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Abstract: This research introduces a model with two distinct stages for accurate 
forecasting and efficient energy sharing within grid-integrated community 
networks (GICNs), which combines residential power loads, generators of wind and 
photovoltaic (PV) power, and energy storage (ES). In the first-stage system model, 
we employ a machine learning (ML) algorithm for day-ahead supply and demand 
forecasting to improve the forecasting accuracy. Specifically, we develop a hybrid 
convolutional neural network with long short-term memory (CNN-LSTM), which 
effectively includes both spatial and temporal dimensions of time series data. In the 
second stage, a bidirectional real-time energy sharing strategy is designed based on 
forecasted data, facilitating the efficient distribution of surplus energy among 
communities. The two-stage system model integrates forecasting and energy 
sharing to accurately predict supply and demand, as well as effective energy sharing 
among GICN participants. The measurements including mean absolute error 
(MAE), root mean squared error (RMSE), and generation utilization rate are 
defined to evaluate prediction accuracy and energy sharing effectiveness thereby 
ensuring optimal grid operation and sustainability. Finally, the proposed hybrid 
CNN-LSTM algorithm is compared with the single LSTM and CNN models to 
demonstrate the performance superiority of the hybrid CNN-LSTM model. 
Numerical simulation experiments indicate that the proposed model CNN-LSTM 
achieved high accuracy in predicting user PV, wind, and load demand. 
Additionally, the implemented real-time energy sharing strategy efficiently 
manages energy distribution within GICNs.  

 
Keywords: supply and demand forecasting; energy sharing; convolutional neural 
network with long short-term memory (CNN-LSTM) networks; grid-integrated 
networks; self-sufficiency ratio (SSR); self-consumption rate (SCR) 

1. Introduction 

In the growing landscape of energy management, the integration of renewable energy sources and smart grid 
technologies has revolutionized the landscape of modern energy systems, offering unique opportunities for 
sustainability and efficiency. The transition to renewable energy sources in grid-integrated systems is a critical 
step in achieving sustainability and resilience in energy supply [1–3]. With the application of renewable energy 
sources such as wind and PV power generation, the energy management landscape is undergoing a significant 
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transformation. However, these renewable energy sources have inconsistency and uncertainty in energy supply, 
challenging smart energy management and distribution systems. To address these challenges, advanced energy 
management strategies are being developed, focusing on optimizing the integration of wind and PV generation 
with active distribution network (ADN) [4–6]. 

Grid-integrated community networks (GICNs) represent a novel paradigm in the developing grid-integrated 
network and offer a promising framework for improving energy efficiency, reliability, and sustainability. These 
networks are geographically formed as clusters of neighboring consumers and producers (prosumers) of energy, 
integrated into the ADN, and capable of localized energy exchange. By leveraging local renewable energy sources 
and enabling energy sharing strategies among community members, GICNs can maintain a balance between 
supply and demand within the community [7–9]. An effective energy sharing strategy can dynamically match 
energy supply from PV and wind generation and energy storage (ES) systems with the demand profiles of 
community members. This approach minimizes reliance on the traditional grid and reduces overall energy costs 
and energy wastage [10–12]. 

The key to optimizing energy sharing strategies lies in accurate supply and demand forecasting. Accurately 
forecasting the availability of wind and PV generation, local load, and ES status is an important factor and it is a 
complex task for enabling effective real-time energy sharing and improving the sustainability of power systems 
within GICNs [13]. Machine learning (ML) techniques have emerged as powerful tools for addressing the key 
challenges in accurate supply and demand forecasting, providing effective solutions by analyzing large amounts 
of historical data to predict future outcomes [14–16]. ML algorithms including convolutional neural networks 
(CNNs), and long short-term memory (LSTM) networks are nowadays used to predict both energy supply and 
load demands. CNN and LSTM networks are effective prediction algorithms in ML, and they are each suited for 
specific aspects of forecasting supply and demand. CNN is adept at processing spatial data feature extraction due 
to its ability to detect patterns and structures in multidimensional inputs from large and complex datasets. LSTM 
is mostly effective in handling time series data and capturing long-term temporal dependencies [17–19]. However, 
the supply and demand forecasting-based energy sharing strategies for GICNs still face the following challenges: 
(1) Develop an ML model for accurate supply and demand forecasting: Due to the distinct spatial and 

temporal characteristics of supply and demand in GICNs, using CNN and LSTM algorithms separately 
for forecasting poses challenges. CNN is adept at learning spatial hierarchies from multidimensional 
time series data but struggles with capturing long-term temporal dependencies. While LSTM is effective 
in sequence dependency but struggles with spatial feature extraction. 

(2) Imbalance between supply and demand: Accurately forecasting the user’s PV and wind generations as 
well as load demand in order to achieve accurate energy demand in real-time is a critical challenge that 
affects the energy balance and optimal energy sharing decision. Due to different PV and wind energy 
patterns and demand fluctuation throughout different time periods, different degrees of energy 
imbalance will happen in different GICNs, which increases the complexity of the supply and demand 
forecasting and the energy sharing strategy that needs to be addressed. 

