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Abstract: This paper proposes a novel singularity-free prescribed-time distributed
resource allocation algorithm. By scaling fixed-time systems using the time space
deformation method, the proposed algorithm avoids the singularity problem caused by
time-varying high-gain functions. To make the algorithm applicable to second-order
multi-agent systems, a singularity-free prescribed-time signal tracking controller is
also proposed. Finally, the performance of the proposed algorithm is verified through a
power allocation task based on actual wind farm data.
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1. Introduction

Distributed optimization is a common task requirement in multi-agent systems (MASs), aiming to achieve
globally optimal decision-making through local information interactions [1]. It is widely applied in fields such
as smart grid resource allocation [2], and unmanned aerial vehicle (UAV) formation control [3]. Among these
applications, the distributed resource allocation (DRA) problem requires the efficient allocation of limited resources
(such as power, bandwidth, and computing resources) among multiple agents while satisfying local constraints and
global demands. For example, in wind farm power allocation, it is necessary to minimize the fatigue damage of
wind turbines under real-time wind speed variations; in smart grids, it is essential to dynamically balance the load
and power generation. Centralized methods rely on global information and a central node, making it difficult to
cope with dynamic changes in network topology and communication delays. In contrast, distributed algorithms
achieve efficient solutions through local cooperation and have become a research hotspot in the past decade.

Early distributed resource allocation algorithms were mostly based on gradient descent or dual decomposition,
with convergence properties typically being asymptotic or exponential. For example, a continuous-time algorithm is
proposed based on the Karush-Kuhn-Tucker (KKT) conditions, which used local gradient information to constrain
the node states [4]. However, the convergence speed depended on the network topology and initial conditions. To
solve the DRA problem over directed networks, a consensus-based gradient descent method is designed to achieve
asymptotic convergence in balanced directed networks [5], but they could not guarantee an upper bound on the
convergence time. These methods were limited in scenarios with high real-time requirements, such as dynamic
power dispatch.

To improve the convergence speed, finite-time and fixed-time algorithms have been widely studied. A
consensus-based approach that can obtain the optimal solution within finite time is proposed where the objective
function is time-varying but the existence of the identical Hessian matrix of the global objective function is
assumed [6]. However, the finite-time upper bound depends on the initial states. Hence, a series of fixed-time
distributed algorithms are proposed to solve the DRA problem [7, 8]. Although fixed-time algorithms are superior
to asymptotic methods, the upper bound of settling time is still reliant on coupled system parameters, which may
not meet the demand for precise time control in highly dynamic environments (such as sudden load fluctuations).
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In recent years, the prescribed-time convergence framework has been integrated into distributed resource
allocation algorithms, where the settling time can be directly assigned or predetermined without relying on any
other parameters [9]. Numerous prescribed-time resource allocation algorithms have been proposed [10–12],
most of which are based on a time-dependent gain function to achieve prescribed-time stability. However, these
algorithms often encounter the challenge of singularities caused by infinite gains. To address this issue, several
singularity-free methods have been proposed for prescribed-time stabilization, which can serve as a foundation
for designing singularity-free prescribed-time distributed resource allocation algorithms. One approach involves
imposing saturation on the time-varying high gains, but this method only ensures that the system states remain
within a bounded set by the prescribed time [13]. For achieving precise convergence in prescribed-time stabilization,
a singularity-free method utilizing periodic delayed feedback was introduced [14]. Nevertheless, in distributed
scenarios, such methods require the introduction of delays to facilitate communication among multi-agent networks.
Recently, a novel singularity-free approach based on time-space deformation was proposed, which is delay-
independent and guarantees exact convergence [15]. This method holds significant potential for adaptation in the
development of singularity-free distributed resource allocation algorithms. The major contributions of this paper
can be summerized as follows.

(1) A distributed resource allocation algorithm with prescribed-time convergence is proposed. Compared with
existing similar algorithms [12, 16, 17], the algorithm proposed in this paper avoids the singularity problem
caused by time-varying high-gain functions based on the time space deformation method while ensures precise
convergence within prescribed times, ensuring practical feasibility.

