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Abstract: The existing object tracking, localization, measurement, and other technologies mostly con-
centrate on dual cameras or using single camera plus the non-visual sensor technology. These technolo-
gies are achieved by increasing the amount of data at the expense of lowing the processing speed to
achieve precise localization of machine vision. If machine vision localization can be achieved without
increasing the amount of data processing, then only the monocular ranging method can be used. There-
fore, monocular ranging is obviously more challenging in actual research. Motivated by this, this paper
proposes a novel object learned method based on monocular vision. According to the geometric model of
camera imaging and the basic principle of converting analog signals to digital signals, we derive the rela-
tionship model between the object distance, object height, camera height, image resolution, image target
size, and camera parameters. We theoretically prove the infinite solvability of “self-invariance” and the
solvability of “self-change”, which provides a theoretical basis for the object tracking, localization and
measurement based on monocular vision. The experimental results show the correctness of our theory.

Keywords: monocular vision; target height and distance; infinite solutions of “self-invariance”; solvabil-
ity of “self-change”.

1. Introduction

Mobile robots have been widely used in various fields such as surveillance, visual navigation, automatic image
interpretation, human-computer interaction, and virtual reality [1—2]. The machine vision technique tends to simulate
visual functions of human eyes for extracting information from video sequences and recognizing the morphology and
motion of three-dimensional scenes and targets [3—5].

Machine vision plays a vital role for the performance of mobile robots [6—8]. Like human beings relying on
vision to obtain most of the information, mobile robot vision systems use cameras to capture and process the infor-
mation. The machine vision technology is therefore crucial for the robot to properly process its received information.
In machine vision, 3D information acquisition remains a challenging problem in the field of autonomous navigation
[9], 3D scene reconstruction [ 10], visual measurements [ 1 1, 12] and industrial automation [13].

Existing methods of machine vision can be roughly divided into two categories. The methods in the first cate-
gory try to acquire the target depth information, including binocular perception methods [14], monocular camera cali-
bration methods [15, 16], target depth information estimation methods [17, 18] and single camera plus plane mirror-
based methods [19, 20]. While the methods of the second category are based on the sensor positioning technology.

The binocular perception method simulates human stereo vision, which obtains the target depth information
from the difference of viewing angles between the direct view of the left and right eye [13]. Yang et al. [14] used a
binocular camera stereo matching method for gesture recognition. In this method, parallax is obtained from the rela-
tive information between two cameras, which is then used to calculate the depth information of the target. However,
the accuracy of this method depends on the performance of the camera, such as illumination and baseline length (i.e.,
the distance between two cameras). Further, this method has a limited capability for real applications due to high
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complexity and a relatively large data processing load.

Camera calibration methods can be divided into the traditional approach [21, 22] and self-calibration approach
[15, 16]. Abdal-Aziz and Karara [23] proposed a camera calibration method based on direct linear transformation.
Tsai et al. [24] devised a radial uniform constraint calibration method. Zhang et al. [25] introduced a camera calibra-
tion method for active vision. These traditional methods could achieve high accuracy of calibration. However, these
methods require specific calibration references. In the calibration process, due to the limitations of equipment, it is
still impossible to accurately record the corresponding coordinates of target in the world coordinate and image coor-
dinate system. Further, the accuracy of coordinate conversion fluctuates accordingly.

The deep learning-based methods [17, 18] employ neural networks and large-scale data learning to obtain the
depth information of targets. Liu et al. [26] designed a Full Convolutional Network (FCN) to perform a single-eye
estimation scene depth map. Eigen et al. [27] developed deep neural networks to estimate depth cues in RGB images.
He et al. [28] conducted deep learning on a large-scale fixed focal length data set to synthesize a variable focal length
data set, thus generating deep cavity in the image. Zhang et al. [29] proposed a deep guidance and regularization
(HGR) learning framework for end-to-end monocular depth estimation. Although these methods can be used to esti-
mate target depth, it is difficult to obtain accurate depth of the target, which limits its application to mobile robots.

In recent years, monocular depth estimation has been widely applied in the field of simultaneous localization
and mapping (SLAM). Loo et al. [30] proposed CNN-SVO where the three-dimensional point information obtained
from monocular depth estimation was used to improve SVO. Tateno et al. [31] proposed real-time monocular dense
SLAM. With the help of a depth estimator, this method is robust and accurate. David et al. [32] devised a multi-scale
architecture to simultaneously predict depth, surface normal and semantic labels. This method can capture many
image details without relying on super pixel segmentation. Liu et al. [26] proposed a deep convolutional neural field
model for depth estimation. In this method, unary and binary potentials of continuous CRF are learned in a unified
deep network. The model is based on a fully convolutional network with a super pixel pooling scheme. Similar meth-
ods were also designed in [33, 34], which combine the CNNs and CRF technology. In these methods, two-layer CRF
are used to enhance the collaborative operation of global and local prediction values to obtain the final depth predic-
tion results. Cao et al. [35] converted the depth estimation problem to a pixel-level classification problem. The con-
tinuous ground truth depth value is first discretized into multiple depth intervals, then a label is assigned to each inter-
val according to the depth value range, and the depth estimation problem is transformed into a sub-classification
problem. Finally, the depth is obtained using a fully convolutional depth residual network. Zheng et al. [36] proposed
a layout-conscious convolutional neural network (LA-Net) for accurate monocular depth estimation, in which a multi-
scale layout map is employed as a structural guide to generate a consistent layout depth map.

The monocular camera plus flat mirror schemes [19, 20] are methods designed for observing the fish target in a
water tank. These methods could be used to effectively solve 3D occlusion tracking of the fish in a water tank. How-
ever, they are not suitable for mobile robots or moving targets when realizing 3D tracking of the target.

The non-visual sensor [37, 38] uses information including sound waves, infrared, pressure, and electromagnetic
induction to sense the distance of an external target to the robot, thus obtaining the depth information. To work out
the 3D coordinates of the target, this approach requires visual imaging and sensors, and this increases the data pro-
cessing burden of the robot and requires synchronization between the vision and the sensor. As a result, such an
approach is generally not efficient in mobile robots.

In this paper, we propose a target’s height and distance measurement method. In the proposed method, we
adopt an operation of “self-variant” to achieve the measurement of target information in monocular vision, which
requires no additional supplement devices. Our proposed method can accurately obtain the target height and distance
information of the target. Such a method can overcome the shortcomings of traditional target depth measurement
methods, and help robots to obtain target information measurements and track in a moving environment. This paper
analyzes the insolvability of “self-invariance” and the solvability of “self-change” through theoretical and experi-
mental analysis. The main contributions of this work are as follows:

1) A target’s height and distance measurement method is proposed of “self-change” and a relationship model of
parameters is established including the target distance, target height, camera height, image size, target image size and
camera parameters, etc.

2) The experiment proves that under the conditions of unknow target height and “self-invariant”, the target dis-
tance cannot be calculated even there are multiple views available.

3) It is theoretically proved that under the condition of “self-variant”, the target distance can be calculated using
two different views.

The above contributions provide a theoretical basis for researchers engaged in target measurements in the field
of computer vision, and make it possible for scholar to use a single image for target depth estimation. At the same
time, the target depth can only be calculated when the height or distance of the two images is changed.

20f26


https://doi.org/10.53941/ijndi.2025.100007

1JNDI, 2025, 4, 100007. https:/doi.org/10.53941/ijndi.2025.100007

The rest of the paper is organized as follows. Section 2 introduces the basic concept of “self-change”. Section 3
provides the relationship model between the distance and height of the target when it is in the visual center. The infi-
nite solution analysis of “self-invariance” is given in Section 4. Section 5 presents the solvability analysis of “self-
change”, In Section 6, experimental verification is carried out while Section 7 concludes the work.

2. Target’s height and distance measurement method of "self-change"

For monocular vision, the target distance should be properly addressed to achieve target tracking and location.
Based on our previous research [39], it is easy to achieve target tracking and positioning when the target height is
known beforehand. For real applications, however, it is difficult to obtain the height of the target. In this case, certain
machine learning technique is required to estimate the target’s height.

The performance of monocular vision is mainly affected by following parameters: 1) the focal length of the

camera, which is denoted as f(mm), 2) the size of the photosensitive film of CMOS, which is denoted as
wxl (mmz), 3) the height of the camera, recorded as h,, 4) the target distance, denoted as m, and 5) the height of
target AB, denoted as h,. We call the first two parameters as internal parameters while the other three as external
parameters.
Definition 1: The term of “self-change” refers to the change of camera’s height h, or the target distance m. For
example, the robot may change the height of the camera h, during the process of stretching or bending its legs. The
target’s distance m. can be changed while it moves forward or backward. Here, we call h, and m as variable exter-
nal parameters.

The proposition opposite to “self-change” is “self-invariance”. It refers to the cases that the camera’s height h,
and the target’s distance m keep unchanged. It should be noted that the target height h, cannot be changed, so we
call it an invariable external parameter.

To carry out target’s height and distance measurements through "self-change", we first should understand typi-
cal relationship models of the target height and distance.

3. Relational model of target height and depth when the target is in the center of the vision

To solve the problem of target depth measurement when the target is in the visual center, we first need to define

the term of “target is located in the visual center”.
Definition 2: From the point of view of the 3D imaging process, the so-called “target is located at the center of vision”
is that the line passing through the highest and lowest vertexes of the target can intersect the main optical axis of the
camera in space. In the two-dimensional plane of target image, it means the line or extension line between the high-
est and lowest points of the target image passing through the center point of the visual image.

