
AI Medicine
https://www.sciltp.com/journals/aim

Article

A Comparative Study of Deep Learning in Breast Ultrasound
Lesion Detection: From Two-Stage to One-Stage, from
Anchor-Based to Anchor-Free
Yu Wang 1, Qi Zhao 1, Baihua Zhang 2, Dingcheng Tian 1, Ruyi Zhang 1 and Wan Zhong 3,∗

1 College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110024 , China
2 Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315000, China
3 General Hospital of Northern Theater Command, Shenyang 110024, China
* Correspondence: wzhong 88@163.com

How To Cite: Wang, Y.; Zhao, Q.; Zhang, B.; Tian, D.; Zhang, R.; Zhong, W. A Comparative Study of Deep Learning in Breast
Ultrasound Lesion Detection: From Two-Stage to One-Stage, from Anchor-Based to Anchor-Free. AI Medicine 2024, 1(1), 5.
https://doi.org/10.53941/aim.2024.100005.

Received: 16 July 2024
Revised: 26 August 2024
Accepted: 27 August 2024
Published: 4 September 2024

Abstract: Breast cancer is one of the most common tumors among women in the
world, and its early screening is crucial to improve the survival rate of patients.
Breast ultrasound, with the characteristics of non radiation, real-time imaging and
easy operation, has become a common method for breast cancer detection. However,
this method has some problems, such as low imaging quality and strong subjectivity
of diagnosis results, which affect the accurate diagnosis of breast cancer. With
the ongoing advancement of deep learning technology, intelligent breast cancer
detection systems have effectively overcome these challenges, enhancing diagnostic
accuracy and efficiency. This study uses nine popular deep learning object de-
tection networks (including two-stage, one-stage, anchor-based, and anchor-free
networks) for the detection of breast lesions and compares the results of these
methods. The experiments show that the anchor-based Single Shot MultiBox De-
tector (SSD) network excels in overall performance, while the anchor-free Fully
Convolutional One-stage Object Detector (FCOS) exhibits the best generalization
ability. Moreover, the results also indicate that, in the context of breast lesion
detection, anchor-based networks generally outperform anchor-free networks.
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1. Introduction

According to the global cancer statistics report of 2018, 11.6% of cancer patients worldwide are diagnosed
with breast cancer, making it the second most prevalent cancer globally [1]. Each year, approximately 2.89 million
women are diagnosed with breast cancer, accounting for 24.2% of all female cancer cases [1]. Clinical studies show
that the survival rate of breast cancer is closely related to the early detection and staging of the disease; the earlier it
is detected, the higher the possibility of survival [2]. Therefore, early screening for breast cancer is crucial.

In clinic, the detection of breast cancer typically relies on three types of medical imaging technologies,
Mammography, Digital Breast Tomosynthesis (DBT) and medical ultrasound imaging. Each of these technologies
has its own advantages and unique limitations in breast cancer detection. While Mammography can reach a detection
sensitivity of up to 85% in general female populations, its sensitivity decreases to 47.8–64.4% in women with dense
breast tissue [3]. This is due to the lower distinction between breast tissue and tumors in dense breast, leading to
potential missed-detection. Moreover, Mammography carries radiation risks and is relatively costly. DBT also
faces similar issues of high costs and radiation exposure. In contrast, breast ultrasound imaging is a comparatively
lower-cost, non-ionizing radiation method that provides real-time imaging. It performs well in detecting hidden
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breast cancers in dense breast tissues [4], thus becoming an important tool in breast cancer detection. However,
the diagnostic results of breast ultrasound largely depends on the doctor’s skill and experience level. Variations
in training backgrounds and clinical experiences can lead to different diagnostic results for the same ultrasound
images [5]. Additionally, ultrasound images often suffer from issues like noise interference, strong artifacts, and
low contrast between tissue structures [6].