(2) Unlike most existing distributed resource allocation algorithms [12, 18], the algorithm proposed in this paper
is implemented based on a second-order multi-agent system. Specifically, a singularity-free prescribed-time
signal tracking controller for second-order systems is proposed.

The rest of this paper is organized as follows. Section 2 introduces several fundamental concepts and formulates
the distributed resource allocation problem. In Section 3, the proposed resource allocation algorithm and signal
tracking controller are provided. Section 4 demonstrates the performance of the proposed algorithms through a
limited power allocation problem. Section 5 provides the conclusion.

Notations: Throughout the paper, ∥·∥ denotes the 2-norm for vectors and the Frobenius norm for matrices. ∥·∥∞
denotes the ∞-norm. IN denotes an N order idenitity matrix, 1N denotes an N -dim vector with its components
being 1 and 0N denotes an N -dim vector with its components being 0. ⊗ represents the Kronecker product operator.
Ni denotes the set of neighbour nodes of agent i in a multi-agent system. For x = [x1, x2, . . . , xn]

⊤ ∈ Rn and
α ∈ R, define sgn(x) = [sgn(x1), sgn(x2), . . . , sgn(xn)]

⊤ and sigα(x) = [sigα(x1), sig
α(x2), . . . , sig

α(xn)]
⊤

where sgn(·) denotes the signum function and sig(·) = |·|α sgn(·). Denote R≥x = {y ∈ R : y ≥ x}.

2. Preliminaries and Problem Formulation

2.1. Globally Prescribed-Time Stable

Definition 1. [9] Consider the system defined by

ẋ(t) = f(t, x(t)), t ∈ R≥t0 , x(t0) = x0, (1)

where x ∈ Rn is the state vector, f : R≥t0 × Rn → Rn is a locally uniformly bounded nonlinear vector function in
time. The origin of system (1) is said to be globally prescribed-time stable if it is globally asymptotically stable and
any solution x(t) reaches the origin no later than a prescribed time.

2.2. Finite-Time Stability of Integrator Chain System

Lemma 1. [19] (Proposition 8.1) Consider a Hurwitz polynomial sn+βns
n−1+· · ·+β2s+β1 with β1, . . . , βn > 0,

and the system
ẋi = xi+1, i = 1, . . . , n− 1, ẋn = u, (2)

where xi ∈ R, i = 1, . . . , n, u ∈ R is the control input. There exists ε ∈ (0, 1) such that ∀α ∈ (1− ε, 1), the origin
is a globally finite-time stable equilibrium under the controller

u = −β1 sig
α1 (x1)− · · · − βn sig

αn (xn) , (3)

where αi−1 = αiαi+1

2αi+1−αi
, i = 2, . . . , n, αn+1 = 1 and αn = α.
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2.3. Graph Theory

An undirected graph G = (V, E ,A) is defined by a node set V = {v1, v2, ..., vN}, an undirected edge set
E ⊆ V × V , and an adjacency matrix A = [aij ]N×N with non-negative elements. The degree of node vi is denoted
as d(vi) and is calculated as d(vi) =

∑N
j=1,j ̸=i aij , where i = 1, 2, . . . , N . This degree is an element of the matrix

D = diag{d(v1), d(v2), . . . , d(vN )}. The Laplacian matrix L is defined as D −A.

Assumption 1. Graph G is undirected and connected.

2.4. Problem Formulation

Consider a multi-agent network composed of N agents,{
ẋi(t) = yi(t),

ẏi(t) = ui(t),
i ∈ V, (4)

where xi and yi ∈ Rn are the local variable vectors of agent i and ui ∈ Rn is the input protocol. The assumed
graph modelling the communication network is G. The goal is to solve the following resource allocation problem in
a distributed manner,

{x∗
i }

N
i=1 :=argmin

{xi}N
i=1

N∑
i=1

fi (xi) ,

s.t.
N∑
i=1

xi =

N∑
i=1

bi, ∀i ∈ V,

(5)

where fi : Rn → R is the local cost function and x∗
i denotes the optimal solution solved locally by agent i, and bi

represents the amount of resources temporarily held by the i-th agent to be allocated. Let x = [x⊤
1 , x

⊤
2 , . . . , x

⊤
N ]⊤ ∈

RnN , y = [y⊤1 , y
⊤
2 , . . . , y

⊤
N ]⊤ ∈ RnN , ∇f(x) = [∇f1(x1)

⊤, . . . ,∇fN (xN )⊤]⊤, f̃(x) =
∑N

i=1 fi (x), x ∈ Rn,
xNi = {xk ∈ Rn : k ∈ Ni}, and x∗ = [x∗⊤

1 , x∗⊤
2 , . . . , x∗⊤

N ]⊤ ∈ RnN being the optimal solution.