According to the position of the main optical axis of the camera, we divide the relationship model of the target
distance and target height into the following categories: 1) the model of imaging geometry when the target vertex
falls on the main optical axis of the camera; 2) the model of imaging geometry when the target vertex is higher than
the main optical axis of the camera; 3) the model of imaging geometry when the target vertex is lower than the main
optical axis of the camera; and 4) the relationship model of the target distance and target height of the angular bisect-
ing image.

Before introducing these models, we first explain the concept of the depression angle.

Definition 3: The so-called depression angle is the angle between the main optical axis and the horizontal line when
the camera is shooting downwards, marked as .

As shown in Figure 1, if we assume that the horizontal line of the camera is FE and the main optical axis is
FB’, then the depression angle a is ZEFB’. To measure the horizontal distance between target AB and the camera,
we first set the coordinates of the center point of the image plane to be C’ (w/2,1/2). The size of the digitized image
is MXN (pixelz) , and the digital coordinates of image CD of target AB after image segmentation are C (Xc, Y¢)
and D (Xp, Yp). Then, we can calculate the length d of the target image CD, the distance d; from point D to the cen-
ter point of the image plane C’, and the distance d, from point C to the center point C’ of the image plane as:

d=|CD| = (W*XC_W*XD)2+(I*YC_’*YD)Z.D
M M N N
et w w*XD>2 (l l*YD>2 1
d, =DC'| = (2 i 3% 2) (D
e (W w*xc)2 (1 l*YC)Z
d, =|CC'| = (2 m - 3)

In the following sections, we should introduce the relationship models.
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Figure 1. Two-dimensional geometric principle of camera imaging.

3.1. Model of camera imaging geometry with the target vertex falling on the main optical axis of the camera

When the highest point of the target just falls on the main optical axis of camera, it means that the target vertex
is at the center of vision. To measure the horizontal distance m between target AB and the camera, we use the bot-
tom position of the camera as the center of the coordinate system, the horizontal line of the machine vision direction
as X axis, and the line perpendicular to the OX axis on the ground plane as Y axis. Also, we set the camera position
as point F, then the coordinate system shown in Figure 2 is established with the side of OF as Z axis. Suppose that the
image plane is m;, the ground plane is 7», and the projected image plane m; is CD after the target AB is imaged by
the camera. Obviously, points A, B, C, D, O and F are all on the plane where XOZ is located. Based on this, we can
easily derive the relationship between the length d, target distance m, target height A, and camera height £, :

d = mh,f|(m* +h* - h.h,) )

From the basic principle of camera imaging, we know that since the vertex B of target |AB| falls on the main
optical axis, the image C of point B must be the center of the image plane ;. Then, we can calculate the target dis-

tance m as:

I h,)* —4d? (h? - h,h,
ot +\/(f >2d ( ) )

7 w (mm), M (pixel)

S

(1ox1d) v “(wuw) 7

(% mi A X

Figure 2. Schematic diagram of imaging with the target vertex falling on the main optical axis

3.2. Model of imaging geometry when the target vertex is higher than the main optical axis of the camera

When the target vertex is higher than the main optical axis of the camera, then in the image plane m;, the vertex
C of the target image CD is higher than the center point of the image plane as shown in Figure 3. Suppose that the
main optical axis of the camera and target AB intersect at point B’, and set [AB’| = x, then |[B’B| = h, —x. Conse-
quently, we can easily obtain the following relationship of these parameters:
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Figure 3. Schematic diagram of imaging when the target vertex is higher than the main optical axis of the camera.

3.3. Model of imaging geometry when the target vertex is lower than the main optical axis of the camera

When the target vertex is lower than the main optical axis of the camera, then in the image plane m;, the vertex
C of the target image CD is lower than the center point of the image plane as shown in Figure 4. Suppose that the
main optical axis of the camera and the extended line of target AB intersects at point B’, and set |[AB’| = x, then
|B’B| = x —h,. Since the coordinates of CD in the image plane n; are C(Xc,Yc) and D(Xp, Yp), and C’ is the
center point of the image plane, the simulation coordinates of C” are C’(w/2,1/2). We can express the target dis-

tance as:
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Figure 4. Schematic diagram of imaging when the target vertex is lower than the main optical axis of the camera.
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3.4. Special model: relationship model of the target’s distance and height of the angle bisecting image

Definition 4: In a certain image acquisition process, if the main optical axis of the camera bisects the angle between
two endpoints of the target and the camera. This kind of image is called the angle bisection image (ABI).

As shown in Figure 1, the main optical axis bisects ZAF B, so we can easily derive the relationship between the
depression angle @ and the CD length d:

d = f(tan(a, — @) —tan(a; — @)) @)

In Eq. (7), f is the focal length of the camera, tan(-) is the tangent function, ; = tan™! (h,/m), a, = tan™!
((h, = hy,) /m), and tan™! (-) is the arctangent function.

Fig. 5 is a function diagram of the relationship between the depression angle and the target image length
obtained with the target AB height 680 (mm), distance 5830 (mm), focal length of 50 (mm), and camera height of
1040 (mm). It can be seen from Figure 5 that when the depression angle @ gradually increases from zero, the CD
length d gradually decreases until it reaches a certain value. After that, it gradually increases. In other words, d has a
minimum value. Taking the derivative of Eq. (7), we can easily know that when @ = (e +@2) /2, d reaches the
minimum value. This is due to:

_@ +ay _a-@ fay = (AFB
2 2 2

+as (8)

Therefore, when the main optical axis is the bisector of ZAF B (the green part in Figure 1), d reaches the minimum
value. According to the angle bisector theorem in geometry, we can get the following equation:

WF| _ |AB;
|BF| ~ B}B|

©

Based on Eq. (9), we can obtain the relationship between the target’s distance and height of ABI as:

h2(h, — x)* = x2(h, — h,)?
2 =(h,—x)?

(10)
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Figure 5. Relationship between the depression angle « and target image CD length d.

4. The solvability analysis of “self-invariance”

The “self-invariant” solvability analysis is to jointly solve above models without changing the camera’s height
h, and the target’s distance m to see whether the target distance m and the target height £, can be solved. Before
analyzing the solvability, we first agree on a joint solution symbol. The unknown variables for the joint solution of
several equations are marked as “/\ {}. For example, A {(1).(2)} means Egs. (1) and (2) are used to perform the
joint solution.

In Section 2, we derive four relational models. To discuss whether their joint form has a solution, we will first
introduce a basic theory.

4.1. Infinite solutions of multi-model combination of a single frame image

The so-called single frame image multi-model combination refers to an image in which a single frame image
satisfies two or more model conditions. For example, an ABI image does not only satisfy Eq. (10), but also satisfy
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Eqgs. (5-1) and (5-2). To discuss whether there is a solution to the combination, we first introduce a basic theory.

4.1.1. Basic theory

For given camera parameters (including the camera height h,, focal length f, photosensitive film size
wx(mm?) and image size M x N (pixel®)), can the target distance m and target height /, be solved by single-
frame image multi-model combination? In other words, does A(5).(10)} have a unique solution?

It seems that/\ {(5)>(10)} may have a unique solution. There are two unknown variables in Eq. (5), i.e., the tar-
get distance m, height /,, and the distance x between the intersection of the main optical axis, the target and the low-
est point of the target. Formula (5) has two equations (5-1) and (5-2), and Formula (10) has these three variables.
With three equations and three variables, it seems that the target distance and height could be solved. However,
AL(5),(10)} has infinite solutions. In the following, we shall give a theorem about infinite solutions to joint multiple
models of a single image.

Theorem 1: For any frame of the target image CD, under the condition of the same shooting height, images obtained
from different depression angles will have different target heights and distances.

Proof: The equivalent meaning of the above theorem is that, given the height A, of target AB, the horizontal distance
from the camera is m and the obtained image is CD when the depression angle is a. Under the condition that the
camera height £, remains unchanged, change the depression angle and shoot. Let us set a new depression angle @,
that is, @ = ;. Then, there must be a new target A B, so that the image C;D; of the new target is identical to the
original target image CD, which is recorded as CD = C, D, .To prove this theorem, we only need to prove its equiva-
lence.

When shooting the target AB, the main optical axis is F'B’, the depression angle is @, and the intersection of the
main optical axis and image plane m; is C’. Obviously, C’ is the center point of the image. Suppose the angle
between the two endpoints of targets A and B and the camera is . That is, ZAF B = 8, which is shown by the black
line in Figure 6.
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Figure 6. Principle of target imaging when rotating the main optical axis.

The conclusion of the above theorem is that CD = C,D,, which means that the length of the target image does
not change, and the position of the target image in the image does not change. This also means that the distance will
not change between the two endpoints of the target image and the center point of the image plane 7, . In the follow-
ing section, we will employ a construction method to prove this conclusion.

