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Abstract: This paper is concerned with the problem of power harmonic detection subject to communica-
tion resource constraints and measurement outliers. A dynamic tracking model is established to capture
the dynamics of harmonic signals considering that the underlying system is subject to multiplicative
noises, additive noises and outliers. Furthermore, an outlier-resistant event-triggered mechanism is
designed to prevent the transmission of unnecessary measurements and outliers. In order to guarantee the
satisfactory filtering performance, this paper aims to design a recursive strong tracking filtering algo-
rithm under the event-triggered mechanism, where an upper bound on the filtering error covariance
matrix is obtained by solving a set of Riccati difference equations, and minimized to recursively com-
pute the filter gain matrix. Finally, the effectiveness of the proposed algorithm is verified through carry-
ing out two sets of simulations.
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1. Introduction

The past few years have witnessed the ever-growing development of distributed generation technologies in
power systems (e.g., wind power, photovoltaics, and energy storage) [1—3]. For rectification/inversion, a large num-
ber of power electronic devices have been employed to solve the problem of power output instability. Nevertheless, it
is noted that these nonlinear devices might cause serious power harmonic pollution, thereby leading to voltage/cur-
rent distortion and even operation instability of power systems [4—6]. Given these implications, power harmonic
detection is an effective way to ensure efficient energy utilization and power supply. Consequently, there remains a
pressing need to tackle the harmonic detection issue in intricate environments.

Over the past decades, various harmonic detection methods have been developed to address the power har-
monic pollution problem, e.g., the Fourier transform [7, 8], time-frequency domain analysis [9, 10], and Kalman fil-
tering (KF) [11-13]. Among these technologies, the KF algorithm has attracted extensive research interest in recent
years due to its simple structure and noise robustness [14], but has not performed well for transient harmonic detec-
tion. To address this issue, a maximum likelihood-based adaptive extended KF method has been presented in [15] by
optimizing the process and measurement error covariance matrices to improve the detection accuracy of transient har-
monics. It is worth noting that the strong tracking filtering is robust against system uncertainties and sudden state
changes, and such a technology has been widely applied to deal with the problem of power quality disturbance detec-
tion [16—18]. Nevertheless, to the best of our knowledge, the problem of harmonic detection in complex environ-
ments has not yet gained adequate attention.

In order to monitor the dynamics of power signals accurately, phase measurement units with high sampling
rates are installed at certain critical nodes in power systems (such as generating stations, substations, and distribution
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stations [19]). In this case, it is inevitable that a large amount of measurements are generated. Due to the the limited
communication bandwidth [20, 21], massive measurement transmissions might cause a great waste of resources and
network-induced phenomena (e.g., the network congestion, time delay, and data dropout) [22—26], thereby seriously
affecting the monitoring/filtering performance of the system. Along this direction, various effective information
scheduling strategies have been developed including data compression methods, ethernet communication protocols,
and event-triggered mechanisms.

It is worth noting that the event-triggered mechanism has received much research interest due to its simplicity
and flexibility [27—29]. Different from the time-based periodic transmission strategy, the event-triggered mechanism
determines when the measurements are to be transmitted by a dedicatedly designed triggering function. Various
dynamic event-triggered mechanisms have been developed to further enhance the data transmission efficiency
[30—32]. Nevertheless, due to sensor failures and severe external electromagnetic interferences, measurement outliers
with large amplitudes might occur randomly in complex environments, which may incur wrong event-triggered exe-
cution and seriously affect the harmonic detection performance.

In recent years, there has been extensive research on dealing with measurement outliers, and the proposed
strategies can be roughly categorized into two groups: 1) the passive robustness-based scheme; and 2) the active
detection-based scheme [33—35]. For the former, the innovation term is constrained by setting a proper threshold
parameter and a filter is designed to reduce the sensitivity of the filtering performance to outliers. Nevertheless, this
method could not completely eliminate outlier effects on the filtering performance, and the transmitted outlier signal
may occupy the limited communication bandwidth. For the latter, most existing detection methods are not applicable
to the case of continuous outliers, and the design of the detection function may be challenging. With this in mind, a
seemingly interesting research topic is to develop a novel scheme to accurately eliminate the outlier effects and cor-
rectly execute event generators.

