoder. While these methods
often rely on the U-Net architecture, which consists of traditional encoder-decoder convolutional modules, they face
challenges in capturing global contextual information.

The Diffusion Probability Model (DPM) has become a prominent topic in recent computer vision research.
Wu et al. [109] introduced the MedSegDiff method for brain tumor segmentation using DPM. They proposed
dynamic conditional encoding to establish adaptive conditions for each sampling step and introduced a feature
frequency parser (FF Parser) to mitigate the negative effects of high-frequency noise components during the process.
While their work demonstrated the versatility of DPM, the segmentation accuracy in brain tumor segmentation tasks
still requires further improvement.

Wang et al. [43] introduced TransBTS, the first attempt to apply Transformers to multi-modal MRI brain
tumor segmentation, yielding promising results. Lin et al. [110] developed a clinically knowledge-driven brain
tumor segmentation model called CKD (Clinical Knowledge-Driven) TransBTS, as shown in Figure 6. Unlike
previous approaches, this model did not directly link all modalities but instead grouped the input modalities based
on MRI imaging principles. It reorganized the modalities and incorporated a dual-branch hybrid encoder with
modality-correlated cross-attention (MCCA) blocks to extract features from multi-modal images. Zhu et al. [111]
proposed a multi-task learning framework combining CNN and Swin-T, featuring a semantic segmentation branch
and an edge detection branch. This framework aimed to leverage the strengths of different modalities, enhancing
segmentation accuracy through complementary fusion and the segmentation of multi-modal features. However, these
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approaches focus on complex network designs, leading to large model sizes, higher computational requirements,
and longer training times.

Figure 6. The architecture of CKD-TransBTS. (a) This model is a U-Net-like structure with a dual-branch hybrid
encoder and a feature calibration decoder. According to the clinical knowledge of the MRI in brain tumor diagnosis,
the input images are separated into two groups (T1 & T1Gd) and (T2 & T2FLAIR). Convolutional stem is introduced
at the beginning. The encoder comprises several MCCA blocks ((b) Modality-Correlated Cross-Attention) which
enables cross-modal interactions in a reasonable manner. The decoder consists of several TCFC blocks ((c)
Trans&CNN Feature Calibration) to bridge the semantic gap between the features extracted by transformer and CNN.
After several convolutional blocks, the model predicts the final brain tumor segmentation results. Note that, in the
encoding (decoding) phase, the feature maps are downsampled (upsampled) by a convolutional (deconvolutional)
layer at the end of each stage. In this figure, the downsample and upsample operations are omitted for simplification.
The resolutions of the feature maps are specified at each stage by the scaling factors [110].

4. Performance Comparison

4.1. Brain Tumor Segmentation Based on the Fusion of Deep Semantics and Edge Information

4.1.1. Dataset and Implementation Details

The experiments [111] use training and testing datasets from the BraTS2018, BraTS2019, and BraTS2020
benchmarks [112–114]. BraTS, a prominent public dataset for multimodal brain tumor segmentation, is integral to
the annual MICCAI brain tumor segmentation challenge and is widely used in related research. Each year’s compe-
tition enhances the dataset by adding, removing, or replacing samples to expand its scope. Specifically, BraTS2018,
2019, and 2020 contain 285, 335, and 369 annotated brain tumor samples for model training, respectively. Each
sample includes MRI scans from four modalities FLAIR (Fluid Attenuated Inversion Recovery), T1 (T1-weighted),
T1ce (Contrast Enhanced T1-weighted), and T2 (T2-weighted), with annotations provided by domain experts. The
labels include four categories: background, NCR/NET (Necrosis and Non-enhancing Tumor), ED (Edema),and ET
(Enhancing Tumor). Evaluation is performed on three tumor regions: Whole Tumor (WT = NCR/NET + ED + ET),
Tumor Core (TC = NCR/NET + ET), and Enhancing Tumor (ET). Performance is assessed using two widely adopted
metrics in medical image segmentation: the Dice Score and the 95% Hausdorff Distance (HD).

During the preprocessing stage, each scan has a size of 240 × 240 × 155. The scans from all modalities are
sliced, with each slice having a size of 240 × 240. For the semantic segmentation module, all four modalities are
used as input. In the edge detection module, the input includes only the FLAIR and T1ce modalities. Additionally,
z-score normalization, a commonly used technique, is applied to the raw data to address inconsistencies in image
contrast across different modalities.

All programs were implemented using the PyTorch framework. The training process was carried out on four
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Tesla P100 GPUs. The Adam optimizer [115] was used for the experiments, with a momentum value set to 0.9. The
initial learning rate, weight decay, and batch size were set to 1 × 10−3, 1 × 10−5, and 16, respectively.