The bind straight lines AF and BF to the active axis F'B’ (that is, ZAF B’ and /BF B’) remain unchanged, and
FB’ can rotate around point F on the XOZ plane. When @ = a, the intersection points of the straight-line AF and
the OX axis is A, and a straight line parallel to AB is made through point A,, intersecting the main optical axis F'B’
at B} and BF at B; respectively. This is shown in the red part in Figure 6. Since straight lines AF and BF are bound
to FB’, the image CD equivalent to AB is also bound to the AFB tripod. During rotation, ZAFB, /AFB’ and
(BFB’ always remain the same, i.e., 8=p,, ZAFB' = /A\FB| and /BFB’ = /B, FB] are true. Also, since the
focal length f of the camera is fixed during the rotation, the length of the target image |CD| and the position infor-
mation of the target image CD in the image will not change. Therefore, the target A;B; obtained is the new target,
and the new target image C,D, is identical to the original target image CD. Therefore, CD = C, D, is established.
Proof completed.
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According to Figure 6, we can clearly know that when @ # @, m # m, and h, # h,; hold. Of course, we can
also see that the distance m is a monotonically increasing function of the height 4,. This theorem shows that the sin-
gle-frame image multi-model combination cannot solve the two variables of the target distance m and height %, . This
is due to that a single frame image can only obtain the information of the target image CD, including the length of
CD and the position information of CD in the image. We can only obtain the values of ZAFB, /AFB’ and /BF B’
through this information. There are infinite number of targets satisfying this condition.

To further illustrate the conclusion of "the infinite solutions of the single-frame image multi-model joint", we
take A{(5),(10)} as an example and the details are described below.

4.1.2. N(5),(10)} infinite solution analysis

A1), (10)} represents the problem of existence of the solution value of ABI. Therefore, the angle bisector
image satisfies the condition that the main optical axis of the camera is lower than the target vertex and satisfies the
angle bisector theorem in geometry.

2_4 2 (K2 _
L R e G0 B b
2d,
=+ (=50 =43 =) (b, ) ) (11)
2d,
Wiy =) =X —hp)* 3)
- x2 = (h, — x)*

In Eq. (11), d, is the distance from the center point of the image plane m; to point D of the image CD, and d, is the
distance from the center point of image plane m; to point C of the image CD. Both d; and d, can be worked out by
image segmentation and CD coordinates are obtained. Then, the digital transfer to the simulation method is shown in
Figure 3. f and h, represent the focal length and height of the camera, where x represents the distance from the
intersection point of the target and the optical axis to the ground, respectively, both of which are known beforehand.
Therefore, there are only three unknown variables in the equation system, namely m, #,, x, and the equation system
has three equations. From the number of equations and the number of variables, it seems that the equation can give
the unique target height and target distance. Unfortunately, this equation also has an infinitely number of solutions.

The specific theoretical basis can be explained according to Theorem 1. We regard (11-1), (11-2), and (11-3) as
three curved surfaces. In Figure 7, the subgraphs (a), (b) and (c) are three curved surfaces at the target height 4,. It is
a cross-sectional view of 580, 480, and 380. In each sub-graph, the three curves can intersect at one point. In other
words, as the target height 4, changes, a unique target distance value m can be obtained. The sub-figure (d) in Figure 7
is a cross-sectional view of x =0. It can be seen from the sub-figure that the three curved surfaces intersect in a
curve, not a point, and the target distance m increases monotonically along with the target height %, . This is consis-
tent with our Theorem 1.
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Figure 7. A sample diagram of A\ .00} with infinite solutions of the ABI image.

4.2. Infinite solutions of the multi-frame image joint

In Section 4.1, we have analyzed the infinite solutions of the single-frame image multi-model joint, that is, it is
impossible to solve the target height and distance from a single frame image. So, can multiple images be used for the
joint solution? For example, can we solve the target height and distance by combining different depression angle
images? Let us first conduct theoretical analysis on this issue.

4.2.1. Basic theory

The multi-frame and multi-model joint situations with different depression angles are as follows. 1)/\ {(3).05)}:
represents a model when the target vertex happens to fall on the main optical axis and the target vertex is higher than
the main optical axis. 2) A3, (6)} represents a model when the target vertex happens to fall on the main optical
axis and the target vertex is lower than the main optical axis. 3) N{(5),(6)} represent a model when the target vertex
is higher than the main optical axis and the target vertex is lower than the main optical axis. Since the ABI image is
also a model with the target vertex higher than the main optical axis, we will not discuss the joint problem of the ABI
image and other models.

ALB3),(5)} and A1(3),(6)} are three equations with three unknown variables (m, h,, x), so the three unknown
equations can be solved. In NS, (0)}, there are four equations with four unknown variables (m, h,, x;, x,), where
x; is the distance from the lowest point of the target to the intersection point of the main optical axis of the camera
and the target AB when the target vertex is higher than the main optical axis of the camera, and x, is the distance
from the lowest point of the target to the intersection of the camera’s main optical axis and the target AB when the
target vertex is lower than the camera's main optical axis. The four variables can also be solved. However, no matter
for which set of equations, the unique target depth information cannot be found without knowing the target height.
We first present a theorem as follows.

Theorem 2: Under the condition that the camera height 4, the target height 4, and the distance m are unchanged,
the target height obtained by the image taken at any depression angle is equivalent to the target distance relationship
model.
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Proof:

Suppose that shooting a target at a depression angle @ = a;, the image obtained is /;, and the relationship
model between the corresponding target height and distance is denoted as R; (m, h,). When shooting a target at a
depression angle @ = @;, the image obtained is I, and the relationship model between the corresponding target
height and distance is denoted as R, (m,h,). From a geometric point of view, on the plane mOh,, two curves (or
straight lines) R, and R, appear. On the same plane, there are only three kinds of relationships between R, and R, :
1) R, and R, intersect but do not overlap. 2) R; and R, never intersect. 3) R and R, coincide.

Under the condition that the target height 4, and distance m are unchanged, if we can prove that R; and R,
coincide, then it is proved that the target height obtained by the image taken at any depression angle is equivalent to
the target distance relationship model. Here, we use an elimination method to prove.

If we substitute (m, h,) into R; and R, respectively, and R, and R, are true, then it indicates that "R, and R,
never intersect” will not hold. Below we use the method of proof by contradiction to prove that "R; and R, intersect
but do not overlap" does not hold.

Assume that "R; and R, intersect but do not overlap" is true, that is, there is at least one point (m’, h;) to make
R, (m',h,) true but R, (m’,h,) is invalid. Suppose that the target image corresponding to R, (m’,h}) is I;. Based
on Theorem 1, we know that I/, = I] holds. At this time, m # m’ and h, # h,, hold. This contradicts our condition
that “the target height %, and distance m remain unchanged”. In other words, our hypothesis that “R; and R, inter-
sect but do not overlap” does not hold. Therefore, only one case that “R; and R, coincide” holds. Proof completed.

It can be explained by Theorem 2 that the multi-frame image joint has infinite solutions. That is, the equations
A3, ), A3, (6}, A{(5).(6)} all have infinite solutions. In the following, we take A(5).(6)} as an example
to further illustrate that /A {(5),(6)} has infinite solutions.

4.2.2. N(5).(0)} infinite solution analysis

Since Eq. (3) is a special form of Eq. (5) and (6), the infinite solutions of /A{(5),(6)} discussed is representa-
tive to a certain extent. Eq. (5) is the model of the imaging geometry when the target vertex is higher than the main
optical axis of the camera. Eliminate the variable x in the Eq. (5) to obtain

f(d, +dy))m* + (dldz —fz) hom+ fd, (h,—h,)h, + fd\h? — fdihh, =0 (12)
Since d = d, +d,, then
fdm® + (dldz—fz) h,m+ fdh,(h,—h,)=0 (13)

Eq. (6) is the model of the imaging geometry when the target vertex is lower than the main optical axis of the camera.
Eliminate the variable x in the equation (6) to obtain

fldi—dy)m® = (didy + f*) hom+ f (dy — do) hy (h, — h,) = 0 (14)
Since d = dy —d,, then
fdm* = (ddy+ f*) hym+ fdh, (h,—h,) =0 (15)

Since equations (13) and (15) are different models, the lengths of the target image in equations (13) and (15) are dif-
ferent, and the distances are also different from the lowest point and highest point of the target image to the center
point of the image plane. To distinguish, we record the length of the target image, the distance from the lowest point
of the target image to the center point of the image plane, and the distance from the highest point to the center point
of the image plane in equation (15) as d’, d} and d;. Then, A(5).(6)} can be simplified to

{ fdm?® + (dydy — f2) hym+ fdh, (hy =hy) = 0------ 1) 6
fd'm® = (didy + 2) hym+ fd'h, (h, — h,) = 0---2) (16)

When the height of the camera in Figure 8 is 1040mm and the focal length of the camera is 50mm, the image
CD is obtained by shooting, and the coordinates (in pixel) are C (2009,3000), D(3511,3000), C’(1995,3000),
D’ (3497,3000). After calculating, we will get (in mm) d = 5.85799, d, = 5.838299, d, =0.0195, d’ = 5.8578,
di =5.8929 and d} =0.0351. In Figure 8, the two curves in the middle overlap completely. This further explains
A{(5).(6)} has infinite solutions.

10 0f26


https://doi.org/10.53941/ijndi.2025.100007

1JNDI, 2025, 4, 100007. https:/doi.org/10.53941/ijndi.2025.100007
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Figure 8. /\(®).6)) infinite solutions example graph.

5. Solvability analysis of “self-change”

From Section 1 we know that “self-change” is to change the two variable external parameters 4, and m. We
will analyze the solvability of these two external parameters as follows.