Based on the above analysis, it is clear that the communication bandwidth constrains the transmission of power
signals and measurement outliers, and this leads to excessive measurement bias that seriously deteriorates the power
harmonic detection performance. To this end, this paper is devoted to investigating the problem of power harmonic
detection with limited communication bandwidth and outliers. The main contributions are highlighted from threefold:
1) a dynamic tracking model is established that takes into account both additive and multiplicative noises to accu-
rately reflect the engineering reality of power harmonic detection; 2) an outlier-resistant event-triggered mechanism
(ORETM) is designed to prevent the transmission of unnecessary measurements and outliers, thereby eliminating the
effects of outliers and relieving the communication channel burden; and 3) a recursive strong tracking filtering algo-
rithm is developed to realize the online detection of power harmonics.

The rest of the paper is organized as follows. Section 2 establishes a dynamic tracking model for power har-
monic detection and designs the ORETM to prevent the transmission of the unnecessary measurements and outliers.
Section 3 gives the main objectives of this paper and shows the design process of the recursive filter. Section 4 veri-
fies the effectiveness of the proposed algorithm through numerical simulations. Finally, some concluding comments
are given in Section 5.

Notations: N denotes the set of natural numbers. diag{+} is a block-diagonal matrix. / represents the identity
matrix of compatible dimension. M”, M~' and tr{M} stand for the transpose, inverse and trace of a square matrix

M , respectively. E{x} is the expectation of the stochastic variable x. row,,{*} denotes row{s, ,--- , x}
N——
m

2. Problem Formulation

2.1. Dynamic Tracking Model

A distorted voltage signal generally consists of multiple sinusoidal signals superimposed on each other, and the
expression is as follows:

Y0 =Y Ao sin(iwnt +¢i(1) Q)
i=1

where A;(7) and ¢;(¢) represent, respectively, the amplitude and phase of the i-th (i € {1,2, -+, n}) harmonic compo-
nent and wy is the fundamental angular frequency.
Define the state variable as follows [12]:

=[x HoO - o0 O] ®)
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where

xi(1) = Ay(0) sin(iwot + ¢i(1)),
)'ci(t) z Ai(t)i(t)o COS(i(L)Q[ + QO,(I))

The continuous-time state space expression for power harmonics is as follows:
x(f) = Ox(f) + Bw(r) 3)

where the state transition matrix @, the input matrix B, and the Gaussian white noise are, respectively, denoted as
® = diag{®,,D,,---,D,},
B = diag{B,,B,,---,B,},
w(t) = diag{w, (1), w2(2), - -, Wa (1)}

0

—iw02 0
X2 & A22m.

It should be noted that in real power systems, power signals are usually subject to multiplicative and additive

}, and w;(r) follows the Gaussian distribution with zero mean and variance

noises, mainly due to the phase mismatch and quantisation effects in the phasor measurement units. Taking into
account the additive and multiplicative noises as well as measurement outliers, the discrete-time dynamic tracking
model is established as follows:

Xpa1 = (F + Fyap) xi + Wi, 4)
Vi = (C+ CBi)xp + vy + my, %)
where
F= diag{Fl’FZ"“ 9Fn}9
Wi = diag{wy g, Wo g, -+, Wy}
with
jwoT
- cos(iwoT) M
Fi = LW s
—iwg sin(iwyT)  cos(iwyT)
, sin(wyT)
Wik = Wy wi(s)ds.
0 cos(wyT)
C= [1 o1 0 - 1 0} is the observation matrix; @, and S are the multiplicative noises; F'y and C, are

the known real-valued matrices with dimensions consistent with the matrices F' and C, respectively; v, denotes the
measurement noise; and m;, represents the measurement outliers.
In this paper, the noise statistics is shown as follows:

E{wi} = E{wi} = E{ax} = E{Bi} = 0,

E{ayww] } = E{lapv] } = B{Biw] } = B{Biv] } = 0,
E{CYkCl'zT} = Ots E{ﬁkﬂIT} = Ots

E{wiw]} = Oi6u,  E{vev] } = Riu,

where 6y, 1s the Kronecker function; R; is the measurement noise covariance matrix; and

O = diag{k Q1 4, kDo pr++ . kQn i}
is the process noise covariance matrix with k being an adjustable parameter and

2iw,T — sin(Riw,T) sin®(iwoT)

S 4wy 2w;
21'2(,0% 2 4iw,
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Remark 1: In real-world settings, the correlation between power harmonic signals is not negligible given the
underlying system dynamics characteristics. In general, the covariance matrix of the process noise is predetermined as
a unit matrix in conventional tracking models (e.g., the phase angle vector model and the orthogonal vector model), in
which the correlation between state variables cannot be characterized. In contrast, the developed dynamic tracking
model theoretically derives the process noise covariance matrix factoring in the correlation between state variables,
and thus further enhancing the detection accuracy of power harmonics.