4.1.2. Comparison with Other Methods

To assess the effectiveness of the brain tumor segmentation method proposed by Zhu [111], several state-
of-the-art segmentation techniques that have been evaluated on the BraTS2018-2020 benchmarks are used for
comparison. These include 2D and 3D CNN-based methods [33, 65, 67, 71, 87, 88, 97, 116, 117], Transformer-
based methods [42, 43], and methods focusing on multimodal feature fusion [118–120]. A brief overview of these
methods is provided in Table 1. Since the source codes for many existing brain tumor segmentation methods are not
publicly available, and to avoid biases introduced by model re-training, the evaluation results for these methods are
directly taken from their respective publications, which is a standard practice in brain tumor segmentation research.
The evaluation results for each method on the BraTS2018, BraTS2019, and BraTS2020 benchmarks are presented
in Table 1, with the best-performing values highlighted in bold. The results are further visualized for comparison
in Figures 7 and 8, which display the performance of different segmentation methods based on the Dice and HD
metrics, respectively. The top-performing method in each case is marked with a star on the corresponding bar.

Table 1. Evaluation results of different brain tumor segmentation methods on the BraTS (2018–2020) datasets.

Datasets Methods
WT TC ET Average

Dice HD Dice HD Dice HD Dice HD

BraTS2018

Myronenko [67] 90.40 4.483 85.90 8.278 81.40 3.805 85.90 5.500
NoNewNet [87] 90.80 4.790 84.32 8.160 79.59 3.120 84.90 5.357
U-Net++ [65] 88.96 5.327 84.65 8.535 79.49 4.285 84.36 6.049
CENET [97] 89.53 5.271 84.31 8.493 79.95 4.379 84.60 6.193

D. Zhang [118] 89.60 5.733 82.40 9.270 78.20 3.567 83.40 6.190
TransUnet [42] 90.25 4.390 87.19 5.539 80.41 3.731 85.95 4.553

Point-UNet [116] 90.55 - 87.09 - 80.76 - 86.13 6.010
Z. Zhu [111] 90.89 3.923 87.96 5.217 81.94 3.440 86.93 4.193

BraTS2019

Attention Unet [33] 88.81 7.756 77.20 8.258 75.96 5.202 80.66 7.072
U-Net++ [65] 89.67 6.345 87.13 5.521 80.25 3.313 85.68 5.060
Z. Jiang [88] 90.94 4.263 86.47 5.439 80.21 3.146 85.87 4.283

N3D [71] 91.60 6.547 88.80 6.219 83.00 3.543 87.80 5.436
HNF-Net [117] 91.11 4.136 86.40 5.250 80.96 3.490 86.16 4.292
T. Zhou [119] 89.70 6.700 77.50 9.300 70.60 7.400 79.27 7.800
TransBTS [43] 90.00 5.644 81.94 6.049 78.93 3.736 83.62 5.143

Z.Zhu [111] 91.58 3.866 89.24 5.118 83.84 3.080 88.22 4.021

BraTS2020

U-Net++ [65] 89.77 6.299 85.57 5.483 79.83 4.328 85.06 5.370
Point-UNet [116] 89.67 - 82.97 - 76.43 - 83.02 8.260

TransBTS [43] 90.09 4.964 81.73 9.769 78.73 17.947 83.52 10.893
RFNet [120] 91.11 - 85.21 - 78.00 - 84.77 -
Z. Zhu [111] 91.03 4.719 88.22 5.985 84.61 3.051 87.95 4.585

Based on the results presented in the above Tables and Figures, the method proposed by Zhu [111] demonstrates
superior performance compared to other methods. Specifically, for the average Dice score, Zhu’s method [111]
achieves 86.71%, 88.22%, and 87.95% on the BraTS2018-2020 benchmarks, outperforming other reference methods
by margins ranging from 0.58% to 7.81%, 0.42% to 8.95%, and 2.89% to 4.93%, respectively. When compared to
TransBTS, which combines Transformer and U-Net for semantic segmentation, Zhu’s method [111] consistently
delivers better results, with particularly notable improvements in the tumor core region. Additionally, compared
to the latest RFNet method, which incorporates multimodal feature fusion, Zhu’s method [111] shows significant
improvements in both the tumor core and enhancing tumor regions.
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Figure 7. Performance comparison of different brain tumor segmentation methods on the metric Dice. The best-
performed method in each case is marked by a star [111].

Figure 8. Performance comparison of different brain tumor segmentation methods on the metric HD. The best-
performed method in each case is marked by a star [111].