5.1. Solvability analysis of changing the external parameter h,

In case a soft robot tracking the target, the external parameter %, can be changed during the machine learning
process. The soft robot can change the external parameter /4, by stretching its height. For example, the soft robot can
stand on tiptoe or stretch its neck to observe the target. It can also bend down or shorten the neck to observe the tar-
get. In these cases, the external parameter £, will change. Suppose that the target image obtained by the robot at the
height A, is I, and the target image obtained after extending or shortening Ak is I’, as shown in Figure 9. Then, the
external parameter /.. is

. =h,+Ah (17)

We stipulate 07 as the positive direction, then when the robot is shortened, A% is negative, and when the robot is
extended, Ah is positive. Similarly, when the main optical axis is higher than the target vertex, d, is negative, When
the main optical axis is lower than the target vertex, d, takes a positive value. In this way, we can substitute Eq. (17)
into Eq. (16), and obtain joint solving equations with changing external parameters as follows:

{ fdm? + (dvds = f2) hym+ fdhy (h,—h,) = 0------ 1) 8
fd'm? + (dids— f2) hym+ fd'h, (.~ h,) = 0---2) (18)

0 . AlX

Figure 9. The imaging geometry principle of changing the external parameter &, .

d',di,d; in Eq. (18) represent the length of the target image C’D’ in the image I’, the distance from C’ to the image
center, and the distance from D’ to the image center, respectively, as shown in the red part in Figure 9. Then, we
analyze whether there is a solution to the equation set (18). We denote the curve Eq. (18-1) as &£(I), and the curve Eq.
(18-2) as £(I"). We take the partial derivative of 4, on both sides of Eq. (18-1):
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om . fdh,+(f2—d1d2)m

’hr’ ho = - 19
oimheho) = o = S rdmt (didy— ) (19)
Since d,d, < f?, Eq. (19) can be simplified to
om  dh.+ fm
‘p(m,hrsho) - aho ~ de_fhn (20)

The numerator part of Eq. (20) is dh, + fm > 0. So, the denominator part determines the sign of the function
@(m,h,,h,). When m > (fh,)/(2d), it is clear that ¢ (m, h,,h,) is a monotonically increasing function with respect
to A, as shown in Figure 9. Since /. < h,, the curvature of the curve & (I”) is smaller than that of the curve & (7). The
intercept of the curve £ (/) on the h, axis is fdh, (h. —h,), and the intercept of the curve &(I”) on the £, axis of the
axis is fd'h (h.—h,). This is due to d <d’ < h}, < h,, sofdh,(h,—h,)> fd'h (h.—h,) . That is, the intercept of
the curve £(I’) on the h, axis is smaller than the intercept of the curve £ (1) on the &, axis, therefore, the curves of
% (I) and £(I’) have a unique intersection in the m > (fh,)/(2d) range. When m < (fh,)/(2d), function

m
oh,
of the curve £ (7). Since the intercept of the curve £€(I”) on the A, axis of the axis is smaller than the intercept of the
curve &I) on the h, axis, the curve &) and the curve £(I’) have no intersection within the range of 0 <
m < (fh,)/(2d).

In summary, we can easily draw a simple graph of curves & (1) and £(I"), as shown in Figure 10. From Figure 10,
we can see that there is only a unique intersection point between curves & (/) and £ (I”) in the range of m > 0, that is,
there is a unique solution to the equation set (18).

(%) <0 and is monotonously decreasing, but the curvature of the curve £(I’) is still smaller than the curvature

A
m

0]

fho/(2d")|_____
Sho/(2d)|"" """ SoN

~
~3<

~— e >

0 Fd'h(h-h) fdh(h-h) h,

r Yo

Figure 10. Approximate diagram of curves & (/) and £ (') when the external parameter /, changes.

5.2. Solvability analysis of changing external parameter m

In case of a non-soft robot (e.g., a sliding robot and an unmanned car) tracking a target, it is difficult to learn the
target’s height by changing its own height 7, , but it is able to learn the target height by changing the external param-
eter m. We can move forward or slide back to change the external parameter m. Suppose that when the sliding robot
is at height &, and the distance from the target is m, the target image obtained is /, and the target image I’ is obtained
after sliding forward or backward by Am. As shown in Figure 1 1. the external parameter m’ is

m =m—Am (21)
A
N N
NI
AN
TN e
N \c\\\\(
KRN
AL N NS
\ \\ h,
N \\
] \
O<—-A/n-i40 Al X

Figure 11. The imaging geometry principle of changing the external parameter m.
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We stipulate that OX is the positive direction. Then, when the robot approaches Am to the target, take the positive
value, and when the robot moves backward, take the positive value of Am. In the target image, the p¢* direction is
specified as the positive direction. Then, when equation (22) is substituted into equation (16), we have

{ fdm? + (d|d2 _f2) hom+ fdhy (hy—hy) = 0--ceven- 1))

fd'm'y’ + (dids = f2) hom' + fd'h, (h, —h,) = 0---2) (22)

d’, d| and d}in Eq. (22) represent the length of the target image C'D’ in the image I’, the distance from C’ to the
image center, and the distance from D’ to the image center, respectively, as shown in red in Figure 11.

Next, we analyze whether there is a solution to the equation set (22). Similarly, let us denote the curve formula
(22-1) as £(I) and the curve Eq. (22-2) as £(I”), which are shown in Figure 12. We take the partial derivative of m
on both sides of equation (22-1):

oh, 2fdm+ (did,—f?)h, _ 2dm— fh,
om ~ fdh.+(f2—didy)m ~ dh,+ fm

¢ (m, hy,hy) = (23)
When m > (fh,) / (2d), the curvature of the curve £(J) increases monotonically. From Equation (23), it is difficult to
judge the changing trend of the function ¢! (m, h,,h,) with respect to the variable m. Therefore, we take the partial
derivative of m with respect to the function ¢~ (m, h,, h,) as
h,  0p7'  2(d’h,+ f*h,— fdm)

= = (24)
om?  Om (dh, + fm)*
When (fh,)/2d) <m < (d*h, + f*h,) [ (d[), d~' /0m >0, the curve @' (m,h,,h,) is a monotonically increasing
function with respect to m, and the curvature of curve £(I) is larger than the curvature of curve £(I”). When
> (dzh, + fzho) [(df) 007" /0m <0, curve ¢! (m,h,,h,) is a monotonically decreasing function with respect to
m, and the curvature of curve &(I) is smaller than the curvature of curve &I’ at this time. Therefore, m =
(d*h, + f?h,) | (df) is the turning point of curve & (I), which are marked as the dark red dot in Figure 12.

Since the intercept of the curve £(I) on the h, axis changes from fdh, (h.—h,)) to fd'h,(h,—h,), and when
the observer approaches the target, the target distance decreases while the target image becomes larger, namely
m>m', d<d'. Therefore, fdh,(h,—h,) < fd h,(h,—h,). The curve £(I") is at the upper left of the curve &(7),
as shown by the red dashed line in Figure 12. The red dashed line and the black curve will not intersect. It should be
noted that Am in Figure 11 is a negative number since m’ = m + Am. Therefore, it is equivalent to shifting the curve
&E(I') to the right along the m axis |Am| to get the red solid curve in Figure 12. Although d’ is greater than d,
(d' —d) < Am. Therefore, the curves £(I") and & (1) will have two intersection points in the first quadrant, which are
marked as blue points in Figure 12. That is, the solvability of the changing external parameter m is true.

T~ =
0] ho/(2d") ﬂzo/(Zaj m

Figure 12. Approximate diagram of curves & (/) and £(I’) when the external parameter m changes.

6. Experimental Verification

To verify the correctness of our theory, we carried out the following experiments: 1) the target’s distance mea-
surement experiment based on the change of the external parameter %, and 2) the target ’s height measurement based
on the change of the external parameter m.

6.1. Preparation

6.1.1. Experimental instrument
The experimental instrument is shown in Figure 13. The instrument is mainly composed of the camera and
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rangefinder. The rangefinder is used to measure the distance between the target and camera. The overhead control
handle is used to control the depression angle when shooting. The rotator is used to adjust the direction of the camera
so that the camera faces the target. The rotating console is used to control the horizontal rotation angle of the rotator,
so that the lens can be aligned with the target. The variable-length bracket is used to control the height of the camera,
and the telescopic range of the tripod bracket is 0.71-2.10 m.

1.2 mred

3 Video camera
steel pipe

Looking down on the
photo control handle

Rangefinder

c I Gyroscope
A

0.5 mred

Figure 13. Experimental instrument.

To eliminate the error caused by the inaccurate target segmentation, we paint the target-strip steel pipe in red
color. Such a target can be easily segmented by the color segmentation algorithm [40]. The lengths of the four target
steel pipes are 120, 100, 80 and 50cm, respectively. The camera used in our experiment is SONY ILCE-7M2 with
LAOWA Camera Lenses, which can reduce the error of target segmentation caused by distortion. The detailed
parameters of the camera are shown in Table 1.

Table1 Camera environment parameters

Name SONY ILCE-7M2
sensor type CMOS
Image size 6000 x 4000(pixel)
Camera focal length f 50(mm)
Aperture value /4
35 mm focal length 50(mm)
Lens distortion type Close-to-zero distortion

6.1.2. Experimental data

We collect two sets of experimental data, and capture four steel pipes. Each has four camera heights and four
different distances, a total of 16 sets of images. We take them as the target’s distance data based on the change of the
external parameter /, (as shown in Table 2) and the target’s height data based on the change of the external parame-
ter m (as shown in Table 3). During the shooting process, we start shooting downwards from the axis slightly higher
than the target vertex, so that each group of images has 5 cases: the main optical axis is higher than the target vertex,
the main optical axis is slightly lower than the target vertex, the main optical axis falls near the midpoint of the target,
the main optical axis is slightly higher than the lowest point of the target, and the main optical axis is lower than the
lowest point of the target. These cases are labeled 1, 2, 3, 4, and 5 as shown in the first column in Figure 14.