(3) Optimal real-time energy sharing strategies: Developing optimal energy sharing strategies for GICNs 
presents a unique challenge. These strategies must dynamically adapt energy generation, consumption, 
and storage among users in real-time to maximize renewable energy sources utilization efficiency and 
minimize energy purchase and energy wastage. Real-time optimization algorithms need to account for 
the dynamic nature of energy scheduling and sharing. 
Nowadays, numerous studies have addressed energy sharing strategies and supply and demand forecasting. 

In [14], A. Golder et al. proposed the use of ML algorithm models to improve the forecasting accuracy for 
electricity demand and PV generation. The authors evaluated three models, i.e., support vector machines (SVM), 
multi-layer Perceptron (MLP), and LSTM models individually. However, the study focused on improving 
forecasting accuracy but did not fully explore the potential of hybrid ML algorithms, nor did it consider the 
relationship between accurate forecasting systems and real-time energy sharing strategies. In [17], L. Wen et al. 
proposed aggregated load and PV generation forecasting to achieve optimal load dispatching for community 
microgrids using deep recurrent neural network with an LSTM model. However, the study focused on LSTM 
model, which may limit forecasting accuracy. The optimization approach did not fully address forecasting-based 
real-time energy sharing strategies, which are essential for adapting to sudden changes in power supply and 
demand. In [18], F. Qayyum et al. proposed a forecasting optimization model for minimizing energy costs and 
improving energy sharing in peer-to-peer (P2P) nano-grid systems. The study introduced a two-stage approach 
which uses bidirectional-LSTM for energy load and PV generation forecasting and develops an energy sharing 
strategy that defines the roles of nano-grids as prosumers by using a particle swarm optimization (PSO) algorithm. 
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However, the study focused on single ML algorithm and neglected to consider hybrid ML algorithms that combine 
the strengths of different models to improve forecasting accuracy. 

In order to solve the above-mentioned challenges, we design a two-stage system model for accurately 
forecasting and efficient energy sharing of GICNs, which combines ML-based supply and demand forecasting 
and a bidirectional real-time energy sharing strategy. Unlike previous studies that focus on either spatial or 
temporal methods independently, this paper proposes a hybrid CNN-LSTM model. By combining the strengths of 
the individual models, the hybrid CNN-LSTM model leverages both spatial and temporal information, allowing 
more accurate forecasting of energy supply and demand. This accuracy is crucial for improving energy-sharing 
strategies within GICNs, leading to more efficient energy sharing strategies. Compared to individual CNN or 
LSTM models, the hybrid CNN-LSTM model approach outperforms in terms of both forecasting accuracy and 
computational efficiency, addressing the limitations of using either model alone. The main contributions of this 
paper are summarized as follows. 
(1) Design the two-stage system model and implementation procedure: We design the two-stage system model 

and implementation method for accurate prediction and efficient energy sharing of GICNs which includes 
residential power load, generations for wind and PV power, and ES. 

(2) Propose the first-stage system model based on hybrid CNN-LSTM: We propose the first-stage system model 
as the day-ahead supply and demand forecasting model to predict PV and wind as well as load demand in 
order to achieve accurate predictions. Specifically, we develop hybrid CNN-LSTM models which are mostly 
effective for tasks to understand both the spatial and temporal dimensions of the time series data. 

(3) Propose the second-stage system model as energy sharing system strategies: We propose the second-stage 
system model as a bidirectional real-time energy sharing based on the forecasted data to dynamically 
facilitate the efficient distribution of surplus energy among GICNs. The system aims to accurately represent 
the interaction among GICNs and power utilities (ADN) ensuring efficient energy sharing. The real-time 
energy sharing optimization algorithms account for the dynamic nature of energy sharing to maximize 
renewable energy resource utilization and minimize the cost of energy bought. 

2. Related Works 

To address the challenges mentioned above, it is essential to review relevant and recent existing research and 
solutions. In [12], N. Liu et al. proposed an online energy sharing method for nano-grid power systems to improve 
self-sufficiency and PV consumption. The method introduced a hybrid P2P energy sharing framework that 
combines P2P physical systems with a cyber system. To address the stochastic nature of PV and user load, the 
authors developed an online optimization model based on Lyapunov optimization, aiming to maximize self-
sufficiency. However, the study focused on the optimal energy sharing strategies without considering real-time 
supply and demand forecasting techniques for nano-grid power systems. In [19], K. Wang et al. proposed a hybrid 
deep learning model combining LSTM and CNN for PV power forecasting. This model addresses the challenges 
posed by the intermittent nature of PV by first extracting temporal features using LSTM and then spatial features 
using CNN. The study compared the performance of hybrid model with that of single models. However, this study 
did not fully consider a two-stage system model that combines accurate supply-demand forecasting with optimal 
real-time energy sharing. In [20], X. Zhang et al. proposed an optimal energy dispatch method for grid-integrated 
5G base stations (BSs). The study addressed the uncertainty caused by the wide distribution, small volume, and 
large load fluctuations of PV-integrated 5G BSs when directly participating in demand response (DR). The method 
used contract theory to incentivize participation in peak-shaving for the grid side and proposed a Lyapunov-based 
algorithm to optimize energy sharing among the BSs, improving PV usage and stabilizing the ES. However, the 
study focused on predefined timescales for DR planning and energy sharing optimization without considering real-
time forecasting techniques for energy demand and supply. In [21], M. Shi et al. developed a short-term PV power 
forecasting model using a LSTM network. The study emphasized the importance of accurate PV power forecasting 
due to the inherent randomness and fluctuations in PV output. Pearson correlation analysis was used to identify 
features that significantly influence PV power. However, the study primarily focused on using single LSTM 
algorithm without considering the potential benefits of hybrid forecasting approaches that could integrate multiple 
ML techniques to further improve forecasting accuracy. 