Figure 9 presents a visual comparison of the brain tumor segmentation results produced by different methods.
By referencing the ground truth, it is evident that the method proposed by Zhu [111] delivers more accurate
segmentation results, particularly in delineating the tumor edges, when compared to other methods. This highlights
the effectiveness of the edge features extracted for segmentation.

Z. Zhu et al.

Fig. 8. Visual effect comparison of brain tumor segmentation results obtained by different methods. The green, yellow and red indicate ED, ET and NCR/NET regions, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Performance comparison of different segmentation methods in terms of tumor boundary accuracy.

the proposed one, but it just simply concatenates the semantic
and edge features for fusion, instead of using the proposed MFIB.

- Completed Model: The complete model (i.e., SwinTrans+SPD+
ED+MFIB) we proposed.

Therefore, the comparison between SwinTrans and SwinTrans+SPD
is used to demonstrate the effectiveness of the shifted patch tok-
enization strategy adopted in the Swin Transformer. The comparison
between SwinTrans+SPD and SwinTrans+SPD+ED can validate the
effect of the edge detection module (please kindly note that the ED
module cannot be individually used without the semantic segmentation

module). The comparison between SwinTrans+SP+ED and Completed
Model is used to show the effectiveness of the designed MFIB for feature
fusion.

Table 6 lists the objective performance of different models. We can
see that the each of the above components leads to some improvements
of the segmentation results. Among them, the effect of adding edge
detection module and using MFIB for feature fusion is more obvious.

The visual effect comparison of segmentation results obtained by
different models in the ablation study is shown in Fig. 10. Some
interesting observations include: (1) After adding the shifted patch,

Input Image U-Net U-Net++ CENET TransUNet Z.Zhu Ground Truth

Figure 9. Visual effect comparison of brain tumor segmentation results obtained by different methods. The green,
yellow and red indicate ED, ET and NCR/NET regions, respectively. (For interpretation of references to color in this
figure legend, readers are referred to the online version of this article) [111].

Figure 10 provides an example comparing the performance of different segmentation methods in terms of
tumor boundary accuracy. As noted earlier, the Hausdorff Distance (HD) metric is particularly sensitive to boundary
shape, and the corresponding HD scores for the whole tumor are also presented. Among all the methods, Zhu’s
approach [111] achieves the best results, both in terms of HD scores and visual quality. These findings further
emphasize that incorporating edge features enhances the accuracy of brain tumor segmentation.
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Z. Zhu et al.

Input Image U-Net TransUNet Z.Zhu Ground TruthU-Net++

Figure 10. Performance comparison of different segmentation methods in terms of tumor boundary accuracy [111].

4.2. Lightweight Medical Image Segmentation Network

4.2.1. Dataset and Implementation Details

The experiments [121] were conducted on the ISIC2017 [122] and ISIC2018 [123] datasets. The ISIC
(International Skin Imaging Collaboration) datasets are widely recognized and openly available in dermatological
research. These datasets aim to support computer-aided dermatology diagnosis and research by offering a large
collection of skin lesion images along with relevant clinical metadata.

Each image in the dataset has a size of 2166 × 3188 pixels. The ISIC 2017 dataset includes a training set,
validation set, and test set with 2000, 150, and 600 dermoscopic images, respectively. Similarly, the ISIC 2018
dataset contains training, validation, and test sets with 2594, 100, and 1000 skin lesion images, respectively. For
consistency, all images in this experiment were resized to 256 × 256 pixels.

To evaluate the performance of the segmentation network using consistent metrics, Intersection over Union
(IoU), Dice score, and Segmentation Accuracy (SA) are employed. Additionally, the method proposed by Zhu [121]
is compared with the baseline in terms of both the number of parameters and computational complexity, measured
in floating-point operations (FLOPs).

The definitions of the IoU, Dice score, and SA are given as follows:

IoU =
TP

TP + FN + FP
(5)

Dice =
2 · TP

2 · TP + FN + FP
(6)

SA =
TP + TN

TP + TN + FP + FN
(7)

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives, respectively.
These metrics were used to evaluate the performance of the segmentation network. Additionally, the average time
(in milliseconds) required by the method proposed by Zhu [121] to segment an image, along with its frames per
second (FPS), was calculated to assess its efficiency in comparison to other methods.

All experiments were implemented using the PyTorch framework and executed on a desktop equipped with a
24.00 GB NVIDIA GeForce GTX 3090, an Intel Core i7-8700MQ CPU @ 3.20 GHz, and 48.00 GB of RAM. The
Adam optimizer with a momentum of 0.9 was used in the experiments. The initial learning rate, weight decay, and
batch size were set to 1 × 10−3, 1 × 10−5, and 16, respectively.