2.2. Outliers-Resistant Event-Triggered Mechanism

For the purpose of reducing the pressure on the communication channel and eliminating the effect of outliers on
the filtering performance, an improved event-triggered mechanism is designed to determine when the measurement
should be transmitted from the sensor to the remote filter. The event release instant sequence is denoted by
ko <k <--- <k, and satisfies

ki1 =ikIEle{k>k,:@1+nhk< HYk,_ka2<802} (6)

where ¢, and ¢, are given positive scalar parameters; y;, and y; denote the latest transmission value and the current
measurement, respectively; and 7 is an auxiliary offset dynamic variable, which can be recursively calculated by

2

,  hp=0. @)

Tigsr = Pl + 91— H)’k, —)’k’

Here, p and 7 are given positive scalar parameters satisfying p € (0, 1) and n<p.
From (7), it follows that the current measurement y; certainly satisfies one of the following three cases:

yi €N 2 e[|y —)’k||2<§’1 + 1l
e €N = {yi Hyk,—YkHZZW} . ()
Yk €N3p = {ye 91+l < Hykl —ka2 < 2}

It is worth clarifying that the obtained data packet y; is an unnecessary measurement signal if y, € N, and the
data packet y; is an outlier when y; € N,,. The event generator is executed only if the data packet y, satisfies
Vi € N3 . Otherwise, the zero-order-hold scheme is adopted to update the signal 3, accepted by the remote filter.

)7k=yk,,kE{k,,k,+1,---k,+1—1}_ (9)

Remark 2: The traditional saturation function-based outlier-resistant methods are capable of minimizing the
effect of outliers on the filtering performance to some extent. Nevertheless, it is inevitable that measurement outliers
are transmitted to the remote filter over the channel with limited bandwidth, which would impose additional commu-
nication burdens. As such, the event triggering function is redesigned in this paper to prevent the transmission of
unnecessary measurements and outliers on the basis of the existing event-triggered mechanism [34]. Furthermore, the
designed method avoids the need to design complex detection functions and is suitable to deal with outliers appear-
ing continuously.

3. Filter Design Based on Outliers-resistant Event-triggered Mechanism

In this section, we are devoted to designing a recursive strong tracking filtering algorithm under the event-trig-
gered mechanism, in which an upper bound on the filtering error covariance is guaranteed and minimized to derive
the filtering gain matrix. Then, the strong tracking filtering idea is introduced to adjust the one-step prediction error
covariance.

3.1. Filter Structure
Based on the state space model (4) and the measurement model (5), the structure of the proposed filter is estab-
lished as

Kerrpe = F Ry (10)

Kirtper1 = Ker ik + Lice1 O — CRiprp) (11)

where X+t and Kkrtjes1 denote, respectively, the one-step prediction and estimation of the state x;,; at time k+1,
and K. is the filter gain matrix to be designed.

According to (10)—(11), the one-step prediction error Xy iy = Xx+1 — X1 and the filtering error Xy qpr1 =
Xi1 — Xre1pes1 are represented as
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Xtk = FXgp + Foapxy + wy, (12)

w1 = (U = L O) Xt — Lice1 C oBres1 Xiear

(13)

= L1011 — Lis 1 Vienr

where 041 = Jre1 — i1 denotes the non-triggering error. For ease of representation, we next give the following
assumption about o1 .

Assumption 1: The non-triggering error o, is approximated by the one at time k if y;. € Nopiy, ie.,
Ok+1 = Ok.
3.2. Filter Design

Before presenting the main results, we first introduce the following lemmas which will be of great help to the
following filter design.

Lemma 1: [36] Suppose X =XT<0, Y =YT<0, and define a matrix function W(-): R™" — R™" If
VXY, Y(X)<P(Y) holds, the solutions of the equations My, <P(M;) and Ny, = P(N,) satisfy M <N

Lemma 2: [37] For arbitrary matrices A and 8B of appropriate dimensions, there is positive scalar A such that
the following inequality holds:

ABT + BA" < AAA" + 17" BB (14)
Lemma 3: [38] The upper bound on the non-triggering error satisfies the following inequality relationship:
olo<m +nX; + (1 +ne; (15)
where
X =[(1+ ) A+ )0+ (1+27") (7 +1) | Xi
+[A+2) (1+ ")+ (1+47) A +m)] 9}
with A; and A, being known scalars.

