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Abstract: Underwater detection poses significant challenges due to the unique characteristics of the
underwater environment, such as light attenuation, scattering, water turbidity, and the presence of small
or camouflaged objects. To gain a clearer understanding of these challenges, we first review two com-
mon detection tasks: object detection (OD) and salient object detection (SOD). Next, we examine the dif-
ficulties of adapting existing OD and SOD techniques to underwater settings. Additionally, we introduce
a new Underwater Object Multitask (UOMT) dataset, complete with benchmarks. This survey, along
with the proposed dataset, aims to provide valuable resources to researchers and practitioners to develop
more effective techniques to address the challenges of underwater detection. The UOMT dataset and
benchmarks are available at https://github.com/yiwangtz/UOMT.
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1. Introduction

Marine resources are extremely valuable to humans. Underwater detection has broad applications in many
areas, such as oceanography, marine navigation, and fish farming [1]. However, the complexities of underwater envi-
ronments and ecosystems present formidable obstacles to effective underwater detection. For example, underwater
environments exhibit considerable variability in lighting conditions, depending on factors such as depth and quality
[2-3]. Intricate and multifaceted shapes characterize diverse organisms. Certain organisms also evolved a camou-
flage mechanism. Furthermore, these organisms often face obfuscation or disruption due to the integration of sand
and gravel [4]. Therefore, it calls for the integration of related technologies in computer vision and artificial intelli-
gence to address these challenges in underwater detection.

In this context, Object Detection (OD) [5—7] and Salient Object Detection (SOD) [8—10] are crucial to under-
standing and analyzing underwater scenes. OD is designed to detect and classify objects accurately while providing
their precise spatial locations. SOD focuses on the localization and segmentation of salient objects that conform to the
human visual system (HVS) [11]. Several studies and surveys have been conducted in the fields of underwater OD
and SOD, highlighting the significance of these tasks in underwater image analysis [12—19].

Our work begins with a brief overview of recent breakthroughs and advances within the OD and SOD fields.
Different from existing surveys on these two topics [5—10, 12—14, 20-21], we classify OD and SOD models into two
primary categories: (i) Convolutional Neural Networks (CNNs) [22] based approaches and (ii) Transformer [23]
based approaches. Furthermore, we delve into the unique challenges posed by underwater detection tasks, as well as
the strengths and weaknesses of these approaches.

A comprehensive dataset entitled Underwater Object Multitask (UMOT) is also proposed, which contains vari-
ous underwater scenes with more than 7K instances encompassing three organism types. UOMT provides COCO
dataset [24] format labels for OD and binary segmentation masks for SOD, as illustrated in Figure 1. Evaluations of
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state-of-the-art OD and SOD models are conducted on the UMOT dataset.
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Figure 1. Examples in the proposed Underwater Object Multitask (UOMT) dataset: (a) Original images; (b) Annota-
tions for Object Detection; (¢) Annotations for Salient Object Detection.

The rest of this article is presented accordingly. Section II briefly reviews OD methods. Section III briefly
reviews SOD methods. Section IV explains underwater OD and SOD challenges. Section V describes the evaluation
metrics for OD and SOD. Section VI describes the proposed UOMT dataset. Section VII presents benchmarks for
OD and SOD for the UOMT dataset through quantitative and qualitative experiments. Section VIII discusses the
future development of underwater OD and SOD. Section IX summarizes the main points of this work.

2. Review of Object Detection (OD)

Object detection (OD) endeavors to accurately detect and classify objects, denoting their positions by rectangu-
lar boxes [25]. Object detection encompasses various applications, including face detection, instance segmentation,
autonomous driving, surveillance systems, and sports analytics [5].

In recent years, many object detection surveys have been conducted. In 2019, Jiao et al. [5] conducted a com-
parative analysis of different deep learning-based OD methods. It also introduced some commonly used public
datasets, analyzed their characteristics, and highlighted their strengths and weaknesses. In 2020, Wu et al. [6] con-
cluded techniques useful in OD, such as attention-based models [26—28], end-to-end models [29—30], depth separa-
ble convolutions [31—32], etc. This survey also presented challenges and requirements for practical applications,
including detecting small objects, object tracking, real-time performance, and other related topics. Li et al. [7] exten-
sively explored various aspects of OD in images captured by optical sensors or satellites. The survey also proposed an
optical remote sensing image dataset with benchmarks. Padilla et al. [12] provided a detailed and comprehensive
exposition of the commonly used performance evaluation metrics in object detection methods. This survey provided
details on the principles, advantages, and disadvantages of different indicators and their applicability to different
application scenarios. In 2022, Cheng et al. [13] provided a comprehensive study and summary of the problem of
small object detection. In 2023, Zou et al. [14] systematically reviewed the development of OD over the past 20
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years, offering valuable insights into the field of SOD.
Our review of OD categorizes its methods into CNN-based and Transformer-based models. Table 1 lists the
models discussed in this section.

Table1 Summary of object detection (OD) methods

No. Year Method Backbone Stage Anchor
1 2014 R-CNN [33] AlexNet Two-Stage AB
2 2014 SPP-Net [34] AF-5 Two-Stage AB
3 2015 Fast R-CNN [26] VGG-16 Two-Stage AB
4 2015 Faster R-CNN [27] VGG-16 Two-Stage AB
5 2016 R-FCN [35] ResNet-101 Two-Stage AB
6 2017 Mask-RCNN [28] ResNeXt-101 Two-Stage AB
7 2015 YOLOVI [36] GoogleNet One-Stage AB
8 2016 SSD [32] VGG-16 One-Stage AB
9 2017 YOLOvV2 [37] DarkNet-19 One-Stage AB
10 2018 RefineDet [38] VGGI16 One-stage AB
11 2018 YOLOV3 [39] DarkNet-53 One-Stage AB
12 2019 EfficientDet [31] Efficient-B2 One-Stage AB
13 2020 YOLOV4 [40] CSPDarkNet-53 One-Stage AB
14 2021 YOLOVS [41] CSPDarkNet-53 One-Stage AB
15 2021 YOLOF [42] ResNet-101 One-Stage AB
16 2021 PP-YOLOV2 [43] ResNet-101 One-Stage AB
17 2021 Deformable-DETR [44] Transformer One-stage AB
18 2022 YOLOV7 [45] ELAN One-Stage AB
19 2018 CornerNet [46] Hourglass-104 One-Stage AF
20 2020 CircleNet [47] ResNet-50 One-Stage AF
21 2021 YOLOX [48] DarkNet-53 One-Stage AF
22 2022 YOLOV6 [49] EfficientRep One-Stage AF
23 2022 PP-YOLOE [50] CSPResNet One-Stage AF
24 2023 YOLOVS [29] CSPDarkNet One-Stage AF
25 2022 DAB-DETR [51] Transformer One-Stage AB
26 2022 DINO [52] SwinL/ResNet50 One-Stage AB
27 2023 Mask DINO [53] SwinL/ResNet50 One-Stage AB
28 2023 Grounding DINO [54] Transformer One-Stage AB
29 2020 DETR [55] Transformer One-Stage AF
30 2021 YOLOS [56] Transformer One-Stage AF
31 2021 YOLOR [57] CSPDarknet53 One-stage AF
32 2022 Detic [58] Swin Transformer One-stage AF
33 2022 DN-DETR [59] Transformer One-stage AF

Note: 'AB' means Anchor-Based, and 'AF' means Anchor-Free.