4.2.2. Comparison with Other Methods

In the comparative experiments, the proposed Lightweight Medical Image Segmentation network with a
multi-scale feature interaction guidance fusion framework - extra small (LMIS-xxs)[121] was compared with
state-of-the-art models such as robust and lightweight deep learning real-time Segmentation Network for Multi-
modality Medical Images (MISegNet) [124], Multi-Scale Contextual Attention Network (MSCA-Net)for skin lesion
segmentation [125], and others [126, 127], highlighting its significant advantages across various aspects. To visually
emphasize the lightweight nature of LMIS-xxs, bar charts are used for comparison with these models. As shown
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in Figure 11, the chart compares the number of model parameters and FLOPs of LMIS-xxs with other methods.
LMIS-xxs stands out with the lowest number of model parameters and FLOPs. Notably, the proposed lightweight
LMIS-xxs model has only 0.524 M parameters and 0.197 G FLOPs.
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Figure 11. Histogram visualization comparison with other methods on parameters and FLOPs [121].

Table 2 presents a performance comparison of LMIS-xxs with other methods on the ISIC2017 and ISIC2018
datasets. The experimental results demonstrate that LMIS-xxs achieves state-of-the-art overall performance on the
ISIC2017 dataset. Specifically, compared to larger U-Net models, LMIS-xxs not only delivers superior performance
but also significantly reduces the number of parameters and FLOPs. When compared to other lightweight models,
LMIS-xxs improved the IoU score by 9.75%, outperformed QGD-Net (Quaternion Group Dilated Neural Network),
and showed a better balance between segmentation performance and model size. It also surpassed MSCA-Net, with
reductions of 98.06% in parameters and 98.47% in computational effort. LMIS-xxs achieved optimal performance
in terms of Segmentation Accuracy (SA). On the ISIC2018 dataset, LMIS-xxs matched the best-performing
methods and outperformed most others. It outperformed UNeXt in terms of parameters, FLOPs, and segmentation
performance. Notably, LMIS-xxs also performed better than MSCA-Net in terms of parameters, FLOPs, and
Dice score, while MSCA-Net has a high computational complexity with 27.09 M parameters and 12.88 G FLOPs.
Overall, LMIS-xxs offers competitive segmentation performance while providing significant advantages in terms of
model parameters and computational complexity.

Table 2. Comparison of methods on ISIC2017 and ISIC2018 datasets [121].

Datasets Methods
Parameters FLOPs

IoU Dice SA
(M) (G)

ISIC2017

U-Net [28] 31.13 55.840 76.18 84.92 91.64
FAT-Net [126] 30.000 23.000 76.53 85.00 93.26

MISegNet [124] 1.500 - - 86.45 -
GFANet [128] 23.090 7.680 77.75 85.74 93.97

MMS-Net [129] 67.340 68.520 77.90 87.60 95.40
MSCA-Net [125] 27.090 12.880 79.26 87.31 94.41
QGD-Net [130] 0.777 - 72.23 - 93.01
EIU-Net [131] 14.160 18.920 77.10 85.50 93.70

LMIS-xxs [121] 0.524 0.197 82.33 89.62 95.72

ISIC2018

U-Net [28] 31.13 55.840 74.55 84.03 93.04
FF-UNet [132] 3.940 - 80.20 88.70 96.40
FAT-Net [126] 30.000 23.000 82.02 89.03 95.78
UNeXt [133] 1.470 0.570 82.78 90.41 -

MSCA-Net [125] 27.090 12.880 84.18 90.52 96.41
GFANet [128] 23.090 7.680 83.66 90.13 96.29
EIU-Net [131] 14.160 18.920 83.60 90.20 96.70
SMTF [134] 3.100 2.190 81.10 88.75 95.72

TransGuider [135] 16.130 - 82.68 89.48 -
Zhu [127] 4.280 38.580 83.26 90.72 -

LMIS-xxs [121] 0.524 0.197 83.23 90.85 96.33
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To further demonstrate the reliability and effectiveness of LMIS-xxs, the publicly available source codes of
several methods were used for comparison, including U-Net [28], MSCA-Net [125], GFANet [128], U-Net++ [29],
and UNeXt [133]. These models were trained under the same conditions on the ISIC2017 dataset and tested on the
test set. As shown in Figure 12, the curves display the loss and IoU values obtained at each epoch during training,
as well as the val loss and val IoU derived from the validation set. Comparing the results with these five advanced
and classical methods, LMIS-xxs demonstrates a faster loss reduction during training, achieving lower training loss
and higher average IoU values after convergence. Similarly, on the validation set, LMIS-xxs outperforms the other
methods with lower loss and higher average IoU, showing more stable convergence. These results further highlight
the advantages of the proposed LMIS-xxs network.

convergence. This further highlights the advantages of the proposed 
LMIS-xxs network.