Proof: This lemma can be easily proved by referring to [38], and the proof is thus omitted for conciseness.
Lemma 4. [13] The state covariance X, ,, £ E{x;, Xl is represented as

Xk+1|k+1 = FXklkFT + Fst|kFST + Ok (16)

with the initial state covariance X, = % + Pop-
Proof: Based on the discrete state space expression (4), we have
Xio1 = FE{xx }F" + F E{aqxex] o] }FT
+E{a)ka)]{}+F17k+F17:k (17)
+F2,k+F;:k+F3!k+F3Tyk

where
Fip= FE{xkx,{akT}FsT,
Foi 2 F By ),
F3; 2 FE{x ] ).
Obviously, we can obtain that F' x, F» 4, and F3; are zeros. Thus, it is easy to conclude that (16) holds.
Theorem 1: Consider the ORETM (6) and the filter (10)-(11). There exist positive scalars &; and &, such that

the upper bound Z;.1x on the one-step prediction error covariance Py = E{)?k+1|k5c,{+“k} and the upper bound
Yy 1k+1 on the filtering error covariance Piyij1 = E{Xs1je1X], 1,1} are derived in the following form:

Zpsik = sz\kFT+FstFXT+Qk, (18)

Zprpert = (1L +ED)UT = L1 CO) X
X(I =L O) + L C X CL Ly,
+(1+&7 + &)L (O DL,
+(1+ &L R L,

(19)
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where
Ops1 = (772 + 77))_(1% +(1 +77)80%-
Then the matrix %;, .1 can be minimized by designing the filter gain matrix as
L = B¢, (20)
where
M = (1 +§1)Ek+1|kCT,
Ee1 2 (1 +ENCZ 1k CT + C X CT
+(1+&7 +E) O D+ (1+E Rt
Proof: From (12), the one-step prediction error covariance is written as
Pk+]‘k = FE{x'ka-ilgk}FT + FSE{cxkxkkaaZ}FZ
+EB{ww Y+ Fre+ Fl 21
+Fo+ Fl + Fy+ Fy

where
Fiy = FE{ffukkaClkT}FsT,
Fay 2 FE{ayxwy ),

F3yk & FE{XH]{OJZ}
It is obvious that F'; x, F», and F are zeros. Hence, the one-step prediction error covariance is updated as
Pk+1|kZFPk‘kFT+FSXkFZ+Qk. (22)

In addition, the filtering error covariance Pj.i+1 can be obtained from (13) as
Protpert = (I = Lot O B{Fu 1 1 ) — Lt ©)F
+ Lt CE{Brar X1 X Bl CT L
+ Lk+lE{O-k+10-£+1 }L,ZH
+ Lk+lE{Vk+lV[+1 }L;{H =N — NlT,kH
—No kst — Nikﬂ = N3 — x£k+1 + Ny e

T T T
ARG et N1 5+ Ne gt + 8

(23)

where
Nike1 2 (= Lyt OF{Xa iy X 1B JCr Ly
Roket 2 (I = Lt OB {Zeipoi o
Nagr1 2 (= Lisi OB {Zesrpovin 1o,
Niss1 2 Lt CEBrii X0, M
N5,1<+1 = Lk+leE{xk+lﬂk+1V£+1L1{+1 1,
Nowr1 = Lt B{lowavi 1, -

Similarly, 8, N3, Nax, and Ns are zeros. Applying Lemma 2 to the uncertainty terms N, 4., and Ng 441, the fol-
lowing inequality relationships hold:

T
- 82,k+l - NZ,k+l

<& (I - Liw C)E{jk+llk~i£+1\k}(1_ L O) (24)
+& L Eloa o, ML

xé,kﬂ + NGT,H]
<& L Blowop, L, (25)
+&" L Eviavi L -
It follows from Lemma 3 that
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E{O-k+10-1]¢-+1}<E{0-1{+10-k+1}I:®k+ll- (26)
Substituting (24)~(26) into (23), we have

Pratprt <A +ENU = Ly O) Py
x(I— L OF + Lk+lC.er+lCZLITc-+l
+(1+ € + &)L O DL,
+(1+EN L R L, -

27)

It is obvious from (19) and (27) that i1 g1 = Y Ey) and P st S (Pip). It follows from Lemma 1 that Xy,
and X,y are, respectively, the upper bounds of the one-step prediction error covariance Py and the filtering
error covariance Pryij+1,1.€., Pt =Zge1ik and P st D11 -