2.1. CNN-based Object Detection Models

Convolutional Neural Networks (CNNs) [22] exhibit profound influences on object detection [14] by using
mechanisms such as ReLU activation, Dropout, Anchor, and GPU acceleration. Among them, the anchor mecha-
nism [27] is a key technique in object detection. We elaborate on OD models based on CNNs by classifying them
into two groups: anchor-based detectors and anchor-free detectors, in the following.

1) Anchor-Based Approaches: Anchor [5] mechanism was proposed in 2014. It first generates a series of pre-
defined bounding boxes (anchors) at different locations, and then each anchor is matched to a real object during
detection. In the following years, many OD models were proposed using anchors. These methods can be further cate-
gorized into two-stage and one-stage detection approaches.

Two-Stage Detectors: Girshick et al. [33] proposed R-CNN in 2014, which revolutionized OD by introducing
anchors. R-CNN converts OD into a two-step process: candidate region extraction and classification. R-CNN exhibits
remarkable progress compared to conventional OD methods. He et al. [34] introduced SPP-Net, a significant OD
breakthrough. SPP-Net facilitates the conversion of an input image with varying dimensions into a feature map with a
consistent size, enabling holistic image comprehension. Nonetheless, it faces limitations as it cannot be trained end-to-
end. In 2015, Girshick et al. introduced Fast R-CNN [26] and Faster R-CNN [27]. Fast R-CNN uses the entire image
as input, avoiding redundant feature computations, and employs a multitask loss function to integrate classification
and regression tasks, improving OD efficiency and accuracy. However, it still relies on a region proposal algorithm to
generate potential regions, which has speed limitations and compromises the accuracy of the selected regions. The
Faster R-CNN, therefore, generates candidate regions using a Region Proposal Network (RPN) instead of a selective
search algorithm. Dai et al. [35] proposed the R-FCN, which features a fully convolutional network instead of the
region of interest (ROI) pooling operation, avoiding the traditional ROI operation, and can be trained end-to-end. In
2017, Mask-RCNN [28] improved the previous versions with increased detection speed and accuracy.
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One-Stage Detectors: In 2015, Redmon et al. [36] proposed YOLOVI, a one-stage detector with faster speed
and better real-time performance than two-stage detectors. This method divides an image into several grids, each pre-
dicting a bounding box and a category probability. However, it has some disadvantages, such as low detection accu-
racy, poor detection of small objects, and easy occlusion of dense objects. In 2016, Liu et al. [32] proposed the SSD,
which features only one forward propagation to complete the object detection process. In 2017, YOLOV2 [37] was
introduced, which improved YOLOv1 with increased detection speed and accuracy. Various excellent methods
emerged after 2017. RefineDet [38] and YOLOV3 [39] were proposed in 2018. RefineDet is the first real-time
method to achieve detection accuracy greater than 80% mAP on PASCAL VOC 2007 [60]. In YOLOv3, perfor-
mance was further enhanced by a more efficient backbone network, multiple anchors, and spatial pyramid pooling. In
2019, Tan et al. [31] introduced EfficientDet, incorporating a revolutionary integrated scaling technique to improve
detection accuracy and computational efficiency.

In 2020, Alexey et al. [40] proposed YOLOv4, and Cai et al. [41] proposed YOLOVS. In YOLOv4, mosaic
data augmentation, improved anchor-free detection head, and a new loss function were introduced. YOLOVS features
hyperparameter optimization, integrated experiment tracking, and automatic export to popular export formats.

In 2021, YOLOF [42] was proposed, which used a Dilated Encoder and Uniform Matching that improved
detection speed and accuracy without FPN [61]. PP-YOLOvV2 [43] is an efficient real-time object detection method
that uses a compact foundational architecture. It introduced an adaptive weighted loss function and adaptive label
smoothing techniques to better handle objects of different sizes and difficulties. PP-YOLOV2 significantly improved
detection performance while maintaining faster speed and practicality.

In 2022, YOLOvV7 [45] was introduced using the Extended Efficient Layer Aggregation Network (E-ELAN).
YOLOV7 also added additional tasks, such as pose estimation, and surpassed the previous state-of-the-art for real-
time applications. DAB-DETR [51] utilizes coil coordinates in Transformer decoders and performs soft ROI pooling.

Anchor-based object detection approaches have certain limitations that can impact training and inference.
Objects with small sizes and aspect ratios may be missed or falsely detected due to their size and aspect ratio limita-
tions. Additionally, multiple detection frames may overlap due to anchor overlap, increasing follow-up difficulties
and computational effort.

2) Anchor-Free Approaches: In 2018, Zhou et al. [5] introduced the concept of Anchor-Free detection, elimi-
nating the need for predefined bounding boxes. This makes the model simpler, faster to train and infer, and more
adaptable to object shapes and sizes. Law and Deng et al. [62] proposed CornerNet in 2018, a CNN-based Anchor-
Free detector, that detects the object bounding box as two key points, the upper left and lower right. CornerNet also
proposed an effective corner pooling operation that captures boundary information. In 2019, Fei et al. [61] proposed
NAS-FPN, which introduces a Neural Architecture Search (NAS) technique that automatically searches the structure
of a neural network to obtain a better feature pyramid network. It also combines the advantages of NAS and FPN to
automatically search for the optimal pyramid structure of characteristics. That year, it achieved first place in the
COCO Object Detection Challenge [24]. In 2020, CircleNet [47] was developed, which treats an object as a circular
region consisting of points. It detects the object by predicting the center and radius of the circle. CircleNet detects
spherical biomedical objects accurately. In 2021, YOLOX [48] was proposed as an anchor-free version of YOLO,
with a simpler design but better performance. YOLOv6 [49] was developed in 2022 and used in many autonomous
delivery robots. YOLOVS [29] improves YOLOVS by separating classification and detection heads and using Distri-
bution Focal Loss.

Anchor-free methods, however, require more training data and longer training times to achieve the same accu-
racy as anchor-based detectors, and cluttered images may further hinder Anchor-Free Detectors.

2.2. Transformer-based Object Detection Models

In 2020, DETR [55] (Detection Transformer) first applied the Transformer [23] to object detection. Unlike tra-
ditional object detection methods, DETR does not need prior frames or anchor points. Instead, it predicts the posi-
tions and classes of objects directly in the image. Specifically, DETR transforms the object detection problem into an
ensemble matching problem. YOLOR [57] leverages Transformer to boost feature representation without increasing
computation. YOLOR has a unified network that integrates explicit and implicit knowledge to learn a unified repre-
sentation capable of performing multiple tasks. YOLOS [56] utilizes a Swin Transformer and Focal Loss that
improve detection without convolutional layers.

In 2022, Detic [58] proposed using the image classification dataset to train the classification head of the target
detector. A strong end-to-end object detector, DINO [52] was developed based on DN-DETR [59], DAB-DETR
[51], and Deformable-DETR [44]. DINO improves over previous DETR-like models in performance and efficiency
by using a contrastive way to denoize training, a look forward twice scheme for box prediction, and a mixed query
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selection method for anchor initialization.