The abovementioned studies often focus on one aspect without fully considering the relationship between 
accurate supply and demand forecasting using hybrid ML algorithms with real-time energy sharing strategies. Our 
approach bridges this gap by integrating both supply and demand forecasting techniques and real time energy 
sharing strategies as a two-stage system model. This integration is essential because accurate forecasting directly 
influences the efficiency of energy sharing in real time scenarios. By addressing both aspects simultaneously, the 
two-stage system model approach is advanced in terms of both supply and demand forecasting accuracy using 
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hybrid ML algorithms and energy sharing efficiency, ultimately leading to more sustainable and cost-effective 
GICN operation. Through this forecasting-based optimal energy sharing framework, we contribute to advancing 
the integration and management of renewable energy sources in GICNs, paving the way for more resilient and 
sustainable energy infrastructures. 

3. System Model and Implementation Procedure 

In this section, we design a two-stage system model and implementation method for accurate forecasting and 
efficient energy sharing of GICNs, as shown in Figure 1. In the first-stage system model, we propose a hybrid 
CNN-LSTM-based day-ahead supply and demand forecasting method to predict PV and wind output power as 
well as load demand to balance supply and demand among GICNs. Additionally, the system incorporates an energy 
sharing strategy as the second-stage system model to achieve efficient energy sharing and energy utilization and 
remit supply-demand imbalances among community participants. The implementation procedure involves several 
steps to develop, train, and deploy the forecasting and energy sharing optimization models within the system as 
follows. 

 

Figure 1. Two-stage system model (day-ahead hybrid CNN-LSTM-based supply and demand forecasting and 
bidirectional real-time energy sharing). 

(1) Data collection and preprocessing: First, historical data of GICN users are gathered (PV, wind, and load 
demand). Data preprocessing techniques are applied to clean the data, handle missing values, and 
normalize the data for model training. The transformation from the original values to the scaled values 
often involves normalization techniques using the common approach of Min-Max scaling 
(normalization), which linearly transforms the data to a default range of [0,1] . Given an original value 

y , the scaled value y′  is computed as min

max min

y yy
y y

−′ =
−

. y′  is the scaled values. maxy  and miny  

are the maximum and minimum values in the dataset. The scaled value y′  falls within the range [0,1]  [17]. 
(2) Forecasting model development using CNN-LSTM: The hybrid CNN-LSTM model approach combines 

CNN’s ability to extract spatial features from data with LSTM’s ability to capture long-term 
dependencies. The combination of CNN-LSTM is mostly suited for forecasting tasks where both spatial 
patterns and temporal sequences are pivotal for accurate predictions. CNN-LSTM is implemented to 
develop forecasting models for GICN users’ supply and demand using Python libraries such as the 
PyTorch. Model parameters, including the number of layers, the size of the convolutional filters, hidden 
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units, sequence length, and the number of CNN-LSTM units, are fine-tuned through a series of 
experiments to optimize performance. 

(3) Energy sharing model: After the first-stage system model is completed, we design a second-stage 
system model as a real-time energy sharing strategy to dynamically facilitate the efficient distribution 
of surplus energy. The model utilizes forecasted energy generation and load demand to optimize energy 
sharing among GICN users. 

(4) Performance evaluation and monitoring: For the first-stage system model, the performance metrics for 
the forecasting models evaluate the effectiveness of our CNN-LSTM model, mostly using mean absolute 
error (MAE) and root mean squared error (RMSE) metrics. We conduct a series of tests to compare the 
forecasting accuracy of CNN-LSTM with that of a single LSTM and CNN model. For the second-stage 
system model, the performance evaluations of the real-time energy sharing strategies include energy 
efficiency, generation utilization rates, self-sufficiency, and self-consumption ratio. 

4. First-Stage CNN-LSTM-Based Forecasting Model 

In this section, we design a hybrid CNN-LSTM-based forecasting structure as the first-stage system model. 
This design combines the strengths of CNN and LSTM networks to analyze time series data for tasks that require 
understanding spatial features and long-term temporal dependencies. As shown in Figure 2, CNNs are first adopted 
to learn spatial hierarchies of features from input (PV, wind, and load) time series data. Through the usage of 
filters/kernels, CNN can efficiently process data with high dimensionality, making it highly effective for tasks 
involving muti-dimensional time series data [22]. LSTM is a special kind of recurrent neural network (RNN). It is 
designed to avoid the long-term dependency problem, making the input data suitable for tasks requiring the 
understanding of relationships and patterns over long sequences and handling time series data forecasting [18]. 
While CNN is adept at learning spatial hierarchies from multidimensional time series data, it is not effective at 
capturing long-term temporal dependencies. LSTM is effective in sequence dependency but struggles with spatial 
feature extraction. Therefore, we develop a hybrid CNN-LSTM model to address the challenges that either CNN 
or LSTM might face when individually handling complex forecasting tasks. By combining these two powerful 
neural network algorithms, the CNN-LSTM model leverages improved performance for forecasting PV and wind 
as well as load demand involving time series data with spatial and temporal dynamics. The hybrid model uses 
CNN for efficient spatial feature extraction before these features are processed by LSTM for temporal analysis. 