Subsequently, the filter gain matrix Ly, is obtained by minimizing the matrix X+ . In accordance with (19),
the matrix X141 can be reorganized as

Satpet = (L ED S — (1 +ENEpaCT L,
X Lot CZpp) + (1 4+ ED L1 CE i CT L,
+ Lt C X CLLL +(1+ &7 +6)
X Lis1 (O DL, + (14 & Lt Rt L,
= Lin1 B Ly, =T L
= Lt I + (1 + &) 21
= (Lirt = et B} DBkt (Liat = et Z )"

_Hk+IE;-i1H1{+1 + (1 +EDZgr 1k

(28)

It can be seen from (28) that the upper bound ;.1 on the filtering error covariance can be minimized by design-
ing L1 = I, Z; !, . The proof is now complete.

In order to ensure the filtering accuracy and outlier robustness, the strong tracking filtering is introduced to opti-
mize the designed recursive algorithm [17]. Specifically, the prediction error covariance matrix P,y is adjusted
according to residuals. By introducing a scaling factor A4, the prediction error covariance Py, from (22) is refor-
mulated as

P =ﬂk+1FPk|kFT+FstFZ+Qk, 29

and the scaling factor A4, is calculated by

A1, A1 =1
/lk — { k+1 k+1 (30)

1, otherwise

where
b tr{Ny1}
k+1 — )
Tt My}
Nk+1 = Vk+1 _ﬁRkHs
My 2 CFPyF'CT,

and V., denotes the covariance matrix of the actual output residual, which can be obtained by
g€l k=1
Vk+1 = QVk + 8k+|8,{+]
1+0

G1)

, k=17

Here, €r+1 = Yis1 — CRparpe is the residual at k+ 1, o is the forgetting factor with 0 <0 < 1, and & > 1 is the weak-
ening factor.

Remark 3: Until now, our research has focused on the problem of power harmonic detection in the presence of
communication bandwidth constraints and measurement outliers. Our results differ from existing ones in three dis-
tinct aspects: 1) the power harmonic detection challenge is addressed, for the first time, in the presence of multiplica-
tive noises and the event-triggered mechanism; 2) the multiplicative uncertainties and non-triggering errors are
encapsulated within a minimized upper bound of the filtering error covariance; and 3) a tailored recursive strong
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tracking filtering algorithm is designed for power harmonics which is available for online applications.

4. Simulation Results and Analysis

In order to verify the efficacy of the proposed filtering algorithm with limited communication bandwidth and
measurement outliers, the following three different algorithms are used for performance comparison.

1) Algorithm 1: the designed ORETM is utilized and this is the proposed recursive strong tracking filtering
algorithm.

2) Algorithm 2: the designed ORETM is utilized and this is a recursive filtering algorithm without introducing
the idea of strong tracking filtering.

3) Algorithm 3: a traditional dynamic event-triggered mechanism is employed [38], in which outliers are able
to be transmitted to the remote filter, and this is the standard KF algorithm without considering non-triggering errors.

As can be found, the comparison of Algorithms 1 and 2 aims to verify the effectiveness of the strong tracking
filtering idea in improving the performance of the recursive filtering algorithm. By comparing Algorithm 2 and Algo-
rithm 3, the efficacy of the designed recursive filtering algorithm will be verified, and the effect of the designed
ORETM will be demonstrated in terms of conserving network resources and removing outliers.

In this paper, we set the multiplicative noise matrix F; and C, to be F;, = 0.01/ and C,; =row,,{0.01}. The
associated filter parameters are chosen as & =0.001, & =0.1, 0=0.95 and ¥ =2. Moreover, the triggering
parameters are set to be 9 =2.4, 9, =129, p=0.2 and n = 0.1. In this paper, the commonly used trial-and-error
method is adopted by appropriately selecting ¢, 92, p and 7.