In 2023, a unified object detection and segmentation framework, Mask-DINO [53], was developed. The DINO
Mask extends DINO by adding a mask prediction branch that supports all image segmentation tasks (instance,
panorama, and semantic). In the same year, another improved DINO model, Grounding DINO [54], was proposed.
Grounding DINO can detect specified targets based on text descriptions.

3. Review of Salient Object Detection (SOD)

Salient object detection (SOD) [87] is a computer vision task that aims to identify visually distinctive objects or
regions within an image. This task is crucial in various applications, including image editing, visual tracking, image
retrieval, and scene understanding [9—10].

Several surveys have focused on detecting salient objects in the last few years. For example, Borji et al. [§]
reviewed SOD methods using CNNs in 2019. In 2020, Kumar et al. [9] investigated weakly supervised/pseudo-
supervised and adversarial training learning approaches. In 2021, Zhour et al. [88] reviewed RGB-D-based SOD
models, as well as related benchmark datasets, using traditional and deep learning methods. In 2022, Fu et al. [20]
provided a review and benchmarks for light-field SOD. In 2022, Zhou et al. [21] summarized the latest SOD models
and pointed out that different implementation details may affect performance.

In this section, our review focuses on SOD using CNNs and Transformers. Table 2 shows the models pre-
sented in this section.

Table2 Summary of salient object detection (SOD) methods

No. Year Method Backbone Net'work Features
Architecture
1 2016 ICANet [63] - - Using the locate-by-exemplar strategy.
2 2016 ELD [64] VGG-16 Encoder-decoder Combination of high- and low-level features.
3 2017 FIN [65] VGG-16 - The first weakly-supervised learning SOD model.
4 2018 PAGR [66] VGG-19 - Adding attention mechanisms to the network.
5 2019 CPD [67] VGG-16 Encoder-decoder A new cascaded partial decoder is proposed.
6 2019 PoolNet [65] VGG-16/ Encoder-decoder Poollng-based tecl.lnlques to supplement advanced
ResNet-50 semantic information.
7 2019 BASNet [69] ResNet-34 Encoder-decoder Predl.ctlon—reﬁnement architecture and new hybrid loss
function.
8 2019 EGNet [70] VGG-16/ Encoder-decoder Making full use of edge information.
ResNet-50 - g ¢ :
9 2020 LDF [71] ResNet-50 Encoder-decoder A label decoupling framework is proposed.
10 2020 MINet [72] VGG-16/ Encoder-decoder A aggregate interaction modules are proposed.
ResNet-50
1 2020 UCNet [73] VGG-16 Encoder-decoder Leamm.g from the daFa annotation process to use
uncertainty for detection.
12 2020 SAC [74] ResNet-101 ) Integration of locj‘al and glpbal image contexts within,
around, and outside of salient objects.
13 2021 PA-KRN [75] ResNet-50 Encoder-decoder A progressive strategy to simulate the mechanisms that
restore the human visual system.
14 2021 SGL-KRN [75]  ResNet-50 Encoder-decoder Efficient and lightweight PA-KRN.
15 2021 HQSOD [76] ResNet-50 Encoder-decoder SOD in high resolution scenes.
16 2021 DCN [77] ResNet-50 Encoder-decoder A multitasking network.
17 2022 EDN [78] ResNet-50 Encoder-decoder Extreme downsampling to locate and segment objects.
18 2022 TNet[79] VGG16/ResNet50 Encoder-decoder SOD by using thermal infrared images.
ResNet50 . . .
19 2022 TRACER[80] +EfficientNet Encoder-decoder  Attention-guided tracing module.
20 2023 MENet[81] ResNet-50 Encoder-decoder Multi-enhancement and iteratively refinement.
21 2021 SwinNet [82] Swin Encoder-decoder A new cross-modal fusion model is proposed.
» 2021 EBMG[S3] VIT/U-Net Encoder-decoder Energyjbase.d .latent variable a priori models and
generative vision transformer networks.
23 2022 SelfReformer [$4] PVT Encoder-decoder Combln‘ed with vision transformers and self-refining
mechanisms.
. Combined with CNNs and Transformer backbone and graft
+ "=
1 2022 PGNet [85] ResNettSwin Encoder-decoder the features from transformer branch to CNN branch.
25 2023 ICON-P[$6] PVT Encoder-decoder Integ.rlty cognitive network proposed based on integrity
learning.
2% 2023 ICON-S[$6] Swin Encoder-decoder Integrity cognitive network proposed based on integrity

learning.

3.1. CNN-based SOD Approaches

2014 was the year of pioneering deep learning applied in SOD [89]. In many SOD models, CNNs are used to
extract high-level features from images and combine local and global contextual information. These methods capture

S5of21


https://doi.org/10.53941/ijndi.2024.100025

1JNDI, 2024, 3, 100025. https:/doi.org/10.53941/ijndi.2024.100025

semantic information and the salient features of images in complex scenes more effectively than traditional methods.
In 2015, FCN [90] networks revolutionized the field using a semantic segmentation architecture at the pixel level.
From then on, many SOD models have been developed based on FCNs. Liu et al. [91] used multiscale deep features
to express saliency comparisons and prior knowledge. He et al. [63] developed an exemplar-driven top-down saliency
detection model that employed a deep association network to learn similarities between exemplars and images. Lee et
al. [64] used encoding distance maps, high-level features, and an encoder-decoder structure to generate saliency maps.
Wang et al. [65] proposed a weakly supervised SOD model, which reduces the costs of manual annotation. Zhang et
al. [66] proposed a progressive attention-guided mechanism to improve the quality of the prediction.

Many excellent SOD algorithms have been proposed since 2019. Most of them employ VGG [92] or ResNet
[93] as the backbone network, such as CPD [67], PoolNet [68], BASNet [69], EGNet [70], etc. CPD [67] employs a
bidirectional feature pyramid network and a feedback optimization module to generate high-quality saliency maps.
PoolNet [68] proposed a Global Guidance Module (GGM) and a Feature Aggregation Module (FAM) based on
pooling techniques that combine multiple layers of features at different scales. Contextual information about the
image and edge information are also considered. BASNet [69] is a boundary-aware method that uses a prediction-
optimization architecture and a hybrid loss function to improve the precision of boundary delineation on saliency
maps. EGNet [70] extracted the features of the salient objects through progressive fusion, integrating the local edge
information with the global location information and utilizing complementary features to detect objects at various res-
olutions.

The representative models proposed in 2020 were LDF [71], MINet [72], and UCNet [73]. LDF [71] separated
a GT (Ground-Truth) map into a body map and a detailed map. It then performs feature learning on the inner and
boundary regions in a two-branch decoder, respectively. UC-Net [73] improved the generalization and robustness of
the model by introducing hidden variables to represent the uncertainty of the input data. SAC [74] adaptively propa-
gates, and aggregates image context features with different attenuation factors through a spatially attenuated context
(SAC) module and attention mechanisms.