Assumption 2. Each local cost function fi(xi) is twice continuously differentiable, γi−strongly convex with γi > 0.

3. Main Results

3.1. Singularity-Free Prescribed-Time Optimal Signal Generator

In this section, a distributed prescribed-time optimal signal generator is designed based on a virtual first-order
multi-agent system, which is described as

ṙi = vi, i ∈ V, (6)

where ri ∈ Rn is the local decision variable vector of agent i and vi ∈ Rn is the input signal. The objective
is to ensure that the outputs of all virtual agents converge to the optimal solution, i.e., r∗i = x∗

i . Denote r =

[r⊤1 , r
⊤
2 , · · · , r⊤N ]⊤ ∈ RnN , r∗ = [r∗⊤1 , r∗⊤2 , · · · , r∗⊤N ]⊤ ∈ RnN , µk(t) =

Tk

T2
k−(t−tk−1)2

, ϱk(t) := ϱk(t; tk−1, Tk) ={
µk(t), t ∈ [tk−1, tk−1 + Tk)

0, otherwise
, k = 1, 2, and t1 = t0 + T1. To address problem (5) without the singularity issue,

a two-stage singularity-free distributed input protocol for the virtual system (6) is proposed

vi(t) =vsi (t) + vfi (t), (7a)

vsi (t) =

{
−ϱ1(t)Sp1,q1(si(t)), if si(t) ̸= 0n,

−Sp1,q1(si(t)), otherwise,
(7b)

vfi (t) =

{
−ϱ2(t)Fp2,q2(ri(t), rNi

(t)), if c̃i(t) ̸= 1,

−Fp2,q2(ri(t), rNi(t)), otherwise,
(7c)

ϕ̇i(t) =− vfi (t), (7d)

si(t) =ri(t)− bi + ϕi(t), (7e)

where k1, k2 > 0, c1, c2 > 0, 0 < p1, p2 < 1, q1, q2 > 1, Sp1,q1(si(t)) = k1 sig
p1(si(t)) + k2 sig

q1(si(t)),

Fp2,q2(ri(t), rNi(t)) = c1
N∑
j=1

aij sig
p2 (∇fi(ri(t))−∇fj(rj(t))) + c2

N∑
j=1

aij sig
q2 (∇fi(ri(t))−∇fj(rj(t))),

and

c̃i(t) =

{
1, if ∇fi(ri(t)) = ∇fj(rj(t)),∀j ∈ Ni,

0, otherwise.
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When c̃i(t) = 1, it indicates that consensus among all local gradients of cost functions has been achieved in
the multi-agent network.

Remark 1. The core idea of the proposed algorithm lies in “converge in advance before the prescribed Ti and
then switch system,” where the most critical part, “converges in advance before the prescribed Ti,” is achieved
by applying the time space deformation method to a fixed-time stable system. This algorithm ensures convergence
at each stage by a certain time T †

i , where T †
i < Ti, after which the system needs to be switched to one without

time-varying high-gain functions before Ti, thereby avoiding singularity issues.

Remark 2. The designed input protocol (7) consists of a two-stage design, as shown in Figure 1.

1. First stage ([t0, t0 + T1]): The objective is to drive the designed sliding mode variable si(t) to converge
to 0n. This eliminates the initial value restriction commonly found in most distributed resource allocation
algorithms, i.e.,

∑N
i=1 ri(t0) =

∑N
i=1 bi(t0).

2. Second stage ([t1, t1 + T2]): On the sliding surface si(t) = 0n, the goal is to ensure that the gradients of
the agents reach consensus, enabling the virtual system states ri to satisfy the optimality conditions of the
resource allocation problem (5). This guarantees that the virtual system can find the global optimal solution
within the prescribed time.