Table2 Target’s distance data set when the external parameter /, changes

Target height h, (cm) Target distance 7(cm) Camera height 4, (cm) Amount
160.0 148.5 5
165.0 5
50.0
240.0 110.0 5
’ 201.0 5
160.0 110.0 5
148.5 5
100.0
240.0 165.0 5
) 201.0 5
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Table3 Target’s height data set when the external parameter m changes

Target heighth, (cm) Camera height/, (cm) Target distancerm(cm) Amount
1100 240 >
320 5
80.0
165.0 160 5
’ 240 5
1485 240 5
320 5
120.0
201.0 160 >
) 240 5

s
- -
-
-
VoV

(@) (b) ©

Figure 14. Sample image and target segmentation map. (a) Original images: from top to bottom, the main optical axis
of the image is higher than the target vertex, the main optical axis is slightly lower than the target vertex, the main
optical axis falls near the midpoint of the target, the main optical axis is slightly higher than the lowest point of the tar-
get, and the main optical axis is lower than the lowest point of the target. Columns (b) and (c) are the corresponding

manual segmentation and segmentation maps, respectively, of the red component.

6.2. Experimental results

To verify our theory and eliminate unnecessary errors caused by inaccurate segmentation, we manually seg-
ment the obtained images, which are shown in column (b) in Figure 14. The experimental results of these two kinds
of the target’s height and distance are shown below.

6.2.1. Results of the target’s distance experiments based on the change of the external parameter /4,

The meaning of the data in Table 2 is that the target height is h, and the distance m between the target and
camera is unknown. We need to learn the distance and the camera height 4, is known. In this case, we first take a
target image. Then, we change the height of the camera and take another target image. The camera change amount is
Ah, and this change amount is known beforehand. The height and distance of the target are obtained through the joint
solution of the two images. We denote the target height and distance obtained by solving A {i.j} as (A", m®7).

We conducted experiments on the data in Table 2, and the experimental results are shown in Tables 4 and 5.
Out of 50 trials with a target height of 50 cm (as shown in Table 4), the minimum error of the target height is 0.1
mm, and the maximum error is 11.6 mm. The minimum error of the target distance is 1.1324 mm, and the maximum
error is 195.7346 mm. The average error of the target height is 2.54 mm, and the average error of the target distance
is 33.414 mm.
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Table4 Experimental results when the target’s height is 50 cm

m = 1600 (mm)

(g, @)

1

2

Image_n_umhprj(h' = 1483)
3

5

1 (500.1,1605.8)  (500.5,1616.2)  (500.1,1607.8)  (499.6,1594.3)  (499.6,1594.9)
2 (500.2,1607.6)  (500.6,1618.0)  (500.3,1609.5)  (499.7,1596.0)  (499.9,1598.9)
Image number i (2, = 1650) 3 (500.1,1605.9)  (500.5,1616.3)  (500.2,1607.8)  (499.6,1594.4)  (499.6,1595.0)
4 (500.2,1607.6)  (500.6,1618.0)  (500.3,1609.5)  (499.7,1560.0)  (499.8,1602.6)
5 (500.2,1607.8)  (500.6,1618.2)  (500.3,1609.7)  (499.8,1596.2)  (499.8,1596.8)
m = 2400 (mm)
( hf," ])’m(,, Py 1 : Image numbe}r j(h, =1100) y ;
1 (498.7,2398.6)  (488.8,2207.2)  (498.6,2397.2)  (497.0,2367.7)  (497.6,2379.3)
2 (498.2,2395.2)  (488.4,2204.3)  (498.1,2293.7)  (496.5,2364.3)  (497.1,2379.9)
Image number i (h, = 2010) 3 (498.1,2384.8)  (488.3,2203.9)  (498.1,2393.3)  (507.2,2542.0)  (497.1,2375.5)
4 (499.1,2400.9)  (498.1,2209.1)  (499.0,2399.4)  (508.2,2548.9)  (498.0,2381.5)
5 (500.1,2407.6)  (500.9,2420.7)  (500.1,2406.2)  (498.3,2376.5)  (499.0,2388.2)

Table 5 Experimental results when the target’s height is 100 cm

m = 1600 (mm)
Image number j(&, = 1100)
1 2 3 4 5

(hy?, @)

1 (1005.9,1628.8)  (1000.2,1605.5)  (1000.1,1605.0)  (999.9,1604.0)  (1001.2,1609.6)
2 (999.2,1605.0) (999.8,1604.5 (999.7,1604.0) (999.5,1603.0)  (1000.8,1608.6)
Image number i(%, = 1485) 3 (1001.3,1608.4)  (1001.2,1607.9)  (1001.1,1607.5)  (1000.8,1606.4)  (1002.2,1612.1)
4 (1002.9,1612.4)  (1002.8,1611.9)  (1002.4,1610.4) (1002.4,1610.4) (1003.8,1616.0)
5 (999.9,1604.8) (999.8,1604.3) (999.6,1603.9) (999.4,1602.8)  (1000.8,1608.5)
m = 2400 (mm)
(hE,’"’),m(” P 1 . Image numbe; j(hy = 1650) . -
1 (999.8,2403.1) (998.5,2394.4)  (1000.9,2405.9)  (998.5,2394.5)  (1001.7,2414.6)
2 (1000.9,2407.5)  (999.5,2398.8)  (1001.9,2414.3)  (999.5,2398.9)  (1002.7,2419.0)
Image number i (A, = 2010) 3 (1000.0,2404.0)  (1001.1,2410.7)  (998.7,2395.4) (998.7,2395.4)  (1001.9,2415.5)
4 (997.6,2393.4) (996.2,2384.8) (998.7,2400.1) (996.3,2384.8) (999.4,2404.8)
5 (1002.4,2414.4)  (1001.0,2405.7)  (1003.5,2421.2)  (1001.1,2405.7)  (1004.3,2426.0)

Out of 50 trials with a target’s height of 100 cm (as shown in Table 5), the minimum error of the target’s height
is 0.1 mm, the maximum error is 5.9 mm, the minimum error of the target distance is 0.1 mm, and the maximum
error is 28.8 mm. The average error of the target height is 2.076 mm, and the average error rate of the target distance
is 8.792 mm.

From the results of the changing external parameter /1, (Table 4 and Table 5), the target height and distance cal-
culated by our method are awfully close to their true values, and there is a proportional relationship between the tar-
get height and distance error. The group of the large target height error also shows a large target distance error. Con-
versely, if the target height error is small, the target distance error is also small. These experimental data illustrate the
feasibility of our target’s distance method.

6.2.2. Results of the target’s height experiment based on the change of the external parameter m

The meaning of the data in Table 3 is that the target height is h, and the distance between the target and cam-
era m is unknown. We need to learn the distance, and the camera height £, is known beforehand. In this case, we
take a target image. Then, we move closer to the target or stay away from the target, that is, we change the distance
and shoot the target again to obtain another target image. The target distance is changed with a value of Am, and this
value is known beforehand. The height and distance of the target are obtained through the joint solution of the two
images. In this experiment, we take the larger number as our original distance. For example, given m=2400 (mm) and
m=3200 (mm), we take m=3200 mm, then Am = +800 (mm). Therefore, the value of m®? calculated by our exper-
iment is the distance before the initial target change.

We conduct experiments on the data in Table 3, and the experimental results are shown in Tables 6 and 7. In
the experiment with a target height of 80 cm, the minimum error of the target height is 0.003 mm, the maximum
error is 11.1 mm, and the average error is 2.442 mm. The minimum error of the distance is 0.3 mm, the maximum
error is 52.5 mm, and the average error is 13.886 mm.
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Table 6 Experimental results when the target height is 80 cm

hy = 1100 (mm)

(g, m@)

Image number j(m = 2400)

1 2 3 4 5
1 (803.6,3223.6)  (791.9,3169.5)  (803.6,3223.5)  (796.3,3189.6)  (800.2,3207.8)
2 (811.1,3252.5)  (798.8,3196.1)  (810.5,3250.1)  (803.2,3216.2)  (807.7,3236.5)
Image number i (m = 3200) 3 (807.9,3240.3)  (795.7,3183.9)  (807.3,3237.9)  (800.0,3204.0)  (804.5,3224.4)
4 (799.7,3208.6)  (796.2,3186.1)  (799.7,3208.4)  (792.4,3174.6)  (796.3,3192.7)
5 (802.0,3217.5)  (800.7,3203.4)  (802.0,3217.3)  (795.1,3185.2)  (798.6,3201.5)

hy = 1650 (mm)
> . j(m=1

(hf,"]),m("f)) 1 : Image nurnbt;r](m 600) - -
1 (799.5,2398.2)  (800.1,2401.1)  (800.2,2401.6)  (799.6,2398.5)  (799.9,2400.3)
2 (801.5,2415.8)  (802.1,2419.5)  (802.2,2420.1)  (801.7,2416.8)  (801.9,2418.7)
Image number i (m = 2400) 3 (799.3,2395.7)  (799.9,2399.2)  (800.0,2399.8)  (799.4,2396.7)  (799.7,2398.5)
4 (799.4,2396.8)  (800.0,2400.3)  (800.1,2400.9)  (799.5,2397.8)  (799.9,2396.6)
5 (799.8,2400.7)  (801.3,2412.0)  (801.4,2412.6)  (800.8,2409.4)  (801.1,2411.3)