 

Figure 2. Sequence structure flow of the first-stage hybrid CNN-LSTM-based forecasting model. 

In Figure 2, the spatial feature extraction steps are performed by the CNN layers. Convolutional layers are 
used as filter/kernels to perform convolution operations on the input. Activation functions are put on Rectified 
Linear Unit (ReLU) to incorporate functions that allow the network to capture and model complex features that 
are not simply linear relationships. Pooling layers are used to perform downsampling operations as max/average 
to decrease the spatial dimensions of data. The flattening step is used to flatten data into a single vector, which 
usually occurs before passing the features to the LSTM layers in the hybrid model. These CNN steps are used as 
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the sequence input for the subsequent LSTM layers to capture temporal or sequence dependencies for processing 
and prediction. LSTM is particularly adept at processing these features to recognize patterns over time or sequence, 
which is difficult to capture with a CNN alone. This step emphasizes the transition from spatial feature extraction 
to preparing the data for temporal analysis by highlighting that the extracted features are sequential, making them 
suitable for time-series analysis and temporal context. The internal structural design for each LSTM cell unit, or 
memory cell, contains three control gates, i.e., input, output, and forget, as shown in Figures 1 and 2. These gates 
control the data flow information within the cell and help in controlling memory preservation and utilization. 

4.1. Model Operation Formulations 

In our proposed hybrid model, the CNN component first processes data input including the PV and wind 
generation as well as the load demand to extract features and reduce data complexity. Then, these extracted features 
are fed into an LSTM network as sequential input to learn the temporal or sequential relationships in the data. It 
performs its complex gate-regulated operations to update its internal state and produce an output [18]. The LSTM 
cell’s network flow equations are given by 

1( [ , ] )t IG t t IGIG W HS Y B−= ς ⋅ +  (1)

1( [ , ] )t FG t t FGFG W HS Y B−= ς ⋅ +  (2)

t t t t tCS FG CS IG CC= ⋅ + ⋅  (3)

1tanh( [ , ] )t CS t t CSCC W HS Y B−= ⋅ +  (4)

1( [ , ] )t OG t t OGOG W HS Y B−= ς ⋅ +  (5)

tanh( )t t tHS OG CS= ⋅  (6)

where 1:t T= , t  is the time step index, and T  is the total number of time steps over dataset points. tY  
represents the current input data. tIG , tFG , and tOG  are the control gates of input, output, and forget at time 
step t . IGW , FGW , OGW , and CSW  are the weight matrices for each gate and cell state. IGB , FGB , CSB , and 

OGB  are the biased terms. tCS , tCC , and tHS  are the cell, candidate, and hidden states. ς  and tanh  are the 
activation function in the network. tFG  decides what information the LSTM should remove from the tCS . It 
takes the previous 1tHS −  and the current tY  and applies a sigmoid function to each number in those vectors to 
produce a value between 0 and 1. These values are then multiplied by the tCS . A value close to 0 means forgetting 
this information while a value close to 1 means retaining this information. Similarly, tIG  decides which values 
in the cell state to update, tCC  is a vector of new values that could be added to the cell state. Then, tCS  
combines old cell state and new candidate values to form the new cell state, considering what to forget and what 
to add. tOG  decides what the next hidden state should be based on the cell state and allows only certain parts to 
affect the output. tHS  is the output of the LSTM unit and is used for prediction and passed to the next time  
step [19]. This network flow allows LSTMs to make selective decisions about what data to store, remove, and 
output at each step in a sequence to handle long-range dependencies in data effectively. 

These formulas define how information flows through the LSTM cells after the CNN is processed and how 
the hidden states are updated over time. The model parameters (weights and biases) are learned during the training 
process to minimize the prediction error. In the Adam optimizer formula, the updated parameter values at time 
step t  are given by 

1 ˆ
ˆt t t

t

m
v+
ηθ = θ − ⋅

+ 
 (7)

where 1t +θ  is the updated values at time step 1t +  and tθ  is the current values at time step t . η  is the 
learning rate, which controls the step size during parameter updates. ˆtv  and ˆ tm  are bias-corrected versions 
of the first and second-moment estimation exponentially. This correction is applied to counteract the 
tendencies of these estimations to be biased towards zero at the start of training, providing a more accurate 
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estimation of the gradients.   acts as a safeguard against numerical errors, allowing the Adam optimizer to 
adjust the learning rates adaptively for each parameter without risk of being divided by zero errors. 