Next, these five methods performed visual comparison experiments 
on the ISIC2017 test set, and box plots were used for statistical analysis. 
Fig. 7 shows the visual experimental results comparing the LMIS-xxs 
network with these five methods. By comparing the results with the 
ground truth (GT), it is obvious that the proposed method obtained more 
accurate segmentation results than other methods, effectively capturing 
the segmentation of dermatological regions of different sizes, thus 
verifying the excellent segmentation performance of the proposed LMIS- 
xxs network.

During the model testing phase, each image in the test set was 
evaluated using IoU and Dice metrics. Fig. 8 displays box plot visuali-
zations of IoU and Dice metrics for each image in the test set, comparing 
the segmentation performance of the LMIS-xxs network with five others 
methods. First, it is easily observed that the proposed method out-
performed other methods in terms of segmentation performance from 
the average values in IoU and Dice box plots. Segmentation tasks often 
encounter some images with poor segmentation results, which are rep-
resented as outliers in box plots. By presenting these outliers, the 

proposed method has fewer instances with poor segmentation results, 
and a smaller distance from the minimum valued in the box plot, the 
generality and superiority of the proposed method in skin disease seg-
mentation is better compared with other methods. Finally, by examining 
the range between the minimum and maximum values in the box plots, 
it is obvious that the proposed method has a smaller range, and most of 
the IoU and Dice results are concentrated in this range, reflecting the 
higher robustness of the proposed method.

In summary, the experimental results demonstrate the lightweight 
characteristics of the LMIS-xxs segmentation model, which can compete 
with most methods. On the ISIC dataset, it demonstrates the robustness 
of LMIS-xxs in skin disease segmentation tasks, verifying the advantages 
of LMIS-xxs compared with other lightweight networks and its valuable 
contributions to the experimental results.

4.4. Ablation study

Ablation experiments were conducted to determine the effectiveness 
of each module in the proposed method. A baseline inspired by U-net 
[17] was used, where each stage consists of a simple convolution 
operation with kernel size 3. The number of channels in each stage was 
set to the same as LMIS-xxs.

In the encoder part of Table 7, ablation experiments were performed 
on the encoder part of the proposed method. First, the LMIS-xxs encoder 
was replaced with base and then with the MobileNeT backbone 
network. As shown in Tables 7 and it s obvious that the proposed 
backbone network enhances the model s performance while also 
reducing the number of parameters and computational requirements.

In the decoder part of Table 7, three scenarios were studied. First, 
ablation experiments were performed using the SCFM fusion module, 
which is not present in both fusion layer 1 and fusion layer 2. Again, 
experiments without fusion layer 2 or 3 and without all three fusion 
layers (fusion layers 1, 2, and 3) were conducted. The results in Table 7
(decoder) highlight the impact of these ablations. It is obvious that the 

Table 6 
Comparison of the proposed method with other methods in terms of parameters 
and inference time.

Methods years Parameters 
(M)

FLOPs 
(G)

Inference Time 
(ms)

FPS

U-net [17] 2015 31.13 55.840 223.00 4.48
Unet [46] 2018 9.160 34.650 173.00 5.78
FF-UNet [40] 2022 3.940 36.99 27.03
FAT-Net [36] 2022 30.00 23.000 22.22 45.00
Unext [41] 2022 1.470 0.570 25.00 40.00
GFANet [37] 2023 23.090 7.680 33.56 29.80
LMIS-xxs 

(Proposed)
0.524 0.197 14.03 71.26

Fig. 6. Visual performance comparison of LMIS-xxs and other methods in terms of loss, val_loss, IoU and val_IoU results. Loss and IoU of each epoch were obtained 
during the training process. Val_loss and val_IoU were obtained based on the verification dataset after the end of an epoch. These four indicators can be used to judge 
the learning status of the model during the training process.
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Figure 12. Visual performance comparison of LMIS-xxs and other methods in terms of (a) loss, (b) val loss, (c) IoU
and (d) val IoU results. Loss and IoU of each epoch were obtained during the training process. Val loss and val IoU
were obtained based on the verification dataset after the end of an epoch. These four indicators can be used to judge
the learning status of the model during the training process [121].