The representative models proposed in 2021 were KRN [75], HQSOD [76], and DCN [77]. KRN [75] intro-
duced a progressive approach to replicate the human visual system restoration process, with the coarse localization
module and the fine segmentation module developed. HQSOD [76] extended the SOD for high-resolution images by
a low-resolution saliency classification network (LRSCN) to capture semantics at low resolution and a high-resolu-
tion refinement network (HRRN) to refine the salient values of pixels in uncertain regions. DCN [77] proposed a
multitasking network to predict salient maps, edges, and skeleton maps simultaneously at first. Then it designed cross-
task aggregation and cross-layer aggregation modules to integrate multi-level and multi-tasking features in the final
results.

In 2022, EDN [78] effectively exploited multiscale learning while improving collaboration between high- and
low-level features. TNet [79] used thermal infrared images to get effective object localization and integrity informa-
tion for RGB decoded features by controlling the interaction between RGB images and thermal images. Using atten-
tion-guided tracing modules, Lee et al. [80] proposed a model called TRACER, which eliminates multi-decoder
structures and minimizes the use of learning parameters.

In 2023, Zhuge et al. [86] proposed ICON-R, which facilitates the extraction of multiscale feature maps through
the integrity cognitive module, edges, and the Integrity Optimization module. Wang et al. [81] proposed MENet,
which gradually enhances the cognition of complex targets repeatedly from the perspective of pixels, regions, and
objects in images.

3.2. Transformer-based SOD Approaches

Since the Transformer model was applied to vision tasks, the accuracy of SOD has improved greatly [10]. The
first proposal that used the Transformer in computer vision was the Vision Transformer (VIT) [94], proposed by the
Google Brain team in 2020. It is an image classification model based entirely on self-attentive mechanisms.

In 2021, Liu et al. [95] proposed a pure Transformer-based model for SOD in RGB and RGB-D. The model
receives image segments as input and employs the Transformer architecture to disseminate global contextual infor-
mation among the image segments. The model does not require convolution operations and captures long-range
dependencies to improve saliency detection performance. The paper also presents an RGB-D saliency detection
dataset for evaluating the model's generalization capability. Zhang et al. [83] proposed EBMG, an energy-based latent
variable prior model that defines the distribution of latent variables by an energy function, then samples the latent
variables by Markov chain Monte Carlo methods and uses them to optimize the output of the Vision Transformer
network.

The Swin Transformer mentioned in the previous section also applies to SOD. In 2022, Liu et al. [82] proposed
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SwinNet, which achieved accurate detection using multimodal information RGB-D and RGB-T and local/global
interaction mechanisms. SwinNet also provides a pre-trained edge sensing module to better use edge information,
achieving better edge retention and refinement capabilities. Yun et al. proposed SelfReformer [84], a transformer-
based self-refined network that utilizes global and local contextual information to improve the completeness of
saliency maps. Xie et al. proposed PGNet [85], which uses Transformer and CNNs to extract features from images of
different resolutions. Cross-Model Grafting Modules (CMGM) are proposed for CNN branches to combine broken
detailed knowledge holistically by guiding decoding by different source features. Attention Guided Loss (AGL) is
designed to actively supervise the attention matrix generated by CMGM to help the network interact better with
attention generated by other models. In 2023, Liu et al. proposed ICON [86], which has three key components to
achieve integral SOD, namely the aggregation of various features, the enhancement of the integrity channel, and the
verification of the whole. ICON-P employs PVT [96] as the backbone, and ICON-S uses Swin [97] as the backbone.

Given the success of Transformer-based models in salient object detection, it is likely that more models based
on this architecture will be developed in the future.

4. Underwater Detection

Accurately detecting and segmenting objects in underwater scenes is more challenging than on land [16—17].
We elaborate on underwater (salient) object detection research from the aspects of image enhancement-based
OD/SOD, small object detection, and underwater datasets in the following,.

4.1. Underwater Image Enhancement

For underwater OD and SOD, image enhancement is essential to improve object visibility in the water. Due to
factors such as light attenuation, scattering, and water turbidity, underwater images often suffer from poor visibility
and degraded image quality. To address these issues, various image enhancement techniques are applied, including
contrast enhancement, color correction, and noise reduction, to improve the visual quality of underwater images
[15—16]. By improving image visibility, the OD and SOD algorithms can more accurately detect and locate under-
water objects.

Early underwater image enhancement methods relied on traditional land image enhancement techniques. For
example, an adaptive threshold Sobel operator [98] can enhance underwater images by extracting boundaries. In [99],
amethod to analyze aquatic imagery was proposed by combining maximum RGB with grayscale. First, the maxi-
mum RGB value of each underwater image pixel is used as a white reference. Normalization removes the color bias
from underwater images. In [100], an adaptive global histogram stretching algorithm was proposed to eliminate low
contrast and color loss in underwater scenes.

Currently, deep-learning techniques are used to enhance underwater images for underwater detection tasks.
These methods effectively improve the quality of underwater images by addressing challenges such as poor visibility,
color distortion, and image degradation. For example, in [101], the authors use the Water-Net [102] to address low
contrast, color distortion, and blurring issues in underwater images. In work [103], the authors propose an improved
spatial transformation network that adaptively enriches image features based on perspective transformation. This alle-
viates the limitations of underwater object images taken from different angles. In work [104], the authors develop a
perceptual underwater image enhancement model based on two physical priors. Detection perception first provides
feedback to an enhancement model, which guides the enhancement model to generate visually satisfactory or detec-
tion-friendly images. In work [105], the authors proposed a method for detecting underwater species using a channel
sharpening attention mechanism to improve the image channels relevant to the target species and suppress irrelevant
channels. In work [106], the authors proposed a color conversion method that transforms underwater images into a
more natural color space that improves object detection accuracy. In general, deep learning-based underwater image
enhancement techniques demonstrate their value in optimizing underwater detection tasks.

4.2. Small Object Detection

The reason why small objects [107] are more challenging to detect for both OD and SOD is due to two main
factors.

Resolution and scale: When the resolution of an image is limited, either due to low-quality sensors or distance
from the object, the details and fine-grained features of small objects may not be adequately captured. As a conse-
quence, information is lost, making it more difficult for the OD and SOD methods to detect and localize these objects
accurately.

Context and occlusion: Small objects are more susceptible to occlusion by larger objects or environmental fac-
tors. This occlusion hinders their visibility and makes it difficult for OD and SOD algorithms to differentiate them
from the background or larger objects.
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To overcome these challenges, researchers in the field of OD and SOD have explored various techniques and
approaches. For example, in work [108], a technique was presented to detect edges in multiple directions, providing a
comprehensive representation of the object's boundaries. In work [107], the authors leveraged the YOLOv4 architec-
ture and incorporated multiscale feature aggregation to improve detection accuracy. Furthermore, this work used the
fusion of MobileNet-V2 [109] and the depthwise separable convolution [110] to reduce network parameters and size
significantly. In work [111], the authors added depthwise separable convolution to the YOLOv4 backbone network
with a (152x152) feature map to improve small object detection. They also incorporated a spatial pyramid pooling
module to increase model complexity and improve detection accuracy. Transformer-YOLOVS [112] replaced the pre-
diction head of YOLOVS5 with the Transformer module, increasing its detection capability on different scales and in
dense environments.