A Multi-Stage Design A Singularity-Free Design

    Subtask 1: Generating Optimal Signal

    Subtask 2: Tracking Optimal Signal     

     Stage 1: Scaled System with Gain �(�)

Task Decomposition Time Space Deformation 

     Stage 2: Fixed-Time Stable System

Within Each 

Subtask

�0 �2 �3

�1 + �2 �3

�0 �2 �3

�1 + �2 �3

0 ��
† ��

��
†

0 ��
† ��

��
†

System 
Switch 

Singularity-
Free 

Figure 1. Multi-Stage and Singularity-Free Design.

Remark 3 (Gradient Consensus and Optimality). In (7), it can be observed that the consensus on the gra-
dients of the loss functions among agents is required. Such a requirement is fundamentally rooted in the
KKT optimality conditions of problem (5). The Lagrangian of this problem is given by L

(
{xi}Ni=1, λ

)
=∑N

i=1 fi(xi) + λ
(∑N

i=1 bi −
∑N

i=1 xi

)
, where λ is the Lagrange multiplier associated with the global con-

straint. The Karush-Kuhn-Tucker (KKT) optimality conditions for this problem are ∂L
∂xi

= ∇fi(x
∗
i )− λ∗ = 0 ⇒

∇fi(x
∗
i ) = λ∗ (∀i ∈ V). The stationarity condition ∇fi(x

∗
i ) = λ∗ (∀i ∈ V) implies that all agents must share

identical marginal costs at optimality. This gradient consensus ensures Pareto efficiency, where no agent can reduce
its cost without increasing others’ costs.

Theorem 1. Under Assumptions 1 and 2, system (6) with protocol (7) is globally prescribed-time stable from any
initial states. The trajectories of all agents in the virtual multi-agent system converge to the optimal solution of
problem (5) within the prescribed-time interval T1 + T2, i.e., limt→(t0+T1+T2)

− ri(t) = x∗
i and ri(t) ≡ x∗

i ,∀t ∈
[t0 + T1 + T2,+∞).

Proof. The following proof mainly employs the time space deformation approach.
Stage I: Letting

τ1(t;T1) =
1

2
ln

T1 + t− t0
T1 − (t− t0)

:
[
t0, t0 + T1

)
→ R≥0, (8)

one has τ̇1(t;T1) = µ1(t) and µ1(t) =
(eτ1+e−τ1 )2

4T1
. Moreover, since (8) is invertible, its inverse can be shown as

follows,
t(τ1;T1) = t0 + T1 tanh(τ1) : R≥0 →

[
t0, t0 + T1

)
. (9)

To implement the time space deformation in (7), the following state transformations are applied,

s̄i(τ1) = si(t(τ1;T1)). (10)
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By differentiating (10) along the solutions of (6) and (7) when t0 ≤ t < t0 +T1 and si(t) ̸= 0n, the following
scaled model is derived using (9),

˙̄si(τ1) =
dsi(t(τ1;T1))
dt(τ1;T1)

∂t(τ1;T1)
∂τ1

= −Sp1,q1(s̄i(τ1))

= −k1 sig
p1(s̄i(τ1))− k2 sig

q1(s̄i(τ1)).

(11)

Define the Lyapunov function candidate Vi(τ1) =
1
2 s̄

⊤
i (τ1)s̄i(τ1). Differentiating Vi along (11) yields

V̇i(τ1) = −k1 sig
p1+1(s̄i(τ1))− k2 sig

q1+1(s̄i(τ1))

= −k12
1+p1

2 V
1+α
2

i (τ1)− k22
1+q1

2 V
1+β
2

i (τ1).
(12)

According to the fixed-time stability criterion [20] (Lemma 1), there exists τ †1 > 0 such that lim
τ1→τ†

1−
s̄i(τ1) =

0n and s̄i(τ1) ≡ 0n,∀τ1 ≥ τ †1 . Then it follows from (10) and (11) that lim
t→t0+T †