Next, a visual comparison experiment was conducted on the ISIC2017 test set using these five methods,
and box plots were used for statistical analysis. Figure 13 presents the visual experimental results comparing the
LMIS-xxs network with these five methods. By comparing the results to the ground truth, it is clear that LMIS-xxs
achieves more accurate segmentation than the other methods, effectively capturing dermatological regions of varying
sizes. This demonstrates the superior segmentation performance of the proposed LMIS-xxs network.

During the model testing phase, each image in the test set was evaluated using the IoU and Dice metrics.
Figure 14 shows box plot visualizations of these metrics for each image in the test set, comparing the segmentation
performance of the LMIS-xxs network with five other methods. It is evident that LMIS-xxs outperforms the
other methods in terms of segmentation performance, as indicated by the average values in the IoU and Dice box
plots. Segmentation tasks often involve images with poor segmentation results, which are represented as outliers
in the box plots. LMIS-xxs exhibits fewer such outliers and demonstrates a smaller distance from the minimum
values, indicating fewer instances of poor segmentation results. This highlights the generalization and superiority
of LMIS-xxs in skin disease segmentation compared to other methods. Finally, examining the range between the
minimum and maximum values in the box plots, it is clear that LMIS-xxs has a smaller range, with most IoU and
Dice results concentrated within it, reflecting its higher robustness.
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SCFM fusion modules within the fusion layers play an important role in 
enhancing network segmentation performance. Removing this critical 
design element results in a significant decrease in segmentation per-
formance. Furthermore, these modules have no impact on the number of 
network parameters. It only adds increase a small amount of calculation. 
This strongly emphasizes the role of the MFIG framework and the SCFM 
fusion modules in guiding feature propagation and fusion. Finally, for 
clearer visual comparison, experimental results are shown in Fig. 9.

4.5. Extension to other medical image segmentation

To verify the adaptability of the proposed model to different 
biomedical segmentations, two other biomedical image datasets were 

selected for testing: colorectal cancer lesion segmentation and cell nu-
cleus segmentation. Colorectal cancer lesion segmentation used CVC- 
ClinicDB dataset [47] and Kvasir-SEG dataset [48]. In this experiment, 
the same training set was used as the polyp segmentation method [49], 
which includes 900 samples from Kvasir and 550 samples from 
CVC-ClinicDB for training and the remaining images for testing. For the 
colorectal cancer lesion segmentation experiment, the proposed LMIS-L 
version was selected. Cell nucleus segmentation used the 2018 DSB 
dataset [50], which includes 670 annotated images. This dataset was 
randomly divided into a training set and a validation set in a ratio of 8:2. 
For this experiment, the proposed LMIS-xxs version was selected. All 
images were uniformly resized to 256 256 pixels. Tables 8 and 9 list 
the objective evaluation results of different methods on the 

Fig. 7. Visual effect comparison of dermatology segmentation results obtained by different methods. It shows selected skin disease segmentation cases in 
different size.

Fig. 8. Box plots visualize IoU and Dice metrics for LMIS-xxs and five other methods on the test set. Each point in the box plot corresponds to the IoU and Dice 
evaluation for each image. Numerical values in the plot represent average IoU and Dice scores. The short horizontal line at the top of each box plot represents the 
upper bound (maximum value), while the line at the bottom represents the lower bound (minimum value). The size of the interval between the minimum and 
maximum values reflects the segmentation performance of the method. Data points below the corresponding minimum values represent outliers, indicating images 
with relatively poor segmentation results.
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Figure 13. Visual effect comparison of dermatology segmentation results obtained by different methods. It shows
selected skin disease segmentation cases in different size [121].
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Figure 14. Box plots visualize IoU and Dice metrics for LMIS-xxs and five other methods on the test set. Each
point in the box plot corresponds to the IoU and Dice evaluation for each image. Numerical values in the plot
represent average IoU and Dice scores. The short horizontal line at the top of each box plot represents the upper
bound (maximum value), while the line at the bottom represents the lower bound (minimum value). The size of
the interval between the minimum and maximum values reflects the segmentation performance of the method.
Data points below the corresponding minimum values represent outliers, indicating images with relatively poor
segmentation results [121].

In summary, the experimental results highlight the lightweight nature of the LMIS-xxs segmentation model,
which competes effectively with most other methods. On the ISIC dataset, LMIS-xxs demonstrates strong robustness
in skin disease segmentation tasks, showcasing its advantages over other lightweight networks and making significant
contributions to the overall experimental outcomes.