Table 7 Experimental results when the target height is 120 cm

h, = 1485 (mm)

(im0

Image number j(m = 2400)

1 2 3 4 5
1 (1217.8,3261.0)  (1200.7,3203.4)  (1209.3,3232.5)  (1206.7,3223.6)  (1214.1,3248.4)
2 (1213.1,3247.2)  (1196.0,3189.1)  (1204.6,3218.4)  (1202.0,3209.5)  (1209.4,3234.5)
Image number i (m3200) 3 (1217.8,3260.9)  (1200.7,3203.3)  (1209.3,3232.4)  (1206.7,3223.5)  (1214.1,3248.3)
4 (1210.5,3239.2)  (1193.2,3180.9) (1201.9,3210.4) (1199.2,3201.4)  (1206.7,3226.6)
5 (1216.6,3257.5)  (1197.7,3193.7)  (1208.2,3229.0)  (1205.5,3220.0)  (1212.9,3245.0)

hy =2010 (mm)
S j(m=1

(h(ol’j),m(’*ﬁ) 1 : Image numbe3r](m 600) y -
1 (1198.3,2392.5)  (1198.2,2391.6)  (1199.7,2398.8)  (1199.6,2395.8)  (1198.4,2392.6)
2 (1199.4,2402.2)  (1199.2,2401.3)  (1200.7,2408.7)  (1200.4,2408.3)  (1199.4,2402.4)
Image number i (m = 2400) 3 (1199.1,2399.5)  (1198.9,2398.7)  (1200.4,2406.0)  (1200.4,2405.6)  (1199.1,2399.7)
4 (1218.0,2516.1)  (1217.6,2514.7)  (1220.4,2526.8)  (1220.3,2526.2)  (1198.6,2395.1)
5 (1199.7,2405.4)  (1199.5,2404.5)  (1201.1,2411.9)  (1201.0,2411.6)  (1199.7,2406.8)

In the experiment with a target height of 120 cm, the minimum error of the target height is 0.3 mm, the maxi-
mum error is 30.4 mm, and the average error is 5.916 mm. The minimum error of the distance is 1.2 mm, the maxi-
mum error is 126.8 mm, and the average error is 25.9 mm.

The above target’s height experiment results (Table 6 and Table 7) reveal that the target information (the height
and distance) calculated by our method has a small deviation from the true values. Further, there is a proportional
relationship between the target height deviation and the target distance deviation. If the height deviation is large, the
distance deviation is also large. The closer the target height is to the actual height, the closer the distance is to the
actual distance. This indeed shows the correctness of our target’s height theory of changing the external parameter .

It should be noted that from Table 4 to Table 7, it is difficult to see whether the errors have a certain relation-
ship or, whether this combination has higher (lower) accuracy. To ascertain this, further statistical analysis is required
as shown below.

6.2.3. Analysis of experimental results

In the measurement field, the measurement error is often a direct reflection of measurement accuracy [40]. In
order to analyze measurement accuracy, two methods of combining stability analysis and measurement stability anal-
ysis in the uncertainty theory are often used for experimental analysis.

Combination stability analysis is use to examine the advantages and disadvantages of various combinations.
This method is to verify whether changes in the camera’s tilt angle during the shooting process has an impact on the
measurement results. For example, although the first and second shots meet the “self-change” conditions, there may
be errors in the measurement results when the second shot has a different upward or downward viewing angle and
the second shot has the same upward or downward viewing angle.

Measurement stability analysis is used to analyze the stability of our measurement method, that is, to check
whether the measurement data obtained from each measurement is stable. The purpose of this paper is to detect
whether the measurement effect is better when the targets in two images are far apart or when the distance is closer.
6.2.3.1. Combination stability analysis

To compare the performance of various combinations, we have calculated the average error rate of each combi-
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nation. For example, the A 1,2} combination, which means the joint solution of two images when the main optical
axis is higher than the target vertex and the main optical axis is slightly lower than the target. The calculation method
of the average error rate of the joint solution is

— 1)) R A(H))
EMAUJD=2;§:<Pn ml’+|%}f“‘)*um% (25)

m 0

ij

In Eq. (25), h%? and m®? represent the target height and distance, respectively, obtained by /\ {i.j}, and nrepre-
sent the quantity of the combination of /\ {i, j}. For example, n = 8 in Er(A{l,1}) means the number of combina-
tions of A{l,1} in Table 4 to Table 7. Since the joint solution of two images satisfies the commutability, that is,
A {i,j} = A )i}, itis obvious that Er (A {i, j}) = Er (A{j,i}) holds.

The average error results are shown in Table 8. The best combination is A{1,5} while the A {44} combina-
tion shows the worst performance. It should be noted that it is difficult for us to conclude types of images with better
effects and types of images with worse effects. Therefore, we have further calculated the marginal error rate statistics.

Table 8 Error rate of joint solution of different types of images

Joint Er(-)(%) Joint Er(-)(%) Joint Er(-)(%)
/\{1,1} 0.5194 /\{2,2} 0.7549 /\{3,4} 0.6266
A2} 0.6316 A{2.3) 0.6266 A 3.5 0.5756
/\{1,3} 0.3178 /\{2,4} 0.7776 /\{4,4} 1.3171
/\{1,4} 0.6535 /\{2,5} 0.4406 /\{4,5} 0.4514
/\{1,5} 0.2951 /\{3,3} 0.3938 /\{5,5} 0.5148

M (3(%) Mg, (1) Mg, (2) Mg, (3) Mg, (4) ME,(5)
0.5050 0.6463 0.5083 0.7652 0.5037
Di (%) P Pt o 05950 Pt

Definition 5: The marginal error rate refers to the average of each type of image error, denoted as: Mg, (x),(x =
1,2,---,5). The calculation method of M, (x) is shown in Eq. (26):

1 5
M ()= 5D Er(Ax, jh) (26)
j=1

The calculation results of Mg, (x) are shown in Table 8. In terms of marginal error rate, the experimental results of 1,
3, and 5 types of images are relatively close, and the performance of 2, 4 types of images are relatively inferior.
Which one is the most stable type of image? To answer this question, we calculated the standard deviation of the
marginal error rate (denoted as Dg, (+)), as is shown in the last row in Table 8. Based on the standard deviation, we
find images of categories 2, 3, and 5 are relatively stable, while images of category 4 are unstable.

Although our experimental results are relatively good, the calculated results have a certain deviation from the
true values. After carefully studying the reasons for deviations, we believe that these deviations are mainly caused by
target segmentation, target imaging distortion and the accuracy of our measuring instruments.
6.2.3.2. Measurement stability analysis

In order to analyze the stability of our measurement algorithm, that is, to check whether the measurement data
obtained in each measurement is stable, we use the uncertainty measure method [40] to analyze the stability of our
measurement method. The calculation method of uncertainty measure is defined as:

Uh,d: \/S2+AI-2 (27)

where U, denotes the uncertainty measure of the target height, U, represents the uncertainty measure of the target
distance, S = \/ > (Xi -X )2/ (k—1) is the standard deviation of the unbiased estimate, £ is the number of mea-
surements, X; is the sample measurement value, ¥ is the mean value, and A; is the error of instrument which is gen-
erally calculated by half of the minimum division of the instrument [41]. Since we measure the true value of the tar-
get height and distance, the committed step is the segmentation of the target in the image. The minimum division of
image segmentation is one pixel. From Section 6.1, we can see that the size of CMOS is w X [=35.8 X 23.9(mm) and
the size of the image is M XN = 6000x4000(pixel). The focal length f* of the camera is 50 mm, and
V/(h, — h,)* + m? is used to approximate the straight-line distance between the target and camera lens. Then,
W (e —h,) +m?

A~ 3M (28)
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According to the above equation, the error of the camera itself is proportional to the target distance and inversely pro-
portional to the resolution of the camera. Since two images are needed for each measurement and the target distance
is different when the image is taken, we take the average value of the instrument error when the two images are taken
as the instrument error A;. Eq. (27) is used to calculate Tables 4 to 7, respectively, and the results are shown in Table 9.
In Table 9, “Up” represents the statistical results for the upper part of Tables 4 to 7, while “Down” represents the sta-
tistical results for the lower part of Tables 4 to 7. The uncertainty measure of the target height is less than the uncer-
tainty measure of the target distance. However, from the experimental results (Tables 2 and 3), the target distance is
greater than the target height. From the results, we can see that the smaller value of the measured target will lead to
better stability.

Table9 Uncertain measure

Uy, (mm) Uy (mm) A; (mm)

Table 4 Up 0.3641 12.1738 0.1155
¢ Down 4.5031 87.9528 0.1593
. Up 1.6207 5.5001 0.1201
Table's Down 2.0730 10.7510 0.1777
. Up 5.2454 22.6999 0.1690
Table 6 Down 0.9521 8.3896 0.1307
Table 7 Up 6.8509 22.6125 0.1689
¢ Down 73627 44.9677 0.1322

The value of the uncertainty measure is far greater than the value of the instrument error, so the measurement
stability of our method is high. However, our measurement accuracy depends on the accuracy of target segmentation
and distortion of the camera. We therefore further analyze the segmentation accuracy and camera distortion and dis-
cuss the impact of these issues on the target height and distance measurement.

6.3. Discussion

The experimental results in Section 6.2 show the correctness of our theory. In real applications, errors between
the target information are calculated by our method and the actual value exists. These errors mainly come from target
segmentation and camera distortion. We should discuss and analyze these two issues below.