To address the above issues, many researchers have conducted research on the automated diagnosis of breast
ultrasound images. Breast cancer automatic diagnosis typically includes two steps: lesion detection and lesion
classification. In earlier studies, researchers generally used traditional digital image processing methods for lesion
recognition and classification. For instance, Drucker et al. [7] identified breast lesion areas using radial gradient
index filtering in a study on breast cancer classification, and then input the identified areas into a Bayesian classifier
for benign-malignant lesion classification. In another study, Liu et al. [8] on lesion area identification, they initially
conducted a preliminary analysis of breast ultrasound images using texture features, followed by refining the
coarse identification results with active contour method, achieving precise segmentation of breast lesions to assist
subsequent lesion classification. With the advancement of artificial intelligence algorithms, machine learning
algorithms have been increasingly applied in the automated diagnosis of breast cancer. For example, Shan et al. [9]
first determined the approximate location of breast lesions using traditional image processing methods in a lesion
segmentation study, then extracted frequency and spatial domain features of the lesion area, and fed these features
into a shallow artificial neural network for feature analysis, obtaining precise segmentation results of breast lesions.
However, shallow artificial neural networks based on traditional machine learning algorithms still have limited
feature extraction capabilities and cannot meet the requirements for high-precision breast lesion detection and
classification.

With the development of computer hardware and advancements in deep learning algorithms, coupled with
the powerful feature extraction and analysis capabilities of deep neural networks, deep learning has achieved
remarkable successes in various fields. Consequently, researchers have shifted from using traditional machine
learning algorithms to deep learning algorithms for automated breast cancer diagnosis. As mentioned earlier,
automated breast cancer diagnosis mainly includes lesion detection and classification, which aligns well with the
task of object detection in deep learning. Therefore, many researchers have applied deep learning object detection
methods to the automated detection of breast cancer. Yap et al. [10] used Faster R-CNN [11] for the identification
of breast lesions in ultrasound images and achieved good breast cancer detection performance through transfer
learning and multi-feature image fusion methods. In a study on breast lesion detection, Wang et al. [12] used
segmentation-based image enhancement techniques to enhance the contrast of breast ultrasound images, then input
them into a Fully Convolutional One-stage Object Detector (FCOS) [13], achieving a mean average precision (mAP)
of 90.2%. Cao et al. [14] compared the performance of five anchor-based object detection methods in detecting
lesions in breast ultrasound images, with the Single Shot MultiBox Detector (SSD) [15] network achieving the best
accuracy and Recall. Mo et al. [16] improved the preset anchor size of You Only Look Once (YOLO) V3 [17] using
clustering methods and applied it to breast ultrasound lesion detection, achieving an mAP of 89.34%. Yu et al. [18]
presented GFNet, a novel framework for breast mass detection, which integrates patch extraction, feature extraction,
and mass detection modules. GFNet demonstrates high robustness and adaptability across different imaging devices.

As previously mentioned, researchers have used various categories of object detection networks for the
automated detection of breast cancer, including Two-Stage (Faster R-CNN), One-Stage (YOLO V3), Anchor-based
(SSD), and Anchor-free (FCOS) networks. However, in past work, there has been a scarcity of comparative studies
on the performance of these different categories of object detection networks in detecting breast lesions. In this
paper, we select nine popular object detection algorithms, encompassing Two-Stage, One-Stage, Anchor-based, and
Anchor-free categories, and conduct a comprehensive comparison of their performance in breast lesion detection.
The nine object detection networks are Faster R-CNN (Two-Stage, Anchor-based), SSD (One-Stage, Anchor-based),
YOLO V3 (One-Stage, Anchor-based), RetinaNet [19] (One-Stage, Anchor-based), YOLOF [20] (One-Stage,
Anchor-based), CornerNet [21] (One-Stage, Anchor-free), FCOS, TTFNet [22] (One-Stage, Anchor-free), and
YOLOX [23] (One-Stage, Anchor-free).

2. Materials and Methods

In this section, we will introduce the datasets and object detection networks used in this study.