4.3. Underwater Detection Datasets

Given the complexity and dynamics of aquatic ecosystems, datasets for detecting objects in underwater scenes
are often scarce and limited. This poses difficulties and challenges for algorithm design and performance evaluation
of underwater OD and SOD. There have been efforts to develop such datasets. Table 3 lists some underwater detec-
tion datasets. We discuss a few of them in the following.

Table3 Summary of Underwater Detection Datasets

Image  Category

Year Dataset Annotation Task Content

Number  Number
2012 Fish4Knowledge [113] 27,370 23 Bounding Box UOD  fishes
2019 Brackish [120] 14,518 6 Bounding Box UOD  big fish, small fish, jellyfish, crabs, etc.
2019 Marine Litter [121] 5,720 3 Bounding Box UOD  plastic waste, man-made targets, organisms
2019 MUED [122] 8,600 430 Bounding Box UOD  seafloor objects
2020 URPC2020-DL [114] 8,975 4 Bounding Box UOD  sea cucumbers, sea urchins, scallops, starfish
2020 RUIE-UHTS [118] 300 3 Bounding Box UOD  sea cucumbers, sea urchins, scallops
2020 UWD[115] 10,000 4 Bounding Box UOD  sea cucumbers, sea urchins, scallops, starfish
2020 TrashCan [123] 7,212 22 Bounding Box UOD  seabed garbage, flora and fauna, etc.
2020 SUIM [124] 1,635 8 Bounding Box UOD fish, coral, plants, people, debris, etc.
2020 UIEB[102] 950 8 Bounding Box UOD  all kinds of corals and marine life, etc.
2021 URPC2021 [114] 10,000 4 Bounding Box UOD  sea cucumbers, sea urchins, scallops, starfish
2021 DUO[117] 7,782 4 Bounding Box UOD  sea cucumbers, sea urchins, scallops, starfish
2021 UODD [105] 3,194 3 Bounding Box UOD  sea cucumbers, sea urchins, scallops
2022 UDDJ116] 2,227 3 Bounding Box UOD  sea cucumbers, sea urchins, scallops
2017 OUC-Vision [125] 4,400 - Bounding Box USOD 220 individual objects with four pose variations
2019 MUED [122] 8,600 - Bounding Box USOD 430 underwater objects
2020 UFO-120[126] 1,620 - Pixel-Wise labels USOD multiple locations having different water types
2020 USOD [127] 300 - Pixel-Wise labels USOD  various underwater objects
2022 USODIOK [119] 10,225 70 Pixel-Wise labels USOD various underwater objects

Fish4Knowledge (F4K) dataset [113] is an extensive collection of fish species, as shown in Figure 2. It con-
tains more than 27,370 images of 23 species of fish collected from various locations and depths. Each image in the
dataset is carefully annotated, providing accurate and detailed labels for training and evaluation. However, this dataset
has unbalanced numbers of different fish and variable image quality.

Figure 2. Images from the Fish4Knowledge dataset [113].

URPC dataset [114] is the dataset from the Underwater Robot Picking Contest, which has been held every
year since 2017. The UPRC2020 dataset consists of 6,575 training images and 2,400 testing images. These images
have a high resolution of (3,840x2,160). For UPRC2021, 7,600 images are used for training, and 2,400 images are
used for testing. Examples of UPRC2021 are shown in Figure 3.

Figure 3. Images from the URPC2021 dataset [114].
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DWD [115], UDD [116], DUO [117] datasets are based on URPC datasets. DWD has 10,000 images of four
species: sea cucumbers, sea urchins, scallops, and starfish. DWD has no specific division of training and testing sets.
UDD is an underwater marine pasture object detection dataset consisting of 2,227 images in three species categories:
sea cucumbers, sea urchins, and scallops. Some examples are shown in Figure 4. DUO has 7,782 images with more
accurate annotations and diversity for sea cucumbers, sea urchins, scallops, and starfish.

Figure 4. Images from the UDD dataset [116].

UODD dataset [105] has 3,194 images in this dataset from the RUIE [118] dataset in MS COCO format [24].
Diverse underwater scenes are presented in the UODD dataset, e.g., low contrast, multiple objects, large objects, and
small objects. Examples are shown in Figure 5.

Figure 5. Images from the UODD dataset [105].

USODI10K dataset [119] is the first large-scale underwater SOD dataset. This dataset is significant for its
diversity, complexity, and scalability. It contains 10,255 underwater images of seventy classes in various underwater
scenes, as shown in Figure 6. The depth and boundary GT maps are also included in this dataset.

Figure 6. Images from the USOD10K [119] dataset.

5. Evaluation Metrics

It is essential to choose evaluation metrics that align with the research objectives to obtain meaningful insights
[128]. In the following, we detail the metrics used in the OD and SOD tasks.

5.1. OD Metrics

Following are some of the most common evaluation metrics for object detection.
Precision & Recall [129]: Precision is calculated by dividing the true positives by anything that was predicted
as a positive:
TP

Precision = ———. N
TP+FP

Recall (or True Positive Rate) is calculated by dividing the true positives by anything that should have been predicted
as positive:
TP

Recall = —— 2
= TPLFEN )

where TP denotes True Positives, FP denotes False Positives, and FN denotes False Negatives.
IoU (Intersection over Union) [130]: This metric measures the overlap between the model prediction box and
the annotation box. JoU can be defined as follows:

IoU = —— 3)
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where B is the prediction box of an object, and G is the annotation box of an object.

AP (Average Precision) [33]: AP is a commonly used evaluation metric for OD. Using different thresholds,
one constructs PR curves to obtain multiple Precision-Recall values. The AP value is derived by integrating the area
enclosed by a PR curve and its coordinate axis. AP is defined by:

AP = jol p(rdr, 4)

where p denotes Precision; » denotes the Recall, and p(r) denotes the function with r as the parameter. The PR
curve is usually smoothed, i.e., each point on the PR curve comes to the highest precision value to the right. It is
expressed as follows:

Psmooth(r) = maxﬂ?rp(r/)' (5)

The commonly used AP value is the Interpolated AP, which takes the Precision values of [0,0.1,...,1.0] on the
horizontal axis and calculates the average value [33]. The AP is obtained by calculating the average of the Precision
values of 10 equal points of [0, 0.1, ..., 1.0], which is expressed as:

1.0

AP = % Zo P oo (). (6)

mAP (Mean Average Precision) [33]: The commonly used COCO metrics [24] for the accuracy evaluation are
as follows.

* AP is the mAP at IoU = 0.50:0.05:0.95;
» APs is the mAP at IoU = 0.50;
* AP;5 isthe mAP at IoU = 0.75;
* AR represents the AR when considering up to 100 detection points in each image;
* ARy is calculated for objects of compact dimensions, with an area of less than 32 x 32;
* ARy, is calculated for objects with intermediate dimensions, with an area between 32 X 32 and 96 X 96;
* AR, is calculated for objects of large dimensions, with an area bigger than 96 X 96.