4.1. Fundamental Voltage Signal with Amplitude Sags and Phase Jumps
The fundamental voltage signal is expressed as

Vi = (1 + 0~01ﬂk)Al,k s1n(u)kT + Sﬁl,k) + Vi + niy

where
2202, 0<<k<<450
A =20.6x220V2, 450<k<750 ,
2202, 750<k<1000

/4, 0<<k<<450
©1xr=10, 450<<k<<750 .
/4, 750<k<1000

Figure 1 illustrates a voltage signal with amplitude sags and phase jumps, where the outliers occur randomly.
Figure 2 shows the DTRs with different triggering thresholds ¢, and g,. It can be seen from Figure 2 that the DTR
continuously reduces when the parameter o, increases and the parameter g, decreases, thus saving a large amount of
communication resources. This is due to the fact that the designed ORETM is capable of preventing the transmission
of unnecessary measurements and outliers by adjusting the two thresholds. Accordingly, it is of great significance to
select appropriate triggering thresholds according to the actual engineering requirements.

900

450

0 H

—450 1

The observed signal

-900

0 200 400 600 800 1000
Time/k

Figure 1. The fundamental voltage transient signal with outliers.
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DTR

00 p=1 p=14 =17 =2 =24 =26 =28 p=3 =34 =36
0,0 07145 0,142 0,713.9 0,=13.4 0,=12.9 0,=12.6 0,=122 ,=11.8 p,=11.4 (,=10.9

Figure 2. The DTRs with different triggering thresholds.

The effectiveness of the proposed algorithm is verified by the comparison with Algorithms 2 and 3 when the
DTR is only 71.1% (9, = 2.4 and @, = 12.9). The detection results for the voltage amplitude and phase are shown
in Figure 3—Figure 4. It is observed that Algorithm 3 has a large tracking error due to the effect of outliers. It can be
found that the filtering accuracy of Algorithms 1 and 2 is higher than that of Algorithm 3 due to outlier elimination by
the designed ORETM. Furthermore, the proposed recursive strong tracking filtering algorithm (i.e., Algorithm 3) out-
performs Algorithm 2 in the case of sudden signal changes.

400 T T T T
—The true state
— — -Algorithm 1
Z 350 1 — Algorithm 2 .
%; Algorithm 3
g‘ 300 f ‘1‘
< ]
2 z
5 250+ ] -
E i
< i,
g [
= 200 .
150 1 1 1 i 1
0 200 400 600 800 1000

Time/k

Figure 3. The true state and estimate of the fifth harmonic component.

1.4 T

——The true state

121 — — -Algorithm 1 .
B T Algorithm 2
£ 10r Algorithm 3 T
5] ; . )
= i i
= 06} i AN i
=. !
i
E 04F i :g -
2 { !
2 02f . ! .
oF 3 |
-0.2 1 1 L i
0 200 400 600 800 1000

Time/k

Figure 4. The true state and estimate of the fifth harmonic component.

4.2. Distorted Voltage Signal
The harmonic swell signal is expressed as
Ve = (1+0.018)A, sin(wkT + ¢)
+(1+0.018) A5, sin(BwkT + 3 4)
+ (1 +0.018,)As 4 SIn(SwkT + @s 1) + vy +my
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where

Figure 5 plots a voltage signal with the amplitude and phase swell, harmonic distortion, and outliers. The trend
of DTR with different thresholds is shown in Figure 6. In addition, the effectiveness of the proposed algorithm is fur-
ther verified by setting ¢, = 2.4 and ¢, = 12.9, at which the DTR is 72.4%. Figure 7-Figure 10 show the results of
three filtering algorithms in detecting the voltage amplitude and phase of the third and fifth harmonic components. It
is observed that the tracking delay is apparent as the order increases for detecting harmonic components of different
orders. Nevertheless, the detection accuracy of the proposed algorithm is acceptable and its performance is optimal
among the three algorithms. Summarizing the above discussions, it is verified that the developed recursive strong
tracking filtering algorithm is capable of achieving accurate power harmonic detection in the presence of limited
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5. Conclusion

In this paper, we have investigated the problem of transient harmonic detection in the presence of multiplicative
noises, limited communication bandwidth, and measurement outliers. First, the dynamic behavior of the harmonic
signals has been described by the established dynamic state-space model, where the process noise covariance matrix
has been obtained computationally rather than a priori. Second, the ORETM has been designed to prevent the trans-
mission of unnecessary measurements and outliers by appropriately setting the triggering parameters. Then, a recur-
sive strong tracking filtering algorithm has been developed by taking into account the non-triggered error, in which an
upper bound on the filtering error covariance has been derived and minimized to obtain the filtering gain matrix.
Finally, the effectiveness of the proposed filtering algorithm has been verified by implementing two sets of numerical
simulations. Future research topics include 1) power harmonic detection in the presence of non-Gaussian noises; and
2) multi-sensor network based distributed detection for power harmonics.
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