4.2. Performance Evaluation Metrics for Supply and Demand Forecasting 

Evaluating the performance of the proposed framework involves calculating various metrics related to actual 
and predicted values of supply and demand (PV, wind, and load), such as MAE and RMSE [23]. We define 

pred pred pred[ , , ]z PV W L′ =  and act act act[ , , ]z PV W L= , where predPV , actPV , predW , actW ,  predL , and actL  

represent the predicted and actual values for PV, wind, and load, respectively. z  and 'z  represent vectors 
containing the actual and predicted values. MAE and RMSE are defined as 

1
| |

T

t t
t

z z
MAE

T

′
=

−
=


 (8)

2

1
( )

T

t t
t

z z
RMSE

T

′
=

−
=


 
(9)

Forecasting bias (FB) is used to measure the average tendency of predicted values in comparison to actual 
observed values, which is given by  

1
( )

T

t t
t

z z
FB

T

′
=

−
=


 (10)

If FB is close to zero, it indicates that the predicted values are balanced with the actual observed values. A 
positive FB value indicates a tendency of the forecasting to overestimate the actual values, while a negative FB 
value indicates a tendency to underestimate the actual values. 

5. Second-Stage Real-Time Optimal Energy Sharing Strategy 

In this section, as the second stage, we propose an optimal real-time energy sharing model to maximize the 
utilization of PV and wind generation and minimize energy purchase and energy wastage. It considers the actual 
and forecasted availability of PV, wind, load demand, and ES capacity. Based on the first-stage predicted values, 
we assume the GICNs act as energy prosumers (both energy providers and buyers) through the bidirectional energy 
sharing as shown in the second stage in Figure 1. The energy provider GICNs are assumed willing to share energy 
with others to utilize the unutilized PV, wind, and available idle ES energy, while the energy buyers obtain energy 
from neighboring GICNs or ADN [22]. Ensure that the energy surplus is non-negative, indicating that the supply 
either meets or exceeds demand. When supply exceeds demand, there is extra energy available for sharing. If the 
energy surplus is negative, it indicates a supply and demand imbalance. In these cases, some GICNs may have 
insufficient PV and wind energy to meet their load demands, while others may have unutilized PV and wind energy. 
To address this issue, an optimal energy sharing strategy among GICNs is proposed. 

Based on the first-stage system model, the total actual and predicted PV and wind generation are formulated 
as 

pred pred pred( ) ( ) ( )P t PV t W t= +  (11)

act act act( ) ( ) ( )P t PV t W t= +  (12)

where predP  and actP  are the total predicted and actual values of PV and wind generation, respectively. As energy 

providers mode, the GICNs have surplus energy from PV, wind, and ES, and can participate in the DR to maximize 
surplus energy utilization and minimize energy wastage. As energy buyer mode GICNs, when the PV, wind 
generation, and stored energy in ES is not enough to meet their load demand, the additional energy will be brought 
from the other GICNs or ADN to fill the energy gaps [12]. 
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The predicted and actual surplus energy denoted by pred ( )S t  and act ( )S t  at time step t  are considered by 

subtracting the total predicted and actual load demand from the total predicted and actual energy generation to 
find the available surplus energy provider and buyer mode (PM and BM), which are formulated as 

pred pred pred,max
pred

pred pred pred,max

min( ( ) ( ), ) PM
( )

max( ( ) ( ), ) BM
P t L t S

S t
P t L t S

−=  − −
 (13)

act act act,max
act

act act act,max

min( ( ) ( ), ) PM
( )

max( ( ) ( ), ) BM
P t L t S

S t
P t L t S

−
=  − −

 (14)

where pred,maxS  and act,maxS  are the predicted and actual maximum surplus energy. 

For each GICN that has an ES system, the amount of energy that is discharged from ES is primarily to meet 
their own energy shortfall or to share with others during a specific time step t ,  which is formulated as 

( )
dis,max

dis
pred/act pred/act dis,max

PM
( )

min ( ) ( ), BM

E
E t

L t P t E
=  −

 (15)

where dis ( )E t  and dis,maxE  represent the amount of discharge and maximum discharge energy from ES. As an 
energy PM, the ES discharging condition for each GICN is defined by the available maximum ES energy, which 
is potentially discharged to share with others. It typically occurs when there is surplus energy beyond the local 
demand. As an energy BM, the ES discharging condition is primarily to fill their own energy shortfall, which 
occurs when generation from PV and wind is insufficient. The constraint for the amount of energy currently stored 
in the ES after discharging is limited based on the capacity of ES, which is given by min max( )E E t E≤ ≤ . minE  
and maxE  are the minimum and maximum capacity of ES (kWh), and ( )E t  is the remaining available energy of 
ES at time step t . Considering the predicted and actual surplus energy and the available discharge energy stored 
in ES, the predicted and actual shared energy for each GICN are defined as 

pred pred dis( ) ( ) ( )X t S t E t= +  (16)

act act dis( ) ( ) ( )X t S t E t= +  (17)

where pred ( )X t  and act ( )X t  represent the predicted and actual shared energy at time step t . For the shared 

energy decision variables of the optimization model, if act pred( ), ( ) 0X t X t > , it means the GICNs are in PM, and 

if act pred( ), ( ) 0X t X t ≤ , it means the GICNs are in BM. The shared energy should satisfy the constraints that 