5.2. SOD Metrics

The following metrics are typically used to evaluate salient object detection models. [8].
Mean Absolute Error (MAE) [131]: This metric assesses the average pixel-level discrepancy at which the
model-generated prediction map differs from the GT map, and is defined by:

W H
1
MAE = —— i, j)— Pred(i, j
WxH ; ; |G, j) — Pred(i, j)|, @)
where G represents a binary ground-truth (GT) map; Pred is the predicted map after normalization; W and H are the
input image dimensions.
Structure-measure (S ,,) [132]: This metric measures how similar the predicted map is to the ground truth and
is defined by

Sn=axS,+(1-a)xS§,, ®)

where S, and S, represent region- and object-oriented level structural similarity, respectively, a is usually set to 0.5.
Enhanced Alignment Measure (E,,) [133]: This metric identifies local-pixel matching and image-level statis-
tics from binary mapping using an enhanced alignment matrix O, which is defined by

1 W H
En= > > 0 )), ©)

=1 i=1

In this work, we use Adapted E-measure (AE,,) and Mean E-measure (M E,,) via the PySODEvalToolkit [134]
in our experiments. The difference is that when calculating Q;, a threshold is applied to filter the matching pixels in
AE,, and ME,,.

AE,, adopts an adaptive threshold (denoted by 7,,) which is the minimum of two times the mean value of the
predicted map (denoted by Pred,,) and 1, as follows:

T, = min{2 X Pred,,, 1}. (10)
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Let AT denote the pixels in the prediction map whose grayscale values are greater than or equal to the adaptive
threshold 7,,, then we have

Qs = f(éar)s (11)

where &47 denotes the alignment matrix using A7, and f(x) is a convex function selected (e.g., i(l + x)z) for calcu-
lating the enhanced alignment matrix Q; [133].

For ME,,, each grayscale value in the histogram of Pred is set to be a threshold n; (i = 1,...,Ny), where Ny
represents the total number of grayscale values in the histogram. As a result, using the set of pixels filtered by each
threshold, there is a set of E,, values. By averaging these E,, values, ME,, is determined. For more details, please
refer to PySODEvalToolkit [ 134].

F-measure () [135]: This metric represents the weighted average of Precision and Recall, and can be mathe-
matically represented by the following formula:

Foe (1 + %) Precision x Recall
P =" B2Precision + Recall

(12)

where % is usually set to 0.3, to increase the weight of Precision and weaken the proportion of Recall. Here we also
use Adapted F-measure (AF,,) and Mean F-measure (M F,,) [136] in our experiments.

Similar to AE,, and ME,,, AF,, and MF, employ adaptive thresholds 7,, as defined in formula (10), as well
as histogram thresholds 7; (where i ranges from 1 to Ny) for pixel filtering, respectively. Precision and Recall are
computed using these two types of thresholds for AF,, and MF,, according to formula (12), respectively. For more
details, refer to the PySODEvalToolkit [ 134].

Weighted F-measure (WF,,) [137]: As an improvement of F' —measure, wF,, solves the Dependency flaw
and Equal-importance flaw well, and the formula can be expressed as:

Fo o (1 + %) Precision® x Recall”
B B2Precision® + Recall®

(13)

where Precision® is weighted Precision and Recall® is weighted Recall. The weighting terms w for the four funda-
mental measures (7P, TN, FP, and FN) are calculated by the spatial relationship between foreground pixel positions
and background pixel positions concerning the foreground.

6. Underwater Object Multitask Dataset
In this section, we present a new underwater object multitask dataset (UOMT), to facilitate underwater research.

6.1. Data Deduplicating

RUIE [118] dataset and UODD [105] dataset are the sources of the proposed UOMT dataset. RUIE dataset
contains more than 4K images of underwater objects and environments with different astigmatisms. Over 3K images
of underwater cultured products can be found in the UODD dataset, which uses the MS COCO dataset [24] format
labels for object detection. Both datasets originate from video streams, so many images are duplicated. Additionally,
these two datasets contain numerous tiny objects and extremely blurry environments, which make them unsuitable for
the SOD segmentation task.

To support a comprehensive evaluation of multiple underwater tasks, we collected 1,766 images (over 7K
instances for three subjects, including 1,400 training sets and 366 test sets) from the RUIE dataset and the UODD
dataset to make the UOMT dataset. The UOMT dataset goes beyond a simple combination of existing datasets; it
represents a series of enhancements and optimizations built on these datasets. Specifically, we ensure that the selected
images encompass a broad range of underwater scenes, incorporating various lighting and scattering conditions, as
depicted in Figure 1. Meanwhile, a selection of representative images is meticulously curated to ensure uniqueness
and variety. Furthermore, to avoid data bias, images of various scenes and objects are collected as much as possible,
and duplicate images are avoided to be selected. In addition, we ensure that each target object is presented in at least
two distinct images. These strategies enhance the dataset’s comprehensiveness and robustness and guarantee broader
coverage of objects’ appearances.

6.2. Data Annotation

Due to the difficulty in observing underwater objects, we invited 20 observers to detect objects in each image.
We use a computer vision annotation tool (CVAT) [138] to label the targets in each image to obtain pixel-level
ground truth masks. CVAT supports many annotation types, such as rectangles, polygons, dots, labels, text, etc. We
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use CVAT Segmentation Mask 1.1 format for our pixel-level segmentation labels.

To ensure the quality and diversity of the UOMT dataset, we follow several principles in the annotation process.

1) For overlapping objects, they are labeled according to whether they belong to the same category. Objects of
the same category are labeled as a whole; objects of different categories are labeled as different categories, and over-
lapping parts are treated as edges.

2) For objects with very complex boundaries, such as sea urchins with many sharp spines, we label the outline
of each spine as meticulously as possible rather than simply drawing an approximate shape.

3) For some fuzzy or difficult-to-distinguish objects, we correct the annotation results through mutual review
among 20 annotators to ensure accuracy and consistency.

The UOMT dataset spans a wide spectrum of underwater objects and scenarios and features an array of
demanding situations, including category imbalance and small objects. This diverse composition enables the assess-
ment of model generalization and adaptability in real-world underwater environments.

6.3. Data Statistics

The UOMT dataset records different environments, illuminations, categories, dimensions, locations, and quanti-
ties of objects, along with backgrounds, etc. Specifically, the following key factors are considered when constructing
the UOMT dataset.

Object Size: All objects in each image are manually filtered, including multiple objects, small objects, and
camouflaged objects, as shown in Figure 1. This aligns with both the OD and the SOD tasks.

Ilumination Conditions: RUIE includes images under various underwater lighting conditions (such as blue
and green environments), as well as high-definition and low-illumination environments. The low and varying illumi-
nation in different environments poses challenges for OD and SOD tasks. We keep many sample images of different
lighting conditions.

Numbers of Object: The UOMT dataset accommodates images that contain multiple objects. The distribution
of images that contain multiple objects is shown in Figure 7, and the distribution of images with varying subject types
is presented in Figure 8. This inclusion addresses the challenges associated with multiobject OD and SOD tasks.
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Figure 7. Number of images with multiple objects in the UOMT dataset.
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Figure 8. Number of images with different subject types in the UOMT dataset.

Background Diversity: The UOMT dataset intentionally encompasses a range of challenging backgrounds.
This includes scenes with obscured views due to aquatic plants, underwater rocks, and corals, as well as cluttered
backgrounds such as turbid underwater scenes. In addition, scenes are designed to feature extrancous objects, such as
rocks and debris. This diversity of backgrounds has been carefully included to raise detection and segmentation diffi-
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culty.