2.1. Datasets

This study uses data from two public datasets, BUS dataset [24] and BUSI dataset [25], with the images
from these datasets as shown in Figure 1. As shown Figure 1, we can observe that compared to BUS dataset, the

https://doi.org/10.53941/aim.2024.100005 2 of 10

https://doi.org/10.53941/aim.2024.100005


Wang et al. AI Med. 2024, 1(1), 5

ultrasound images in BUSI dataset have lower grayscale values and also contain more noise.
The BUS dataset from the UDIAT Diagnostic Centre of the Parc Tauli Corporation, Sabadell (Spain), where

images were collected using the Siemens ACUSON Sequoia C512 17L5 HD linear array sensor (8.5 MHz). BUS
dataset contains 163 breast ultrasound images with varying original size, averaging 760 × 570, and each image
includes one or more lesion areas. Of these 163 lesion images, 53 are malignant and 110 are benign. The malignant
breast images include 40 cases of invasive ductal carcinoma, 4 cases of ductal carcinoma in situ, 2 cases of invasive
lobular carcinoma, and 7 cases of other unspecified malignancies. In terms of benign breast images, there are
65 cases of unspecified cysts, 39 fibroadenomas, and 6 other types of benign lesions. All images were manually
segmented and classified by radiologists, marking the lesion areas. Both the original breast images and the annotated
images are saved in png format, and an xlsx file provides lesion type information for each image.

Figure 1. BUS and BUSI dataset images. (a,b) from BUS dataset, (c,d) from BUSI dataset.

BUSI dataset is from Baheya Hospital for Early Detection & Treatment of Women’s Cancer, Cairo, Egypt,
collected using the LOGIQ E9 and LOGIQ E9 Agile ultrasound systems. The breast ultrasound images were
gathered from 600 female subjects aged between 25 and 75 years. Initially, this dataset contained a total of 1100
images. Each image’s lesion area was manually segmented using Matlab software and classified as normal, benign,
or malignant. However, after radiologists at Baheya Hospital removed duplicate and incorrectly annotated images, a
total of 780 images remained, comprising 437 benign images, 210 malignant images, and 133 normal breast images
(without lesions). Notably, the original size of BUSI images was 1280 × 1024, but due to the presence of large
amounts of irrelevant areas in the original images, they were cropped to a size of 500 × 500 and saved in png
format.

Both BUS dataset and BUSI dataset contain accurate labels for breast lesion edge segmentation and benign-
malignant classification. However, these labels are not suitable for the labeling requirements of object detection task.
Therefore, we reprocess the labels of both BUS dataset and BUSI dataset to make them appropriate for breast lesion
detection task, as shown in Figure 2. We traverse the points of the breast lesion contours in Figure 2b to locate the
top, bottom, left, and right endpoints and then determine the top-left and bottom-right points of the lesion area and
to obtain height and width of the lesion, as depicted in Figure 2c.

Figure 2. The process of creating labels for breast lesion detection. (a) Original ultrasound images; (b) ground truth
in binary mask, yellow points represent the top-left and bottom-right corners of the ground truth; (c) represents a
bounding box made according to the yellow points.

https://doi.org/10.53941/aim.2024.100005 3 of 10

https://doi.org/10.53941/aim.2024.100005


Wang et al. AI Med. 2024, 1(1), 5

2.2. Deep Learning Neural Networks

Since the development of R-CNN [26], various highly accurate object detection networks based on deep
learning have emerged. Generally, object detection networks can be categorized by the number of stages into
two-stage and one-stage methods, or by the use of preset anchors into anchor-based and anchor-free methods. In this
study, we select nine currently popular object detection networks and compare their performance in breast lesion
detection tasks. The chosen networks include two-stage, one-stage, anchor-based, and anchor-free object detection
methods, with specific descriptions of these networks provided in Table 1.

Table 1. Description of object detection networks.

Model Number of Stage Anchor Setting Network Description

Faster R-CNN Two-Stage Anchor-based

Faster R-CNN introduced a Region Proposal Network to
achieve real-time detection. Efficiency is improved
through the sharing of convolutional features,
and preset anchors are used to regress the position
of the object, significantly enhancing detection
speed and accuracy.

RetinaNet One-Stage Anchor-based
RetinaNet addresses the issue of class imbalance in
object detection by introducing Focal Loss, which
focuses on samples that are difficult to classify.

SSD One-Stage Anchor-based
SSD detects objects of various sizes effectively by
predicting categories and bounding boxes on feature
maps at multiple scales.