pred act( ( ), ( )) 0
t

X t X t = , which represents the sum of all shared energy across all time steps should equal zero. It 

implies balanced energy transactions over the period leading to no net energy accumulation or deficit. In addition, 
the shared energy should satisfy the constraints that pred act pred,max act,max0 | ( ( ), ( )) | ( ( ), ( ))X t X t X t X t≤ ≤ , where 

pred/act,maxX  is the maximum shared energy. Considering the predicted and actual values of PV, wind, load demand, 

and the available discharge energy in ES, the predicted and actual brought energy are given by 

pred pred pred dis( ) max( ( ) ( ) ( ),0)G t L t P t E t= − −  (18)

act act act dis( ) max( ( ) ( ) ( ),0)G t L t P t E t= − −  (19)

In this case, there is a constraint for energy BM GICNs, which is 

pred pred act act( ) ( ) 0, ( ) ( ) 0G t X t G t X t− ≤ ≤ − ≤ ≤  (20)

The operational constraints in (20) ensure that GICNs in BM can only buy energy to fill their deficits, but 
cannot provide energy. The shared energy is limited to a maximum of zero, indicating no energy is shared 
outwardly, and a minimum is set by their energy shortfall, meaning they can only buy energy from neighboring 
GICNs or ADN to meet their energy needs. Based on the energy interaction of PM and BM of GICNs, the current 
amount of energy stored in the ES system is updated as 
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pred/act pred/act

dis

( 1) ( ) ( ( )) ( ( )), PM
( 1) ( ) ( ), BM

E t E t S t X t
E t E t E t

+ = + −
 + = −

 (21)

5.1. Objective Problem Formulation 

The key purpose of the optimal energy sharing is to maximize the utilization of wind and PV generation, 
while simultaneously minimizing costs of energy purchase and wastage. For this, we apply a mixed-integer linear 
programming (MILP) approach to effectively handle both the discrete and continuous aspects of the optimization 
problem. The predicted and actual total power generation utilization pred act( ) and ( ) U t U t  which are effectively 

utilized by the GICNs [8] are calculated as 

pred pred pred pred

act act act act

( ) min( ( ), ( )) max(0, ( ))
( ) min( ( ), ( )) max(0, ( ))

U t P t L t X t
U t P t L t X t

= +

= +
 (22)

where pred/act pred/actmin( ( ), ( ))P t L t  represents the self-supplied load demand that is directly supplied by the self-

produced PV and wind generation. In (22), the problem aims to maximize the utilization of renewable energy 
sources by sharing surplus energy and reducing energy wastage among GICNs. To solve this maximization 
problem, we employ the MILP approach. MILP is particularly suitable here because it allows for the integration 
of discrete decision-making with continuous operational adjustments, which is essential in managing energy 
distribution systems where both types of decisions are critical. The optimization problem of maximizing total 
power generation utilization is formulated as 

pred/act

pred/act pred/act dis

min dis max

 maxmize ( )
s.t. 0 ( ( ) ( )),

( )

U t
X S t E t

E E t E
≤ ≤ +

≤ ≤

 (23)

An additional critical objective is to reduce the costs associated with purchasing additional energy. By 
implementing energy sharing, maximizing renewable energy generation, and efficiently using stored energy, the 
model aims to decrease the need for external energy purchases, leading to cost savings for all participants in the 
network. The net energy cost is formulated as the energy bought from the neighboring GICN or from ADN minus 
the amount of sold energy at time step t . By using the MILP algorithm, the optimization problem of minimizing 
the net cost of energy net( )C  is formulated as 

net pred/act pred/act
1

pred/act dis pred/act pred/act

pred/act pred/act pred/act dis

pred/act pred/act dis

min dis max

 minimize ( ( ) ( ))

s.t. ( ) ( ) ( ) ( ),
0 ( ( ) ( ) ( )),
0 ( ( ) ( )),

( )

T

t
C G t X t

P t E t G t L t
G L t P t E t
X S t E t

E E t E

=

= γ − δ

+ + =

≤ ≤ − −

≤ ≤ +

≤ ≤



 (24)

where γ  and δ  are the costs associated with energy bought and sold, respectively.  

5.2. Performance Metric Evaluation for Energy Sharing Efficiency 

The self-sufficiency ratio (SSR) is a metric used to evaluate the degree to which a GICN can meet its energy 
demand with its own renewable energy generation, which is given by 

pred/act pred/act dis
pred/act

pred/act

( ) ( ) ( )
 ( )

( )t

P t L t E t
SSR t

L t
 − +

=   
 

  (25)

Performance metric evaluation for energy sharing efficiency refers to the evaluation of the effectiveness of 
energy sharing strategies within a system in achieving their intended goals. The self-consumption rate (SCR) is a 
metric that quantifies the proportion of local wind and PV generation directly consumed by GICNs. The formula 
for SCR is given by 



Jember et al.   J. Adv. Digit. Commun. 2024, 1(1), 3  

https://doi.org/10.53941/jadc.2024.100003  10 of 16  

pred/act pred/act
pred/act

pred/act

( ) ( )
 

( )t

L t P t
SCR

P t
 −

=   
 

  (26)

