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Abstract: As an optimization technique,  the gradient  descent  method is  widely adopted in the training
process of deep learning. In traditional gradient descent methods, the gradient of each dimension has the
same  weight  wtih  the  updating  direction,  which  results  in  poor  performances  when  there  are  multiple
small gradient dimensions (e.g. near the saddle point). To improve the accuracy and convergence speed
of  the  neural  network  training,  we  propose  a  novel  multi-dimensional  adaptive  learning  rate  gradient
descent optimization algorithm (M-AdaGrad) in this paper. Specifically, in the M-AdaGrad, the learning
rate will be updated according to a newly designed weight function related to the current gradient. Exper-
iments on a set of sigmoid-based functions verify that, compared with traditional gradient descent meth-
ods such as AdaGrad and Adam, the M-AdaGrad gives more confidence to the larger gradient direction
and has a larger probability to reach a more optimal position with a faster speed. Due to its excellent per-
formance in network training, the M-AdaGrad is successfully applied to the magneto-optical nondestruc-
tive test of crack detection based on the generative adversarial network.

Keywords: multi dimension adapted learning rate; gradient descent optimization; neural network; non-
destructive test; crack detection

 
 
1. Introduction

In the past decade, the deep learning neural networks have developed rapidly and attracted much attention in a
large number of applications including image processing [1–4] and speech recognition [5–7]. Different novel struc-
tures of neural networks have been proposed to analyse big and high dimension data, such as the convolutional neu-
ral networks (CNN) [8–10], generative adversarial networks (GAN) [11–13], auto-encoder [14–16], long-short term
memory (LSTM) [17, 18] and graph neural networks (GNN) [19–21]. Usually, a neural network model is designed
to solve a specific  complex problem such as feature extraction,  information classification,  data generation and data
prediction. For these complex tasks, the nonlinear activation functions (e.g. the sigmoid function and 'relu' function)
are commonly introduced in the feedforward networks [22, 23]. In neural networks, the feedforward networks estab-
lish the connection between the inputs and the loss function. The introduction of these nonlinear activation functions
would cause the loss function to be a complex and nonlinear function of the inputs or hidden layer parameters, even
though the loss function is sometimes simple for the outputs. In addition, the neural network's objective function is
often nonconvex, which means that there are multiple local optimal solutions and saddle points. Therefore, during the
training of the neural network, it is easy to fall into a local optimization point, which has negative influences on the
training results.

−∇θL(θ)
L(θ), θ ∈ Rd

In the  training of  the  neural  networks,  the  stochastic  gradient  descent  (SGD) method is  widely used to  mini-
mize the loss function, which regards the gradient of the neural network parameter  as the best direction to
optimize  the  objective  function .  In  order  to  make  the  updating  process  closer  to  the  optimal  solution,
many improved gradient descent based algorithms have been proposed. For example, the momentum based method,
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which  updates  by  considering  the  historical  descent  direction,  can  improve  the  speed  of  convergence  and  help  the
searching point jump out of the local optimum to find a better solution [24]. This idea can also be found in the adap-
tive learning rate  optimization methods,  such as the adaptive subgradient  method (AdaGrad) [25, 26]  and adaptive
moment estimation (Adam) method [27, 28].

ϵ√
Gt + ξ

Gt =Gt−1+g2
t ,G0 = 0 Gt

gt

Adaptive learning  rate  optimization  methods  have  made  contributions  to  deep  learning  in  accuracy  improve-
ment  (especially  in  the  situation  of  closing  to  the  minimization  point),  but  still  have  some  shortcomings  such  as
unstable  learning  rate  adjustment  and  low  training  efficiency.  Specifically,  in  the  Adagrad-based optimized  algo-
rithms, the learning rate in every dimension of the gradient is changed depending on the historical gradients, and it is
generally thought that the main updating gradient vector direction should take more consideration of the larger gradi-
ent direction, especially in the condition of multi-local optimum solutions. Note that in high dimension optimization,
especially the optimization nearby the saddle points, the gradients in most of the dimension are small and the main
updating direction will  inevitably follow the small  gradient direction.  Furthermore,  the Adagrad-based optimization
method will reduce the contribution of the larger gradient direction using the historical gradient information which is

described by , where ,  is the sum of the squares of the historical gradient values,
and  is  the gradient  values of  the current  iteration.  These two reasons result  in  that  the updating direction of  the
optimization prefers the small gradient direction rather than the larger gradient direction.