YOLO V3 One-Stage Anchor-based

YOLO V3 can classify and locate in a single forward
pass. It introduces multi-scale detection, using
feature maps at three different scales to improve
the detection of small objects.

YOLOF One-Stage Anchor-based

YOLOF simplifies the network structure by reducing
the number of feature pyramid layers, maintaining
high detection performance. This design lowers
computational costs while increasing speed.

CornerNet One-Stage Anchor-free
CornerNet uses a corner detection method, locating
objects by detecting their top-left and bottom-right
corners.

FCOS One-Stage Anchor-free

FCOS predicts the size and center point of the object’s
bounding box directly on the feature map, offering a
straightforward method to handle objects of various
shapes and sizes.

TTFNet One-Stage Anchor-free
TTFNet uses a dense detection head and an efficient
feature fusion strategy. It maintains high detection
accuracy while significantly enhancing detection speed.

YOLOX One-Stage Anchor-free
YOLOX introduces an anchor-free design and decoupled
head, and optimizes the label assignment strategy.

During the experimentation, we substitute the backbone of some networks to further compare the performance
of different networks in breast lesion detection. We select ResNet [27], VGG [28], and DarkNet [29] as the
backbones for most of the networks.

3. Results

In this section, we will introduce the performance metrics used in our experiments, the details of the ex-
periments, and the performance results of each network. We chose the output results of the SSD network for
demonstration, as shown in Figure 3. The network draws bounding boxes in different colors based on the predicted
nature of the lesion, red for lesions predicted to be malignant and green for those predicted to be benign. The
confidence level of the prediction is displayed above the bounding box.
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Figure 3. Breast lesion detection results of SSD network. (a,c,e,g) are prediction results. (b,d,f,h) are ground truth.

3.1. Performance Metrics

In this study, we use commonly used metrics in object detection, Average Precision (AP), Average Recall
(AR), and Frames Per Second (FPS) as the performance metrics for our study.

AP represents the area under the Precision-Recall (PR) curve in object detection and is calculated based on
the following values. First, it is necessary to compute the Intersection over Union (IoU) threshold (T) between
the predicted and actual bounding boxes, as well as the confidence scores for the classification prediction of the
bounding boxes. We have,

IoU =
Area of Overlap
Area of Union

(1)

Then we have,
True Positives (TP): The prediction BBox with IoU > T and meeting the category Confidence threshold.
False Positives (FP): The prediction BBox with IoU < T and meeting the category Confidence threshold.
False Negatives (FP): The prediction BBox with IoU = 0.
Based on the TP, FP, and FN, we have,

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Based on different confidence thresholds for each category, we can plot the Precision-Recall (PR) curve,
thereby determining the AP value. By adjusting various IoU thresholds, we can calculate AP50 (T > 0.5) and AP75
(T > 0.75). AR10 refers to the average recall rate when the IoU threshold is set to T > 0.1.

3.2. Experiment Implementation

In this study, we implement all comparative networks using PaddleDetection [30]. Each network trains for
300 epochs, evaluating performance on the validation set after each epoch. The model parameters that with the best
performance on the validation set during these 300 epochs are retained as the final parameters. During the training
process, the first five epochs use model warm-up, and for the remainder of training, a cosine learning rate decay
strategy [31] reduces the learning rate to one percent of the initial rate. We apply random rotation as a preprocessing
method. The image size is 320 × 320.

We conduct model training on both the combined BUS+BUSI mixed-dataset and the single BUSI dataset.
Both data groups are divided into training, validation, and test sets in an 8:1:1 ratio. All breast ultrasound images
are resized to 320 × 320 with the learning rate set to 0.01 and the batch size set to 8, and during the training process,
we use image augmentation methods such as random rotation, random flipping, and Mosaic [32].
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3.3. Results of BUS+BUSI Mixed-Dataset

First, we evaluate the performance of object detection networks using BUS+BUSI mixed-dataset, with results
shown in Table 2. From Table 2, we observe that within the anchor-based networks, YOLOV3-res34 performs best
in terms of AP, reaching 0.637, and also leads in AP75 and AR10, indicating its advantages in accuracy. In terms
of processing speed, SSD-vgg16 and SSD-res34, with nearly 30 FPS, outperform other networks. Additionally,
SSD achieves the best result in AP50, indicating its excellent overall capabilities. Among the anchor-free networks,
YOLOX-m leads with an AP of 0.563 and shows good performance in AP50, AP75, and AR10, exhibiting a
balanced performance advantage. FCOS achieves slightly lower performance than YOLOX-m. On the other hand,
although TTFNet reaches the highest FPS (38.37), it significantly behind in terms of accuracy.