6. Results and Discussions 

6.1. Basic Data 

This section focuses on validating the numerical performance of the proposed CNN-LSTM model for supply 
and demand forecasting, as well as the bidirectional real-time energy sharing strategies through simulations. The 
real-time power supply and load demand data for GICN users is obtained from the live data portal of a central 
repository for the collection and publication of electricity generation for the pan-European market at 
https://transparency.entsoe.eu/dashboard/show. We use time series data recorded at 15-min intervals for 8 days 
(22 January 2024 to 29 January 2024) for our simulation, executed in Python using PyTorch ML library, which is 
trained, validated, and tested on 70% , 15% , and 15%  of the dataset, respectively. The costs associated with 
energy bought and sold are 0.35$ / kWhγ =  and 0.5$ / kWhδ = .  The components, descriptions, and 
associated hyperparameters of the hybrid CNN-LSTM model are discussed. The hyperparameters of the hybrid 
CNN-LSTM models are set for the training process, and the model component parameters and their descriptions 
are outlined in Table 1. Table 2 shows the parameters set for ES Type. 

Table 1. Model Components, Descriptions, and Hyperparameters. 

Components Description Hyperparameters 
Data Preprocessing Feature creation and data scaling  MinMaxScaler 

CNN Layer (conv1) A convolutional layer that processes the 
input features using kernels.  

Input channels = number of features, 
output channels = 64, kernel size = 1 

Activation (ReLU)  
A non-linear activation function that 

applied after the convolutional layer to 
introduce non-linearity.  

( ) max(0, )f x x=  

LSTM Layer  An LSTM layer that processes sequences 
of data, capturing long-term dependencies. 

Input size = 64 (matches the output of 
conv1), hidden size = 100 

DataLoaders  Utilities to batch, shuffle, and load the data 
efficiently during training and evaluation. Batch size = 128 

Activation  Activation functions in LSTM Layers  Tanh (−1, 1) and sigmoid (0, 1) 

Model Instantiation  
Creating instances of the CNN-LSTM 

model with specified configurations for 
different datasets.  

Number features = 1, hidden size = 100 

Loss Function  
The criterion used to evaluate the 

difference between the predicted outputs 
and actual targets. 

MSELoss 

Optimizer  The optimization algorithm used to adjust 
model parameters via backpropagation.  Adam, learning rate (lr = 0.001)  

Training Loop  
The process of training the model through 
forward and backward passes, adjusting 

the model with each batch of data.  
Number epochs = 100 

Table 2. Parameters Set for ES Type. 

Parameters Value 
Maximum capacity (kWh) 20 

Maximum discharge rate (kW) 10 
Minimum limit (kWh) 0.2 

6.2. First-Stage Supply and Load Demand Forecasting Analysis 

Figure 3 illustrates the process of splitting the time-series data of wind and PV generation, as well as load, 
into training, validation, and testing datasets. This key step in model development ensures that models not only fit 
the dataset used to train the model but also perform effectively to new and unseen data to provide consistent 
predictions. 
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Figure 3. PV, wind, and load dataset splitting for training, validation, and testing. 

Figure 4 compares the last 24 h of predictions, recorded at 15-min intervals, from the LSTM, CNN, and 
hybrid CNN-LSTM models. The hybrid CNN-LSTM model demonstrates superior accuracy in forecasting time-
series data compared to the single models (LSTM and CNN). The LSTM model captures general trends but 
exhibits higher fluctuations and deviations during rapid changes. The CNN model handles short-term fluctuations 
well but struggles with longer-term patterns. In contrast, the hybrid CNN-LSTM model closely follows the actual 
data for wind power, PV generation, and load demand, effectively reducing forecasting errors. It captures both 
spatial and temporal dynamics, providing smoother and more accurate predictions. Overall, the hybrid CNN-
LSTM model consistently outperforms the single models in terms of forecasting accuracy, making it more effective 
in understanding and forecasting the dynamics of renewable energy generation and load demand. The enhanced 
accuracy is crucial for reliable and efficient energy supply management. 

 
Figure 4. Comparison of LSTM, CNN, and hybrid CNN-LSTM model for predictions. 
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Figure 5 shows the predicted values compared to the actual observed values at 15-min intervals for the last 
24 h, generated by the proposed hybrid CNN-LSTM model incorporating a FB improvement. The incorporation 
of the FB error metric significantly improves the model’s performance. The error values approaches zero, 
indicating the model’s effectiveness and accuracy in forecasting. 

 

Figure 5. The last 24-h 15-min increments data point prediction for proposed CNN-LSTM with FB. 

6.3. Forecasting Performance Metrics 

Based on the supply and demand forecasting, the performance metrics (MAE and RMSE) of the LSTM, CNN, 
and the proposed hybrid CNN-LSTM models for the wind, PV, and load datasets are compared as shown in  
Table 3. The hybrid CNN-LSTM model demonstrates higher forecasting accuracy for all datasets. This hybrid 
approach effectively leverages the strengths of both CNN (for local feature extraction) and LSTMs (for learning 
long-term dependencies), resulting in significant performance improvements. 