1

si(t) = lim
τ1→τ†

1

s̄i(τ1) = 0n and

si(t) ≡ 0n,∀t ≥ t0+T †
1 where T †

1 = T1 tanh(τ
†
1 ) < T1. Given that ϱ1(t) is bounded on [t0, t0+T †

1 ] and removed

from the input when t > t0 + T †
1 , vsi (t) remains free of singularity. Since si(t) ≡ 0n and

N∑
i=1

ri(t) −
N∑
i=1

bi =

N∑
i=1

si(t), ∀t ∈ [t0 + T1,+∞), there is
N∑
i=1

ri(t)−
N∑
i=1

bi ≡ 0n,∀t ∈ [t0 + T1,+∞). Furthermore, system (6) with

protocol (7) becomes

ṙi(t) = vfi (t) =

{
−ϱ2(t)Fp2,q2(ri(t), rNi

(t)), if c̃i(t) ̸= 1,

−Fp2,q2(ri(t), rNi
(t)), otherwise.

(13)

Stage II: Letting

τ2(t;T2) =
1

2
ln

T2 + t− t1
T2 − (t− t1)

:
[
t1, t1 + T2

)
→ R≥0, (14)

one has τ̇2(t;T2) = µ2(t) and µ2(t) =
(eτ2+e−τ2 )2

4T2
. Moreover, since (14) is invertible, its inverse can be shown as

follows,
t(τ2;T2) = t1 + T2 tanh(τ2) : R≥0 →

[
t1, t1 + T2

)
. (15)

To implement the time space deformation in (7), the following state transformations are applied,

r̄i(τ2) = ri(t(τ2;T2)). (16)

By differentiating (16) along the solutions of (13) when t ≤ t1 +T2 and c̃i(t) ̸= 1, the following scaled model
is derived using (15),

˙̄ri(τ2) =
dr̄i(t(τ2;T2))
dt(τ2;T2)

∂t(τ2;T2)
∂τ2

= −Fp2,q2(r̄i(τ2), r̄Ni(τ2))

= −c1
N∑
j=1

aij sig
p2 (∇fi(r̄i(τ2))−∇fj(r̄j(τ2)))

−c2
N∑
j=1

aij sig
q2 (∇fi(r̄i(τ2))−∇fj(r̄j(τ2)))

(17)

According to [21] (Theorem 1), there exists τ †2 > 0 such that lim
τ2→τ†

2

r̄i(τ2) = x∗
i and r̄i(τ2) ≡ x∗

i ,∀τ2 ≥ τ †2 .

Then it follows from (16) and (17) that limt→t1+T †
2
ri(t) = limτ2→τ†

2
r̄i(τ2) = x∗

i and ri(t) ≡ x∗
i ,∀t ≥ t1 + T †

2

where T †
2 = T2 tanh(τ

†
2 ) < T2. Given that ϱ2(t) is bounded on [t1, t1 + T †

2 ] and removed from the input for
t > t1 + T †

2 , uc
i (t) remains free of singularity. Therefore, it can be concluded that the trajectories of all agents in

the virtual multi-agent system converge to the optimal solution of problem (5) within the prescribed-time interval
T1 + T2 and the designed virtual input vi(t) remains free of singularity.

Remark 4. Theorem 1 explains why the designed algorithm (7) can achieve singularity-free prescribed-time
convergence. Unlike existing literature that relies on time-varying high-gain functions such as T

T−(t−t0)
, this work

extends the approach to T
T 2−(t−t0)2

and provides theoretical proof from the perspective of time-domain compression
transformation. This enriches the design forms of prescribed-time optimization algorithms.
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3.2. Prescribed-Time Signal Tracking Controller: A Singularity-Free Design

Singularity-free prescribed-time tracking controllers are designed for the agents of original second-order
multi-agent system (4) such that the agents’ outputs hi(t) = xi(t),∀i ∈ V track the local optimal reference outputs
hr
i (t) = ri generated from the optimal signal generator (7).