Table 2. Performance comparison of different object detection networks on mixed-dataset.

Model AP AP50 AP75 AR10 FPS

Anchor-based networks

Faster R-CNN-res50 0.573 0.882 0.672 0.677 14.01
RetinaNet-res50 0.564 0.869 0.619 0.655 14.87
SSD-res34 0.582 0.863 0.596 0.631 29.65
SSD-vgg16 0.608 0.931 0.666 0.691 29.85
YOLOF-res50 0.533 0.897 0.519 0.617 22.7
YOLOV3-darknet53 0.632 0.925 0.678 0.683 19.5
YOLOV3-res34 0.637 0.899 0.77 0.686 26.88

Anchor-free networks

CornerNet-res50 0.518 0.791 0.612 0.627 11.03
FCOS-res50 0.541 0.821 0.62 0.629 17.18
TTFNet 0.368 0.624 0.443 0.476 38.37
YOLOX-m 0.563 0.887 0.651 0.69 26.53

Note: Bold font indicates the best performance results.

Figure 4 presents the performance results and AP-FPS plot of each network. In Figure 4b, the closer a
network’s performance is to the top-right corner, the stronger its overall performance. Overall, the two anchor-based
object detection networks, YOLOV3 and SSD, show excellent performance, while the anchor-free networks are
slightly behind the anchor-based networks in terms of performance.

Figure 4. Networks performance results and AP-FPS plot on BUS+BUSI mixed-dataset. (a) is the performance
results of different networks, (b) is the FPS and AP scatter plot of the networks.

3.4. Results of BUSI Dataset

Next, we compare the performance of the nine networks on BUSI dataset, with results shown in Table 3.
Among the anchor-based networks, RetinaNet performs the best on BUSI dataset, achieving the highest AP and AR,
as well as the second-highest AP75, but it shows some disadvantages in network speed. YOLOV3 and SSD, which
perform well on BUS+BUSI mixed-dataset, still show excellent performance on BUSI dataset, achieving balanced
results in both accuracy and network speed. For anchor-free networks, FCOS achieves an AP of 0.841, close to the
best-performing anchor-based model RetinaNet-res50, and it achieves the best results among anchor-free networks
in AP50, AP75, and AR. However, YOLOX-m, which performs relatively well on the BUS+BUSI mixed-dataset,
has a significant decrease in performance on BUSI dataset.
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Table 3. Performance comparison of different object detection networks on BUSI.

Model AP AP50 AP75 AR10 FPS

Anchor-based networks

Faster R-CNN-res50 0.584 0.88 0.703 0.725 13.62
RetinaNet-res50 0.849 0.962 0.927 0.885 17.42
SSD-res34 0.813 0.939 0.924 0.845 31.4
SSD-vgg16 0.791 0.965 0.947 0.845 29.52
YOLOF-res50 0.823 0.962 0.877 0.856 23.3
YOLOV3-darknet53 0.769 0.979 0.919 0.81 19.55
YOLOV3-res34 0.791 0.966 0.95 0.825 25.52

Anchor-free networks

CornerNet-res50 0.535 0.823 0.694 0.702 11.42
FCOS-res50 0.841 0.928 0.888 0.881 18.4
TTFNet 0.394 0.658 0.485 0.526 38.11
YOLOX-m 0.578 0.853 0.695 0.714 26.14

Note: Bold font indicates the best performance results.

Figure 5 presents the performance results and AP-FPS plot of each network on the BUSI dataset. Overall,
YOLOV3 and SSD still demonstrate the most ovweall performance, similar to the results with BUS+BUSI mixed-
dataset. Although RetinaNet and FCOS show impressive performance in AP, their lower FPS affects their overall
performance.