Table 3. Performance metrics of LSTM, CNN, and Hybrid CNN-LSTM models. 

Metric LSTM CNN Hybrid CNN-LSTM 
Wind PV Load Wind PV Load Wind PV Load 

MAE  0.021  0.018  0.035  0.264  0.163  0.646  0.007 0.008  0.012 
RMSE  0.025  0.023 0.046  0.336  0.273  0.715  0.009  0.001  0.044 

6.4. Second-Stage Bidirectional Real-Time Energy Sharing Analysis 

Figure 6 presents the second-stage bidirectional real-time energy sharing strategies. This simulation captures 
the interaction among total energy generation, load demand, surplus energy, ES discharging, and imported energy 
throughout the final observation day. Particularly, energy sharing is increased during periods when total generation 
surpasses load demand and the presence of surplus energy in ES. Positive values in the bar plot represent imported 
energy when load surpasses total power generation under situations needing additional power to satisfy load 
demand. In these instances, surplus energy is depicted in a negative direction, stressing the GICN’s imperative to 
fill the energy shortage. ES is presumed to be discharged to address this gap when no surplus is available or can 
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alternatively be discharged to share energy with other GICNs that have no surplus energy. Positive surplus, on the 
other hand, denotes scenarios where generation outmatches demand, availing surplus for sharing. This analytical 
representation emphasizes the pivotal role of real-time energy sharing strategies in encouraging the sustainability 
and operational efficacy of grid-integrated community networks. 

 

Figure 6. Second-stage real-time energy sharing based on predicted supply and load model. 

Figure 7 provides a visual representation comparing the effectiveness of total power generation utilization in 
scenarios with and without the implementation of an energy sharing strategies across different time slots. With 
implemented energy sharing, both predicted and actual generation utilization rates are generally higher, illustrating 
the efficiency and effectiveness with which the generated energy is utilized. Conversely, the absence of energy 
sharing leads to a noticeable decline in utilization, underscoring potential inefficiencies and the risk of increased 
energy wastage. This simulation analysis stresses the important role of energy sharing in improving the 
sustainability and efficiency of renewable energy systems. 

 

Figure 7. Total generation utilization effectiveness with and without energy sharing. 
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Figure 8 shows the performance of the SSR and SCR within GICNs. These metrics are involved in evaluating 
the effectiveness of GICNs in managing and utilizing their energy production. SSR reflects the degree to which 
GICNs can fulfill their energy needs independently, while SCR evaluates the proportion of self-generated energy 
that is consumed within GICNs. High SSR and SCR values are indicative of efficient energy production and 
consumption practices, stressing the GICNs’ capability to maximize the utility of their renewable energy sources 
and reduce reliance on external power supplies. 

 

Figure 8. SSR and SCR performance metrics for GICNs. 

Figure 9 provides a comprehensive overview of the dynamics of energy transactions between energy sold, 
energy bought, and the net energy costs over time. A dynamic increase in energy sold correlates with instances of 
generation exceeding load demand. Conversely, energy purchases, depicted through negative values, emerge when 
demand surpasses the total generation, necessitating external procurement. A negative net energy cost implies that 
the revenue from energy sold exceeds the cost of energy that the GICN purchased from neighboring GICNs or 
AND, indicating a degree of energy independence, where a GICN relies less on external energy supplies. 
Conversely, a positive net energy cost means that the cost of energy bought surpasses the revenue from selling 
energy, leading to a net expense within GICNs. 

 

Figure 9. Energy sold, bought, and net energy costs. 
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7. Conclusion 

This study proposed a comprehensive exploration of the integration and efficacy of a hybrid CNN-LSTM 
model for forecasting supply and demand in energy systems, complemented by an innovative bidirectional real-
time energy sharing framework within GICNs. Through rigorous simulations, we demonstrated the superior 
accuracy of the proposed hybrid model over a single LSTM and CNN models in forecasting wind, PV, and load 
demand. Our first-stage model analysis stressed the importance of splitting time-series data into training, validation, 
and testing sets to ensure that the model not only fits well with the historical data but also generalizes effectively 
to new and unseen data. The results from this stage revealed that the hybrid CNN-LSTM model is adept at 
capturing both the spatial and temporal dimensions of the dataset, significantly enhancing forecasting accuracy. In 
the second-stage analysis, we delved into the dynamics of real-time energy sharing, illustrating how energy sharing 
strategies could dynamically respond to fluctuations in energy generation and demand. The findings highlighted 
the potential of energy sharing strategies to mitigate gaps between energy supply and demand, thereby enhancing 
the sustainability and efficiency of GICNs. Notably, the implementation of energy sharing was shown to optimize 
the utilization of generated energy and reduce wastage and costs. Simulation experiments and performance 
evaluations are conducted to validate the forecasting model and the real-time energy-sharing strategy. In 
conclusion, the integration of the hybrid CNN-LSTM forecasting model with bidirectional real-time energy-
sharing strategies represents an important advancement in the field of smart GICN energy management. Building 
on this study, future research could explore advanced neural network architectures to improve energy forecasting 
considering feature selection and seasonal trends, and investigate energy sharing mechanisms for decentralized 
energy systems to enhance grid security and efficiency in GICNs. 
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