7. Benchmarks

In this section, we evaluate the state-of-the-art methods of object detection and salient object detection on the
UOMT, respectively. We give a unified division of training and test sets by randomly selecting 1,400 images as the
training set and the rest 366 images as the test set. In addition, to ensure a fair comparison, official codes are used to
generate the results of other methods.

7.1. Object Detection Experiments

1) Experimental Settings: Our experiments are based on an open-source toolbox MMDetection (V3.0.0) [143].
During the experiments, we set up the following configurations:

» ImageNet parameters are used to initialize all backbone models. During training, each image is flipped
horizontally with a probability of 0.5. SGD [144] method is adopted to optimize all models, and WarmUp [145] is
used in each method. All experiments were performed on GTX 1080TI-11G and Tesla K80-11G.

* For Faster R-CNN [27], Cascade R-CNN [139], Mask R-CNN [28], Grid R-CNN [140], ATSS [142], FCOS
[141], YOLOF [42] and DINO [52], we resize each image into (320 x 320) pixels both in training and testing. With
batch size 2, the learning rate is initially set at 0.001, decreasing by 0.1 at the 16th and 22nd epochs.

* For CornerNet511 [46], each image is resized to (511x511) pixels for training and testing. The initial
learning rate is 1.0/3 with batch size 9 and decreases by 0.1 in the 180th epoch.

» For YOLOV3 [39], we resize each image into (320 x 320) pixels in both training and testing. The nine clus-
ters are as follows: (10x13), (16x30), (33x23), (30x61), (62x45), (59x119), (116x90), (156x198),
(373 x326), and are uniformly distributed across three distinct scales, deviating from the distribution observed in the
MS COCO dataset. Initially, the learning rate is set to 0.1 with a batch size of 5 and is decreased by 0.1 at the 218th
epoch and the 246th epoch.

* For YOLOX [48], we resize each image in (320 X 320) pixels both in training and testing. The learning rate
was originally set at 0.000625 with a batch size of 2 and was adaptively adjusted during the training process.

2) Quantitative comparison: Table 4 reports quantitative experimental results. One-stage detectors are generally
low in accuracy and high in efficiency, while multistage detectors are generally accurate and high in efficiency. In
terms of precision, there is no obvious difference between multistage methods (e.g., Cascade R-CNN) and the one-
stage methods for AP (e.g., FCOS [141]), and the average value of APy is always lower than that of AP, and AP;.
For AR, one-stage methods outperform multistage methods. However, multistage methods outperform one-stage
methods in AP;, and AR, . Furthermore, considerable potential remains for enhancing both AP and AR.

Table4 OD benchmarks on the UOMT dataset. The symbol 1 indicates the higher the evaluation metric, the better
the model is. The top results are highlighted in bold

Method Year Backbone AP1T APsg T AP751 APs 1 APy T AP T ARjo0 T ARs T ARy T AR
Two-stage detectors
Faster R-CNN w FPN [27] 2015 ResNet-50 39.70 72.00 39.80 31.90 41.50 46.30 50.10 47.20 50.30 50.00
Faster R-CNN w FPN [27] 2015 ResNet-101 41.80 76.00 42.00 34.50 42.90 5190 51.40 46.90 51.90 55.60
Mask R-CNN w FPN [28] 2017 ResNeXt-101-64x4d 41.80 75.10 42.10 37.30 42.50 49.60 49.00 46.80 49.30 53.30
Cascade R-CNN [40] 2018 ResNet-101 4320 77.70 39.20 36.10 43.00 51.80 52.10 48.50 50.50 56.20
Grid R-CNN w FPN [140] 2019 ResNeXt-101 4230 79.30 44.20 36.60 41.70 50.60 52.10 52.70 49.40 55.70
One-stage detectors
CornerNet511 [46] 2018 Hourglass-104 31.90 59.20 30.00 24.20 35.60 36.80 51.70 46.50 53.80 49.80
YOLOV3 [39] 2018 DarkNet-53 38.80 75.10 36.90 30.10 41.40 49.00 47.90 41.20 50.30 53.60
FCOS [141] 2019 ResNeXt-101-64x4d-FPN 43.50 76.70 46.40 38.80 45.50 50.10 57.80 57.80 57.40 54.50
ATSS [142] 2020 ResNet-101 42.60 76.40 41.60 35.40 43.60 49.00 57.10 52.70 58.80 52.80
YOLOVS [41] 2021 CSPDarkNet-53 44.40 84.00 84.00 28.90 45.10 52.20 - - - -
YOLOF [42] 2021 ResNet-50 36.60 73.10 30.30 30.10 39.50 42.00 54.40 50.60 55.40 49.60
YOLOX [48] 2021 YOLOX-1 44.10 78.50 43.00 32.40 47.00 51.10 56.70 53.90 57.10 57.60
DINO [52] 2022 ResNet-50 42.10 75.90 43.30 35.00 44.40 43.40 60.30 58.30 61.50 60.70

3) Qualitative comparison: We select a few challenging scenes that include large objects, small objects, com-
plex multiple objects, and complex and low-contrast backgrounds for comparison, as shown in Figure 9 and Figure 10.
Except for CornerNet [46], other methods detect multi-objects well. FCOS [141] has the highest detection perfor-
mance and detects large and small objects.
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Images GT maps FasterRCNN-  FasterRCNN- Cascade- Mask- Grid- CornerNet[46]
R50[27] R101[27] RCNN[140] RCNN][28] RCNN[141]

Figure 9. Visual comparison of OD methods on the UOMT dataset. The symbols 0B, 1B, and 2B denote three cate-

gories of objects, respectively.
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Images GTmaps  ATSS[143] FCOS[142] YOLOV3[39] YOLOvS[41] YOLOF[42] YOLOX[48] DINO[52]

Figure 10. Visual comparison of OD methods on the UOMT dataset. The symbols 0B, 1B, and 2B denote three cate-

gories of objects, respectively.

7.2. Salient Object Detection Experiments

1) Experimental Settings: In this section, we train eleven SOD models to demonstrate their performance on the
UOMT dataset, including SCRN [146], PoolNet [68], EGNet [70], CPD [67], BASNet [69], LDF [71], Joint-SOD-
COD [147], TRACER [80], PGNet [85], EDN [78] and MENet [81]. The relevant configuration of the experiments
is as follows.

* The parameters (e.g., learning rate, weight decay, momentum, etc.) of each model in experiments are
initialized according to the settings described in their papers.

* To ensure a fair comparison, we use the PySODEvalToolkit [ 134] as the evaluation tool.

» We perform joint training on GTX 1080TI-11G and Tesla K80-11G.

2) Quantitative Comparisons: Table 5 shows the benchmark for the different SOD methods on the UOMT
dataset. The results indicate that reducing the multilevel features (e.g., SCRN [146]), refining the high-level semantic
features (e.g., PoolNet [68]), and incorporating deeper layer features (e.g., CPD [67]) produces relatively precise
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structural similar salient maps. Integrating fine-grained edge details and comprehensive spatial contexts (i.e., CPD
[67] and EGNet [70]) to obtain salient edge features can lead to an increase ME,, value. For MF,,, wF,,, AF,,, and
AE,,, a densely guided encoder-decoder architecture, and a residual fine-tuning module, edge information as auxil-
iary supervision in feature interaction (i.e., LDF [71] and BASNet [69]) has more advantages. Due to the use of both
ResNet and Swin-Transformer as the backbone and the reasonable fusion of their features, PGNet [85] has better
extraction results and performs the best among all models.