For multi-agent system (4), denote ei,1 = xi − ri, ei,2 = yi, i ∈ V . Then the following tracking error system
is obtained from system (4), {

ėi,1(t) = ei,2(t)− ṙi(t),

ėi,2(t) = ui(t),
i ∈ V. (18)

Define µ3(t) =
T3

T3+t2−t , ϱ3(t) := ϱ3(t; t2, T3) =

{
µ3(t), t ∈ [t2, t2 + T3) ,

0, otherwise,
, and t2 = t1 + T2. Based on

system (4), the singularity-free prescribed-time tracking protocol is designed as

ui(t) =

{
ϱ3(t)
T3

ei,2(t)− β1ϱ
2
3(t) sig

α1 (ei,1(t))− β2ϱ
2−α2
3 (t) sigα2 (ei,2(t)) , if ei,1(t) ̸= 0n,

−β1 sig
α1 (ei,1(t))− β2 sig

α2 (ei,2(t)) , otherwise,
(19)

where α1 = α2α3

2α3−α2
, α3 = 1, α2 = η ∈ (1− εi, 1) , εi ∈ (0, 1), β1, β2 > 0.

Theorem 2. If Assumptions 1 and 2 hold, under protocols (19) and (7), the outputs hi(t) = xi(t) of all agents
converge to x∗ of problem (5) within the prescribed-time interval T1+T2+T3, i.e., limt→(t0+T1+T2+T3)

− xi(t) = x∗

and xi(t) ≡ x∗,∀t ∈ [t0 + T1 + T2 + T3,+∞) ,∀i ∈ V .

Proof. The proof’s approach relies on the idea of time space deformation. When t ≥ t2, by Theorem 1, ri(t) ≡ x∗,
and ṙi(t) ≡ 0n. Letting

τ3(t) := τ3(t; t2, T3) = −T3 ln
T3 + t2 − t

T3
:
[
t2, t2 + T3

)
→ R≥0, (20)

one has τ̇3(t) = µ(t) and µ(t) = e
τ3(t)
T3 . Moreover, since (20) is invertible, its inverse can be shown as follows,

t(τ3) := t(τ3; t2, T3) = t2 + T3(1− e−
τ3
T3 ) : R≥0 →

[
t2, t2 + T3

)
. (21)

To implement the time space deformation in (18), the following state transformations are applied,

ēi,1(τ3) = ei,1(t(τ3)), (22a)

ēi,2(τ3) = µ−1(t(τ3))ei,2(t(τ3)). (22b)

By differentiating (22) along the solutions of (18) and (19) under the condition ei,1(t) ̸= 0n, the following
scaled model is derived using (21),

˙̄ei,1(τ3) =
dei,1(t(τ3))

dt(τ3)
∂t(τ3)
∂τ3

= ei,2(t(τ3))e
− τ3

T3 = ēi,2(τ3),

˙̄ei,2(τ3) =
dµ−1(t(τ3))ei,2(t(τ3))

dt(τ3)
∂t(τ3)
∂τ3

=
(
− 1

T3
ei,2(t(τ3)) + µ−1(t(τ3))ui(t(τ3))

)
e−

τ3
T3

= −β1 sig
α1 (ēi,1(τ3))− β2 sig

α2 (ēi,2(τ3)) .

(23)

According to Lemma 1, there exists τ †3 > 0 such that lim
τ3→τ†

3

ēi,1(τ3) = 0n and ēi,1(τ3) ≡ 0n,∀τ3 ≥ τ †3 .

Then it follows from (21) and (22a) that limt→t2+T †
3
ei,1(t) = limτ3→τ†

3
ēi,1(τ3) = 0n and ei,1(t) ≡ 0n,∀t ≥

t2 + T †
3 where T †

3 = T3(1 − e−
τ
†
3

T3 ) < T3. Thus, the outputs hi = xi of all agents converge to x∗ of (5)
within the prescribed-time interval T1 + T2 + T3, i.e., limt→(t0+T1+T2+T3)

− xi(t) = x∗ and xi(t) ≡ x∗,∀t ∈
[t0 + T1 + T2 + T3,+∞) ,∀i ∈ V .

Finally, given that µ3(t) is bounded on [t2, t2+T †
3 ] and removed from the input for t > t2+T †

3 , ui(t) remains
singularity-free. The proof is now complete.