Figure 5. Networks performance results and AP-FPS plot on BUSI dataset. (a) is the performance results of different
networks, (b) is the FPS and AP scatter plot of the networks.

3.5. Results of Generalization Performance

In medical image analysis, the generalization ability of a model is particularly important, as it directly relates
to the model’s practicality and reliability. A model with good generalization ability can adapt to a diverse range
of cases, reducing the risk of misdiagnosis and missed diagnosis, thereby enhancing the accuracy and reliability
of diagnoses. It ensures that the model accurately identifies and classifies data that differ in lesion shape, size
or appearance from the training data. Strong generalization also means that the model can adapt to images from
different devices and protocols, enhancing its application value in real clinical environments. Therefore, in this
study, we compare the generalization performance of the nine networks. We train the models using BUSI dataset
and validate them on BUS dataset, with validation results shown in Table 4.

From Table 4, we observe that FCOS achieves excellent performance in generalization, achieving the best
results in AP, AP50, and AR, and the second-best in AP50, demonstrating its strong generalization ability. RetinaNet,
which performs well on the BUSI dataset, also achieves good results, with the second-best AP. As shown in Figure 6b,
SSD approaches the top right corner, indicating excellent overall performance, achieving a balance between speed
and accuracy.
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Table 4. Performance comparison of different object detection networks training on BUSI and testing on BUS.

Model AP AP50 AP75 AR10 FPS

Anchor-based networks

Faster R-CNN-res50 0.603 0.925 0.676 0.625 7.14
RetinaNet-res50 0.835 1 0.911 0.849 10.45
SSD-res34 0.83 0.96 0.889 0.863 14.72
SSD-vgg16 0.771 1 0.94 0.817 13.63
YOLOF-res50 0.804 0.943 0.804 0.844 11.79
YOLOV3-darknet53 0.762 1 0.952 0.787 10.45
YOLOV3-res34 0.773 0.995 0.924 0.8 12.82

Anchor-free networks

CornerNet-res50 0.514 0.883 0.574 0.587 6.35
FCOS-res50 0.871 1 0.946 0.894 11.15
TTFNet 0.349 0.615 0.418 0.427 20.24
YOLOX-m 0.573 0.888 0.611 0.619 12.25

Note: Bold font indicates the best performance results.

Figure 6. Networks performance results and AP-FPS plot of generalization experiments. (a) is the performance
results of different networks, (b) is the FPS and AP scatter plot of the networks.

4. Conclusions

This study comprehensively compares the performance of nine object detection networks in breast lesion
detection, encompassing four types: two-stage, one-stage, anchor-based, and anchor-free. This range covers all
current types of object detection networks, ensuring a comprehensive and representative evaluation. We validate
model performance on two datasets and compare their generalization abilities. The results demonstrate the strengths
and limitations of different types of networks in breast lesion detection tasks. In terms of performance on a
single dataset, anchor-based networks generally outperform anchor-free networks. Notably, the SSD model, while
maintaining a high AP, also exhibits rapid detection speed, proving its practicality and effectiveness in breast cancer
detection. This also indicates that anchor-based methods have strong detection capabilities for common lesion
types in breast ultrasound images. The superior performance of anchor-based networks can be attributed to their
predefined anchor boxes, which provide better assistance in detecting objects of varying sizes and aspect ratios.
These anchor boxes serve as priors, helping the network focus on regions of interest, thereby enabling more accurate
localization and classification of lesions.

However, in the comparison of generalization performance, the anchor-free network FCOS shows superior
performance. This finding highlights the advantage of anchor-free networks in handling lesions with varying shapes
and sizes. Since the FCOS network does not rely on preset anchors, it can adapt more flexibly to targets of different
sizes, thereby performing better on new or unknown datasets. This is particularly important for breast cancer
detection, as lesion shapes and sizes can vary among patients.

Early detection of breast cancer is crucial for improving patient survival rates, and developing accurate and
rapid breast cancer auxiliary diagnostic systems is essential. In summary, this research provides valuable insights
for the early detection and diagnosis of breast cancer, offering important guidance for the development of efficient
and accurate breast cancer auxiliary diagnostic systems in the future.
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