Table 5 SOD benchmarks on the UOMT dataset. The symbol 1 indicates the higher the evaluation metric, the better
the model is, and the symbol | indicates the lower the evaluation metric, the better the model is. The top results are

highlighted in bold

Method Year Backbone MAE | Sm T ME,, T MF,, 1 wFy, T AE, T AF, T
SCRN [146] 2019 ResNet50 0.019 0.826 0.916 0.766 0.725 0.928 0.711
PoolNet [68] 2019 ResNet50 0.019 0.826 0.917 0.760 0.721 0.924 0.702
PoolNet [68] 2019 VGGI16 0.053 0.670 0.710 0.485 0.342 0.657 0.367
EGNet [70] 2019 ResNet50 0.019 0.815 0.927 0.755 0.726 0.932 0.724
EGNet [70] 2019 VGGI16 0.024 0.794 0.867 0.708 0.647 0.834 0.586
CPD-ResNet50 [67] 2019 ResNet50 0.019 0.827 0.923 0.765 0.728 0.926 0.712
CPD-VGG16 [67] 2019 VGGl6 0.018 0.825 0.929 0.776 0.744 0.940 0.752
BASNet [69] 2019 ResNet50 0.018 0.808 0.920 0.779 0.738 0.945 0.744
LDF [71] 2020 ResNet50 0.018 0.808 0.920 0.779 0.738 0.945 0.744
Joint-SOD [147] 2021 ResNet50 0.017 0.822 0.934 0.788 0.759 0.944 0.764
TRACER [80] 2021 ResNet50 0.020 0.785 0.904 0.737 0.697 0.930 0.710
EDN [78] 2022 VGGI16 0.029 0.770 0.917 0.745 0.571 0.929 0.709
EDN [78] 2022 MobileNetV2 0.066 0.676 0.849 0.631 0.344 0.874 0.602
EDN [78] 2022 ResNet50 0.042 0.734 0.900 0.726 0.456 0911 0.683
PGNet [85] 2022 ResNet-Swin 0.016 0.831 0.939 0.795 0.769 0.947 0.776
MENet [81] 2023 ResNet50 0.023 0.721 0.856 0.743 0.613 0.856 0.701

3) Qualitative comparisons: As we can see from Figure 11 and Figure 12, PGNet [85] detects edges better for
large objects. Joint-SOD [147] and LDF [71] are sensitive to blurred edges. The remaining methods are not sensitive
to edges. With multiple small objects, CPD [67] and EDN [78] perform better than the other methods.

In summary, we can conclude that densely supervised networks introduce edge information as auxiliary super-
vision, the network refines multilevel features, and integrating local and global location information can improve the
accuracy of underwater salient object detection. Transformers increase detection accuracy and efficiency. However,
existing SOD methods are still far behind GT in underwater scenes. More research is needed to explore more accu-
rate and efficient underwater salient object detection.

PRPSPI PSP

Images  GTmaps SCRN[147] PoolNet- PooNetR50 EGNet.  EGNet. CPD- CPD-  BASNet[69]
VGG[68] R50 VGG[70] VGG[67]  R50[67]

Figure 11. Visual comparison of some SOD methods on the UOMT dataset.
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Images GT maps LDF[71] Joint-S TRACER [80] PGNet[85] EDN- EDN- EDN- MENet[81]
OD[148] MV2[78] R50[78] VGG[78]

Figure 12. Visual comparison of some SOD methods on the UOMT dataset.

8. Future Development Discussion

Given that we are still in the nascent stages of underwater object detection (OD) and salient object detection
(SOD), substantial scope remains for scholarly exploration. We propose the following considerations to provide a
guiding framework for future development.

Enhanced Data Diversity: A concerted effort should be directed towards expanding the diversity of underwa-
ter datasets, encompassing an even broader range of environmental conditions, object categories, and challenges. This
will encourage the development of more robust and adaptable algorithms.

Integration of Multi-Modal Data: Underwater environments are intricate, encompassing many data types that
can be gathered, such as optical, acoustic, and magnetic data. Integrating these different data modalities can help
enhance underwater object detection accuracy and robustness.

Active Learning and Semi-Supervised Learning: Collecting labeled data for underwater object detection and
salient object detection can be challenging and time-consuming. Active learning and semi-supervised learning tech-
niques reduce labeled data requirements and improve learning efficiency.

Incorporation of Domain-Specific Knowledge: The underwater environment has specific properties that dif-
fer from the land environments. Incorporating domain-specific knowledge and expertise about these properties into
object detection and salient object detection algorithms could help to improve their performance.

Real-Time Processing: Real-time processing is essential for many underwater tasks, including underwater
robotics and monitoring. Developing algorithms that can detect objects and detect salient objects in real time could
greatly improve the usefulness of these techniques in underwater environments.

Pre-trained Model Migration: In underwater small object detection, models pre-trained on other domains or
larger datasets can be used, and migration learning can be performed. By fine-tuning the pre-trained model on under-
water data, it is possible to speed up model convergence and improve small object detection performance.

Combination of OD and SOD: The combination of OD and SOD is an exciting direction for underwater
detection research, which enables a more comprehensive understanding of scenes. There are several advantages to
this. Integrating SOD with OD can help refine object localization. SOD can provide additional information about the
most visually prominent parts of an object, aiding in accurate localization. This saves computational resources and
increases processing speed, especially in large-scale datasets or real-time applications. However, the output of OD can
be used to guide the SOD process, ensuring that the salient regions are associated with the correct objects. This can be
particularly useful in crowded scenes where instance separation is challenging. In addition, combining OD- and SOD-
generated masks can create diverse training data for both tasks, improving the models' generalization capabilities.
However, when designing a model that involves the fusion or serialization of SOD and OD, potential conflicts or
inconsistencies between them must be addressed. It is also important to carefully design the integration to avoid
redundancy and ensure meaningful enhancements.
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9. Conclusion

In this paper, we present a comprehensive overview of object detection (OD) and salient object detection (SOD)
techniques specifically tailored to challenging underwater environments. Although there has been notable progress in
these domains, it is crucial to acknowledge that research on OD and SOD for underwater scenarios is still relatively
young. Significant challenges remain, including the lack of reliable and diverse underwater datasets.

We perform a thorough analysis to address these ongoing challenges and provide insightful recommendations.
In addition, we contribute to the research community by introducing a novel underwater object multitask dataset
(UOMT). The UOMT dataset is carefully curated and includes various underwater scenes. It offers two essential
types of annotation: object detection annotations in the COCO format and salient object detection masks with pixel-
level labels.

In addition to providing the dataset, we establish a comprehensive benchmark for OD and SOD tasks. This
benchmark encompasses a diverse set of accuracy metrics, making it a valuable resource for academic research and
practical industrial implementations. These evaluations enable researchers and practitioners to assess the performance
of OD and SOD algorithms under challenging underwater conditions, further advancing the field.
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