4.2.3. Extension to Other Medical Image Segmentation

To evaluate the adaptability of LMIS-xxs to various biomedical segmentation tasks, two additional biomedical
image datasets were selected for testing: colorectal cancer lesion segmentation and cell nucleus segmentation. For
colorectal cancer lesion segmentation, the CVC-ClinicDB dataset [136] and the Kvasir-SEG dataset [137] were
used. The same training set as the polyp segmentation method [138] was utilized, consisting of 900 samples from
Kvasir and 550 samples from CVC-ClinicDB for training, with the remaining images used for testing. The LMIS-L
version of the proposed model was selected for this experiment. For cell nucleus segmentation, the 2018 DSB
dataset [139], which includes 670 annotated images, was used. This dataset was randomly split into training and
validation sets in an 8:2 ratio. For this experiment, the LMIS-xxs version of the model was chosen. All images
were resized to 256 × 256 pixels. Table 3 presents the objective evaluation results of different methods on the
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CVC-ClinicDB and 2018 DSB datasets, respectively. Figures 15 and 16 show the visual results of the proposed
method for colorectal cancer lesion segmentation and cell nucleus segmentation.

Table 3. Comparison of methods on 2018 DSB, CVC-ClinicDB, and Kvasir-SEG datasets [121].

Datasets Methods
Parameters FLOPs

IoU Dice
(M) (G)

2018 DSB

U-Net [28] 31.13 55.840 82.57 88.93
UNeXt [133] 1.470 0.570 82.15 88.13

ConvUNeXt [140] 3.510 7.250 83.64 89.09
TransAttUnet-C [141] 25.970 88.570 84.36 90.04

Zhu [127] 4.280 38.580 83.26 90.72
LMIS-xxs [121] 0.524 0.197 84.06 90.68

CVC-ClinicDB

U-Net [28] 31.13 55.840 75.50 82.30
PraNet [138] 32.55 13.11 84.90 89.90
MSNet [142] 29.74 16.97 87.90 92.10

Polyp-PVT [143] 44.98 16.95 88.90 93.70
MEGANet [144] 29.27 46.82 88.50 93.00

LMIS-L [121] 3.552 1.126 88.34 92.28

Kvasir-SEG

U-net [28] 31.13 55.840 74.60 81.80
PraNet [138] 32.55 13.11 84.00 89.80
MSNet [142] 29.74 16.97 86.20 90.70

Polyp-PVT [143] 44.98 16.95 86.40 91.70
MEGANet [144] 29.27 46.82 85.90 91.10

LMIS-L [121] 3.552 1.126 85.73 90.85

hospitals often rely on high-performance GPUs and large-scale equip-
ment, requiring large amounts of computing resources. However, in 
underserved or remote health care facilities, resources may be limited, 
making it challenging to implement medical image analysis. To solve 
this problem and enable medical image analysis on mobile or edge de-
vices, this paper proposes an LMIS network utilizing multi-scale feature 
interaction guidance framework. This network consists of a main feature 
extraction network and a multi-scale feature interaction guidance 
framework. It solves the problems of resource-intensive and high 
hardware requirements of traditional segmentation methods, and pro-
vides a powerful solution for skin disease image segmentation tasks.

This paper introduces a LBFE backbone network to effectively cap-
ture information from input data and improve understanding of re-
lationships between different locations. It also proposes a MFIG 
framework for lightweight networks, incorporating a SCFM module to 
balance spatial and channel-specific details. This method performs well 
in terms of parameter count and FLOPs, showing better generalization 
and adaptability. Experimental results show that the proposed LMIS 
network outperforms other state-of-the-art models and validates the 

effectiveness of the introduced network modules, which significantly 
reduces the number of parameters and computational cost of the 
network.

However, this study has some limitations. First, using Transformer in 
the backbone network slightly increases the number of parameters, 
sacrificing time performance while achieving better results. One opti-
mization direction might be to prune the model or implement other 
lightweight operations. Second, this study performed well on 2D data-
sets but no experiments were conducted on 3D medical imaging data-
sets. Future work will involve testing on 3D medical imaging datasets. 
Therefore, future research will explore more lightweight modules 
without affecting segmentation performance. Furthermore, the pro-
posed lightweight design can be extended to other semantic segmenta-
tion tasks, such as segmentation tasks based on 3D medical imaging 
datasets, and the integration of the proposed lightweight model with 
hardware devices will be explored. The goal is to improve the efficiency 
of network segmentation without compromising accuracy, making it 
more suitable for diagnostic assistance in the field of medical image 
analysis.

Fig. 10. Visual effect comparison of colorectal cancer lesion segmentation results.

Fig. 11. Visual effect comparison of cell nucleus segmentation results.
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Figure 15. Visual effect comparison of colorectal cancer lesion segmentation results [121].