6.3.1. The impact of segmentation accuracy on target’s height and distance

To verify our theory and reduce the error of target’s height and distance caused by imprecise target segmenta-
tion, we paint the steel pipe red. Therefore, we use the red target segmentation method for target segmentation [39,
42], and the specific method is shown by formula (26).

{ Ig—15 > Tgg

Ig—1Ip > Tgp 29)

In Eq. (29), Iz, I, I represent the gray value of the RGB color component of the image I, and T, and Tkp repre-
sents the threshold value of the difference between the R color component and the G and B color components.
Through training and learning, Trg, Trp are set to be 20 and 22, respectively. Column (c) in Figure 14 is the target
image of column (a) obtained by the segmentation of the algorithm.

We conduct experiments on the data in the first column of Table 2 and Table 3. Table 10 shows the results of
manual segmentation and the target segmentation obtained by color segmentation. There is a certain error between
manual segmentation and color segmentation. The maximum error differs by 8 pixels, and the minimum error differs
by 2 pixels. The average correlation between the two is 4.5 pixels.

We employ the proposed method to calculate the target height and distance based on color segmentation, and
the results are shown in Table 10. Compared with the calculation results of manual segmentation, the error of color
segmentation is obviously much larger.
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Table 10 Target segmentation comparison table

h, = 500mm,m = 1600mm

h, = 1485mm h, = 1650mm
Image number Manual segmentation Color segmentation Manual segmentation Color segmentation
Xup Xdown Xup Xdown Xup Xdown Xup Xdown
1 2825 3760 2828 3759 2871 3717 2876 3715
2 1844 2699 1850 2697 1799 2571 1797 2572
3 1470 2320 1472 2318 1586 2355 1590 2354
4 1154 2010 1148 2011 1183 1957 1188 1956
5 393 1296 388 1297 579 1384 575 1384
h, = 800mm ,h, = 1100mm
m = 2400mm m = 3200mm
Image number Manual segmentation Color segmentation Manual segmentation Color segmentation
Xup Xdown Xup Xdown Xup Xdown Xup Xdown
1 2399 3831 2400 3830 2650 3772 2652 3771
2 1868 3195 1870 3192 1844 2886 1845 2885
3 1294 2620 1295 2618 1584 2617 1585 2616
4 689 2038 695 2040 1135 2170 1138 2170
5 171 1576 174 1575 326 1417 330 1417

To test the impact of target segmentation accuracy on target’s height and distance, we assume that our manual
segmentation is accurate. We use Equation (29) to calculate the target height deviation per pixel (denoted as: Hy,,)
and target distance deviation per pixel (denoted as: Dy, ):

1

B
Ha’pp - ;Zi’jzl ( )/2

(i) i) (9)] )
’LM 19+ ‘LM g

1 n |m(i’j) —m’
Dpp = ﬁzi,]‘:l (‘

L -L2]+ |1 -1¢|) 12

(30)

In Eq. (28), n =5, L\) is the manual segmentation target length of the i-th image, and LY is the color segmentation
target length of the i-th image. We use Eq. (28) to calculate the experimental results of the change of the external
parameter 4, (the upper part of Table 11) and the change of the external parameter m (the lower part of Table 11).
pixel). Hypp and Dy, of the external parameter /i, are 1.6433(mm/pixel) and 22.5402 (mm/pixel) and H,p, and
Dy, of the external parameter m are 3.0102 (mm/pixel) and 7.4190 (mm/pixel). From the experimental results,
when changing the external parameter #,, the pixel deviation is more sensitive to the target distance, but not sensitive
to the target height. Every time a pixel is changed, the target height may have about 2mm deviation. Changing m is
more sensitive to the target height, but not to the target distance. Every time a pixel deviation occurs, the target dis-
tance will change by 8 mm, and the average values are 2.3268 (mm/pixel) and 14.9796 (mm/pixel). Overall, for each
deviation of 1 pixel, the target height deviation is about 2.5 mm, and the height deviates by about 1.5 cm. Therefore,
the impact of target segmentation on target’s height and distance is small.
Table 11 Color segmentation target ’s height and distance experiment results

h, = 500mm,m = 1600mm

Image number j(h, = 1485)
1 2 3 4 5

(@)

1 (493.1,1498.7)  (493.3,1508.2)  (493.1,1500.5)  (492.8,1488.2)  (492.9,1488.7)
2 (504.4,1662.4)  (504.9,1673.3)  (504.5,1664.4)  (503.8,1650.3)  (503.8,1650.9)
Image number i (h, = 1650mm) 3 (494.5,1523.0)  (494.8,1532.7)  (494.6,1524.8)  (494.3,1512.2)  (494.3,1512.8)
4 (491,2,1464.1)  (491.4,1473.4)  (491.2,1465.9) (491.1,1453.9) (491.1,1454.4)
5 (517.6,1811.9) (518.4,1824.3) (517.7,1814.2)  (516.7,1798.1)  (516.7,1798.8)
h, = 800mm ,h, = 1100mm
;o o Image number j(m = 2400mm
(hg,'"’),m(’*f)) 1 3 age nu be %( ) 2 5
1 (789.7,3209.9)  (787.6,3152.4)  (789.6,3161.6)  (788.4,3155.9)  (798.5,3202.9)
2 (793.0,3175.0)  (790.9,3165.3)  (792.9,3174.5)  (791.7,3168.8)  (801.9,3215.9)
Image number i (m = 3200mmn) 3 (793.0,3174.9)  (790.9,3165.2)  (792.9,3174.4)  (791.7,3168.7)  (801.8,3215.8)
4 (788.3,3156.7)  (786.2,3147.0)  (788.2,3156.2)  (786.9,3150.4)  (797.1,3197.5)
5 (785.8,3147.0)  (783.7,3137.3)  (785.7,3146.5)  (784.5,3140.7)  (794.6,3187.8)

6.3.2. The impact of camera distortion on target’s height and distance

To test the impact of camera distortion on target’s height and distance, we use the NIKON D7100 camera as
the data collecting camera. NIKON D7100 is a SLR camera launched by Nikon in 2013 (the camera focal length f is
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50mm, the sensor size is 23.5 x 15.6 mm, and the image size is 6000 x 4000 pixel). The conversion relationship
between the focal length of this camera and the 135-size camera is 1.5 magnification.

We collect two sets of data with this camera. In the first one, the target height is 50 cm, the camera height is
191.5 cm or 147 cm, and the target distance is 400 cm. In the second group, the target height is 50 cm, the camera
height is 179 cm, and the target distance is 320 cm or 400 cm. The shooting starts from the situation where the main
optical axis is higher than the target vertex to the main optical axis and lower than the lowest point of the target. 10
images are taken in each group, which are used to test the impact on target’s height and distance when the external
parameter /4, and the external parameter m change. We use the color segmentation algorithm for target segmentation,
and the experimental results are shown in Figure 15 and Figure 16.

It can be seen from Figure 15 and Figure 16 that the deviation between the calculated and true target height and
distance is exceptionally large. We have calculated the average error of the target height and distance, which are
55.6624 mm and 490.3100 mm, respectively. It can be concluded that the distortion of the camera has a great impact
on target’s height and distance.

Object height
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Figure 15. The target’s distance result of the NIKON D7100 camera with changing external parameter /,.
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Figure 16. The target’s height result of the NIKON D7100 camera with changing external parameter .

We also correct the camera distortion. The correction method calculates in advance the incident angle of the tar-
get vertex and the lowest point of the target to the camera. For example, in the set of experiments where the target
height is 50 cm, the target distance is 400 cm, and the camera height is 191.5 cm, we obtain that the incident angle of
the target vertex o 1 is 0.3400, and the incident angle of the lowest point of the target a2 is 0.4465. Then, the dis-
tortion factor k is:

@ —a

k= tan~! (d,/f) +tan~! (d,/ f)

In Eq. (31), f, d, and d, are the focal length of the camera, the distance from the lowest point of the target image to

G
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the image center, and the distance from the highest point of the target image to the image center, respectively. Cor-
rect d; and d, by k:

{ dl = fxtan (k=tan™' (d,/f) 32
d2 = fxtan (k=tan~! (dy/ f) G2

In Eq. (32), d1 and d2 are the correction values of d; and d,, respectively. We conduct experiments on the first
group based on above formula, and the experimental results are shown in Figure 17.

Object height
ject heig 501.0
3308 500.5
500~ - ——— - —
g = s - : — 500.0
= 450~ =
- 499.5
107 —— —
q —_— ——— 10
gl A5 6 1 B 7
8¢ numdey 1 Tmage pumder
Object distance
4000.000545186
4000 -
g 4000.0005451858
E 3500
s 4000.000545185601
3000 |
10 a2 ——
—— —— 1 4000.0005451854
8 Ima T ——— --7--7"‘5 6 7 8 ? 0
8¢ numdey 2 1 2 Image pumder

Figure 17. Camera distortion correction results from Figure 15.

It can be seen from Figure 17 that through distortion correction, the accuracy is extremely high, the average
error of the target height is 5% 10~ mm, the average error of the distance is 5.4519% 10™ mm, and the precision
reaches the nanometer level. It can be seen from Equation (29) that through this correction, the target segmentation
error has been corrected.

This correction method is not applicable in real engineering, as it is impossible for us to calculate the incident
angle between the target vertex and the lowest point of the target in advance. However, this set of experiments does
show the correctness of our theory.

6.3.3. Comparison with previous works

Early target depth information learning methods mainly focus on binocular camera perception methods that
mimic human eyes, target depth information estimation methods based on deep learning, and monocular cameras +
other equipment depth acquisition methods.