Remark 5. The motivation behind the prescribed-time tracking protocol (19) is to simplify the complexity of
resource allocation in second-order systems through a cascaded design. Specifically, we first consider the following
two approaches to solving the resource allocation problem in second-order systems,
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1. Directly designing the input for the second-order system (4) to find the optimal solution of problem (5).
2. First using a virtual first-order system to find the optimal solution, and then controlling the input of system (4)

to track the constant signal output by the virtual system.

It can be observed that the latter cascaded design decouples the original task, simplifying the complexity of the
convergence proof. Additionally, this design facilitates the future extension of the system to more general cases.

4. Numerical Simulation

This section addresses a practical problem of limited power allocation in an electrical network, aiming to
minimize the fatigue damage in individual wind turbines within a wind farm. Such problems often require optimal
power allocation within seconds. Let Pi(t) be the real-time power of the i-th turbine (W), Po the total power to be
allocated (W), ωi

r the low-speed shaft rotational speed of the i-th turbine (rad/s), and V i
ω the equivalent hub wind

speed of the i-th turbine (m/s). Then the problem can be formulated as the following optimization problem

{P ∗
i }

N
i=1 :=argmin

{Pi}N
i=1

N∑
i=1

[(
Pi

ωi
r

)2

+
Pi

ωi
r

+ V i
w

2

]
,

s.t.
N∑
i=1

Pi = Po, ∀i ∈ V,

(24)

where N is the number of wind turbines in the wind farm. In the subsequent simulations, the case of N = 6 is
considered, and the data communication network topology among the wind turbines is shown in Figure 2.

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Figure 2. Communication topology.

4.1. Prescribed-Time Resource Allocation in Virtual Wind Farm

For the proposed (7), the prescribed times are set as follows: T1 = T2 = 1s. Let Re = log
(∑5

i=1
∥Pi−P∗

i ∥
∥P∗

i ∥
)

denote the residual between the power of each wind turbine and the theoretical optimal power, and Er =

log
(∑N

i=1 Pi − Po

)
denote the error between the sum of the power of all wind turbines and the actual total

power Po, where log(·) denotes the natural logarithm. From Figure 3, it can be seen that protocol (7) ensures the
output of the virtual system reaches stability within the prescribed time. From Figure 4, it can be observed that
the system’s equilibrium point corresponds to the theoretical optimal solution. From Figure 5, it can be seen that
the constraint in problem (24) are also satisfied within the prescribed time. In conclusion, it is evident that under
protocols (7), all wind turbines can be allocated the optimal power that minimizes the overall fatigue damage within
the prescribed time.

Additionally, we compared our work with a related study [17], which proposes a prescribed-time continuous
algorithm. To avoid system singularity, their algorithm employs a time-varying scaling function with saturation
µσ(t) =

T
T−t+σ , where σ is a small positive constant. However, this approach leads to reduced accuracy at the

prescribed time. As shown in the convergence error comparison in Figure 6, the accuracy of the algorithm in [17] is
lower than that of the algorithm proposed in this paper.
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Figure 3. Trajectories of ri using (7).
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Figure 4. Residual between the power of each wind turbine and the optimal power using (7).
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Figure 5. Error between
∑N

i=1 Pi and Po using (7).
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Figure 6. Residual comparison between the proposed (7) and the algorithm in [17].
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4.2. Prescribed-Time Signal Tracking

Set the signal tracking time T3 to 1 s. Using protocol (19), as can be seen from Figure 7, all wind turbines can
track the optimal power allocation found in the virtual system within the prescribed time.

0 0.2 0.4 0.6 0.8 1 1.2
-4

-3

-2

-1

0

1

2

3

4

0.75 0.8 0.85 0.9 0.95
x

-0.4

-0.2

0

0.2

0.4

y

Figure 7. Tracking error using (19).

5. Conclusions

To solve the resource allocation problem in a distributed manner efficiently, this paper develops a singularity-
free prescribed-time algorithm. The innovative application of the time-space deformation approach addresses
the singularity problem compared to traditional algorithms, enhancing the algorithm’s practicality. The proposed
singularity-free prescribed-time signal tracking controller for second-order multi-agent systems expands the algo-
rithm’s applicability scope. In the future, how to reduce the complexity of the proposed algorithm and expand the
generality of the communication topology will become the next research goals.
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