The results presented in Table 3 indicate that LMIS-xxs and LMIS-L outperform other methods in terms of
competitiveness. Specifically, LMIS-L achieved average IoU and Dice scores of 88.34% and 92.28%, respectively,
on the CVC-ClinicDB dataset. On the Kvasir-SEG dataset, the average IoU and Dice were 85.73% and 90.85%,
respectively. When compared to other reference methods, LMIS-L outperformed PraNet [138] and MSNet [142],
both of which were published in MICCAI, though it slightly lagged behind the MEGANet [144] method. However,
LMIS-L demonstrated significant advantages in terms of model parameters and computational complexity, requiring
7.246 M to 44.426 M fewer parameters and reducing FLOPs from 11.984 G to 45.694 G compared to the other
reference methods. On the 2018 DSB dataset, LMIS-xxs achieved average IoU and Dice scores of 84.06% and
90.68%, respectively. Compared to other methods, LMIS-xxs showed advantages in terms of model parameters
and computational complexity. In terms of IoU, LMIS-xxs outperformed Zhu’s method [127] published in Pattern
Recognition by 0.8%, and in terms of Dice, it was 0.04–2.25% higher than the other methods. Figures 15 and 16
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demonstrate that both LMIS-xxs and LMIS-L provide accurate segmentation results for colorectal cancer lesion
segmentation and cell nucleus segmentation. In summary, LMIS-xxs and LMIS-L delivered highly satisfactory results
in these two segmentation tasks, showing strong adaptability to other biomedical image segmentation challenges.

hospitals often rely on high-performance GPUs and large-scale equip-
ment, requiring large amounts of computing resources. However, in 
underserved or remote health care facilities, resources may be limited, 
making it challenging to implement medical image analysis. To solve 
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interaction guidance framework. This network consists of a main feature 
extraction network and a multi-scale feature interaction guidance 
framework. It solves the problems of resource-intensive and high 
hardware requirements of traditional segmentation methods, and pro-
vides a powerful solution for skin disease image segmentation tasks.

This paper introduces a LBFE backbone network to effectively cap-
ture information from input data and improve understanding of re-
lationships between different locations. It also proposes a MFIG 
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balance spatial and channel-specific details. This method performs well 
in terms of parameter count and FLOPs, showing better generalization 
and adaptability. Experimental results show that the proposed LMIS 
network outperforms other state-of-the-art models and validates the 
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lightweight operations. Second, this study performed well on 2D data-
sets but no experiments were conducted on 3D medical imaging data-
sets. Future work will involve testing on 3D medical imaging datasets. 
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hardware devices will be explored. The goal is to improve the efficiency 
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Figure 16. Visual effect comparison of cell nucleus segmentation results [121].

5. Conclusion

In conclusion, medical image segmentation continues to be a vital area of research with profound implications
for clinical practice, such as diagnosis, treatment planning, and disease monitoring. Significant advancements have
been made in segmentation techniques, evolving from traditional image processing methods to advanced deep
learning approaches. While early segmentation tasks were based on classical methods like thresholding, region
growing, and active contours, the advent of machine learning and deep learning has transformed the field, providing
highly accurate, automated, and scalable solutions.

Deep learning, especially CNNs, has demonstrated remarkable potential in overcoming the challenges of
medical image segmentation, including anatomical variability, image noise, and complex structures. However,
despite these advancements, several challenges persist, such as limited data availability, class imbalance, model
generalizability, and computational efficiency. Current models often rely on large, annotated datasets, which are
costly and time-consuming to obtain, and may struggle to generalize across diverse populations or adapt to new
imaging modalities.

Future research in medical image segmentation should aim to tackle these challenges through innovations like
semi-supervised and unsupervised learning, enhanced data augmentation techniques, multi-modal segmentation,
and transfer learning. Moreover, integrating explainability and interpretability into deep learning models is crucial
for their clinical adoption, as healthcare professionals must be able to trust the results produced by these automated
systems. With continuous advancements in artificial intelligence (AI), imaging technologies, and computational
methods, the future of medical image segmentation looks promising, offering the potential to improve clinical
outcomes and enable more personalized healthcare. The efficiency and effectiveness of medical image segmentation
will be the future trend. The compatibility of lightweight network models and hardware devices will be focused on.
Training results will be shared to reduce duplication of effort. AI tools such as ChatGPT, Gemini, and DeepSeek
will be integrated into future medical image segemenation applications.

This survey provides a thorough overview of the current landscape of medical image segmentation, highlighting
both its achievements and the ongoing challenges. As the field advances, interdisciplinary collaboration among
computer scientists, medical professionals, and researchers will be crucial for developing robust, efficient, and
clinically applicable segmentation models.
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