Jia et al. [10] developed an omni-directional 3D camera system consisting of the camera, hyperbolic mirror,
infrared laser diodes and diffractive of element (DOE), to obtain the 3D depth information. Francisco [13] calculated
depth information from two cameras arranged in a stereoscopic manner by using continuous changes in the distance
between the lens plane and the image plane (primary distance). Yang et al. [ 14] proposed a 3D hand tracking method
using a binocular stereo camera to obtain key depth information of the target to understand the characters that the user
writes in the air. Mao et al. [19] proposed the single camera plus the flat mirror method to measure the target depth in
the water. This method can only be performed in a close-up environment and is not suitable for moving robots to
track the target. Xu et al. [21] propose a depth model which fuses complementary information derived from multiple
CNN side outputs. Different from previous methods using concatenation or weighted average schemes, the integra-
tion is obtained by means of continuous Conditional Random Fields (CRFs). Eigen et al. [27] proposed a method to
solve the depth prediction problem by using two deep network stacks. This helps achieve depth prediction through
rough global prediction and local refinement of this prediction.

Tateno et al. [31] proposed a dense depth map predicted by the CNN to naturally merge the depth measure-
ment values obtained from direct monocular SLAM. This fusion scheme prioritizes depth prediction at image loca-
tions where the monocular SLAM method tends to fail. David et al. [32] used a single basic architecture to solve the
deep prediction problem. They used a multi-scale convolutional network to directly regress from the input image to
the output map. Our method uses a series of scales to gradually refine the prediction and capture many image details
without any super pixels or low-level segmentation. Mao et al. [35] proposed the single camera plus the flat mirror
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method to measure the target depth in the water. This method can only be performed in a close-up environment and
is not suitable for moving robots to track the target. Tong Jia et al. [43] proposed a depth sensing system based on the
monochromatic shape encoding decoding structured light method, which is designed to scan the surface of an object
and sense its depth. The system includes a commercial projector and a monochrome CCD camera. Using DenseNet
for depth detection of scanned object surfaces, the attempted detection accuracy is as high as 96%.

Dongxue Li et al. [44] proposed a multi-state object depth acquisition method based on binocular structured
light, which utilizes two cameras and a projector to obtain depth information of static and moving targets. The authors
proposed a scene depth perception method based on omnidirectional structured light with a depth error of 0.04mm for
static targets.

Jia Tong et al. [45] utilized a projector, a hyperbolic mirror, and a camera to avoid the influence of occlusion
and achieve an average measurement error of 0.25c¢m by using the 3D reconstruction technology. The accuracy of the
depth measurement in these literatures is significantly better than the methods proposed in this article (with an aver-
age measurement error of 0.6595%). However, the equipment of these methods is significantly more complex than
that of this article, and these three technologies are mainly applicable to the reconstruction of 3D targets in specific
scenes. Although accurate depth information is obtained, such methods are difficult to be applied to the measurement
of the target height and depth in outdoor situations.

We conduct qualitative and quantitative experimental comparisons using methods in literature [10, 13, 14, 19,
21,27, 31, 35, 43, 44, 45] and our method. The comparison results are shown in Table 12. From Table 12, it can be
seen that the method proposed in this article has the best stability, with an average error of only 0.5857%. The litera-
ture [14] has the worst stability, with an average depth estimation error of 3.7865%. Compared with these methods,
our method has three advantages: 1) it can be used to accurately calculate the depth and height of the target; 2) it is
simple, with low computational complexity, and is easy to be implemented; 3) it can be used for both target tracking
and target measurement.

The “Pinhole camera model”, which has been widely used in computer vision field, could describe the vision
measurement problem clearly and succinctly. By comparison, the advantages of our proposed algorithm are three-
fold. Firstly, the measurement instrument is simplified. In our method, only one camera is required, i.e., other auxil-
iary equipment, such as another camera, hyperbolic mirror, and infrared laser diodes, is not necessary. Secondly, the
algorithm is simplified. We use geometry to obtain two sets of equations, which has lower complexity compared to
computationally intensive neural networks. Finally, the amount of data to be processed is small. In our method, only
the data from a single camera needs to be processed. Compared to the data in those algorithms which require other
auxiliary equipment, the data to be proposed in our algorithm is rather small.

Table 12 Comparison of our method with earlier related works

Works Methods Target Results Average Error
[10]  One Camera, hyperbolic mirror, infrared laser diodes Indoor target Target depth 0.6300%
[13]  Two Cameras Ground target relative depth map 2.4623%
[14]  Two Cameras hand tracking character recognition 3.7865%
[19]  One Camera, Multiple CNN Ground target Depth Estimation 0.8967%
[21] A multi-scale deep network A singe image Depth map prediction 1.8754%
[27]  Monocular SLAM, CNNs A singe image Depth measurements 0.9563%
[31] A multiscale convolutional network A singe image Depth prediction 5.6830%
[35]  One Camera, a mirror fish Underwater target depth 0.9758%
[43]  One Camera, one projector Scanning objects deep inspection 0.6468%
[44]  Two Cameras, one projector Static and moving targets  depth inspection 0.7002%
[45] A hyperbolic mirror, one camera, one projector Scanning objects depth inspection 0.5986%
ours  One camera Ground target Target depth and height 0.5857%

6.3.4. Engineering applicability analysis - measurement method of target distance non-vertical to the ground

The algorithm in this paper theoretically solves the problem of using monocular parallax to obtain the target
height and target distance. In theory, the target is required to be vertical to the ground. However, in certain practical
engineering applications, such as automatic obstacle avoidance of autonomous vehicles, only the distance of the
obstacle needs to be measured, while the height of the obstacle is irrelevant. Therefore, we only need to detect the
prominent point of obstacles on the vertical centerline of the image, segment the pixel from the ground at that point,
and finally calculate the target distance.

To verify this theory, we simulate an automatic obstacle avoidance scenario of an autonomous vehicle. Sup-
pose that there is an obstacle (i.e., a parked e-bike) on the road, which is not vertical to the ground. The e-bike will be
observed for the first time (shown in the first column in Figure 18) and when the autonomous vehicle moves forward,
the same e-bike will be observed (shown in the second column in Figure 18). Since the edge of the e-bike’s pedal is
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white, which is regarded as a prominent part of the obstacle. The highest part of the e-bike corresponding to the verti-
cal centerline of the image is the seat cushion, which is regarded as a key part. Connect the two wheels of the e-bike
with the ground contact point and intersect the centerline of the image at point A, which is the lowest point of the
obstacle. Then, the centerline of the image crossing the highest point of the white pedal edge of the e-bike can be
regarded as the prominent point of the prominent part and recorded as B,,. Connecting AB,,, which is the target verti-
cal to the ground, as shown in the red segment in the first row of Figure 18, we mark the highest point of the e-bike
crossing the centerline of image as B.. Connect AB,, which is also regarded as a target vertical to the ground, as
shown in the green segment in the second row in Figure 18.

How to automatically segment a prominent point of the target in image and the distance of this point to the
ground pixel is not a concern of this paper. So, the segmentation is carried out manually to complete the above oper-
ation. We collect two different distance target images with the camera height of 1084mm and target distances of
8390mm, 7615mm and 4980mm, respectively. The resulting images are marked as /;;,(i = 1,2,3, j = p,c), such as
1, , represents the image taken when the target distance is 8390mm, and the target is the e-bike’s pedal.

We denote the test result as m (1;, I ;) i,k = 1,2,3,i # k, j = p,c, for example, m (I, ,,15,) represents the
calculated result of the target distance between /,, and I3,. We employ the proposed method to calculate
m (I;;,1;.;). The obtained results are that m (I, ,,5,) = 8293.2mm, m (I, ,,15,) = 8611.5mm, m (I, L) =
8539.7mm, m (I, I5.) = 87742 mm, m(L,.15,) = 78549 mm and m (L, J5.) = 7509.6 mm. The average
error of the target distance among the six sets of test data is 208.6mm, which means the relative error rate is about
2.5%. Since the autonomous vehicle is equipped with a taximeter, the distance traveled by the vehicle can be calcu-
lated. Based on this information, our proposed algorithm can be employed to calculate the distance between the tar-
get and autonomous vehicle in real time, thus realizing automatic obstacle avoidance. Therefore, the algorithm pro-
posed in this paper can be applied to certain real applications.

I

,c

Figure 18. Obstacle target which is not vertical to the ground (e-bike). In 1,,, and £, the pedals are regarded as the
prominent points with 8390mm and 4980mm, respectively. While in 7, and 5, the key points are the seat cushions
with 8390mm and 4980mm, respectively.

7. Conclusions

Target information measurement is one of the key technologies in computer vision. Extensive research has been
carried out on this subject. This paper has proposed a target’s height and distance measurement method based on
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monocular vision. According to the principle of camera imaging and basic principles of analog-to-digital conversion,
we theoretically prove the insolvability of “self-invariance” and the solvability of “self-change”. Based on the theory,
the relationship has been analyzed between the target distance, target height, camera focal length, camera height and
image resolution can be deduced, and the monocular target’s measurement. The experimental results have shown that
the theory proposed in this paper is correct, and the algorithm is simple and easy to be implemented, which can
effectively reduce the cost of production. Due to the simple structure of the monocular depth measurement system, it
can be widely used in mobile phones and web cameras to avoid the complicated stereo matching process of the dis-
tance measurement by binocular cameras and reduce computational complexity.
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