Motivated by the problems mentioned above, we propose a novel adaptive learning rate optimum method com-
bining  gradient  directions  of  all  parameters.  In  a  word,  the  learning  rate  would  be  updated  by  a  different  strategy
which fuses all the gradients to give more preferences to the larger gradient. The main contributions of our work can
be summarized from four aspects as follows.

1) A novel multi-dimension adaptive learning rate optimization method is proposed to train the neural networks.
This algorithm would update the learning rate based on the distribution of all the gradient and prefer the larger gradi-
ent  direction  to  create  a  new weight  vector  of  the  learning  rate  for  every  iteration.  This  strategy  could  help  tracks
jump out of the flat area towards a more advantageous direction.

2) By introducing a softmax function (also known as the normalized exponential function) to process the gradi-
ent, a learning rate confidence weight vector is created. This vector guides the trajectory to the optimal solution via a
more efficient direction, and also helps to prevent the gradient explosion since the weight would be saturated when
the gradient is too big.

3) A visible simulation is designed to test the proposed method. The objective function is built based on a set of
sigmoid-based functions. Since the activation function of a large number of deep learning neural networks is the sig-
moid function, the simulation experiment is more consistent with practical applications.

4) The proposed method is also successfully verified in an engineering case, i.e. the GAN training case of the
magneto-optical  nondestructive  test  (NDT) of  crack detection based on a  small  set  of  sampling data.  By using the
proposed method, the GAN could fastly be trained to segment the magnetic optical  image,  and the crack could be
identified  and  located  in  the  image.  Meanwhile,  the  training  error  is  significantly  smaller  than  that  of  the  existing
methods such as the Adam and SGD.

The remaining content of this paper is organized as follows. The basic theory of the gradient descent algorithm,
especially the Adagrad-based method, is discussed in Section 2. A novel multi-dimension adaptive learning rate algo-
rithm is introduced in Section 3. The simulation results are presented in Section 4 using some well-known functions
or their combination, and the application to crack detection using the GAN is shown in Section 5. Finally,  conclu-
sions and discussions on relevant work are presented in Section 6.

2. Related Work

x(i:i+m−1)

y(i:i+m−1)

The SGD and its variants may be the most important and widely used optimization techniques in the training
process of deep learning. The SGD-based method performs the parameters update for training samples  and
labels  by

θk+1 = θk − ϵk · ∇θk
Å

1
m

∑
L( f (θk, x(i:i+m−1)),y(i:i+m−1))

ã
, (1)

θk k θk+1

m = 1,2, · · · ϵk k L(·) f
L(·)

f (·)

where  is the parameter of the neural networks at the th iteration,  is the updated parameter of the neural net-
works, ,  is the learning rate at the th iteration,  is the loss function, and  is the training target.
The  optimization  aim  of  deep  learning  (machine  learning)  is  to  minimize  the  object  function  to  improve  the
characteristics of the neural network function . For the SGD, the objective function and gradient of each iteration
are calculated based on a random mini-batch of data rather than the whole training data, so it is beneficial to jump out
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of the local optimal points and saddle points. When the mini-batch data differs greatly from the global data, the opti-
mization trajectory of the SGD is prone to vibrations, and this results in a slow convergence speed.

To improve the convergence speed and the output accuracy of the mini-batch optimization, many SGD-based
algorithms  have  been  proposed.  The  momentum  algorithm  uses  the  weighted  average  of  the  historical  gradient
instead of the current gradient for updating, which restrains the vibration and improves the convergence speed. Simi-
lar to SGD, the momentum algorithm adopts a fixed learning rate for all parameters to be trained. With the increas-
ing  of  parameters  (dimensions)  in  neural  networks,  the  disadvantage  of  convergence  instability  has  gradually
emerged.  Thus,  more  and  more  adaptive  learning  rate  optimization  algorithms  have  been  designed.  The  AdaGrad
algorithm proposed in 2011 is a remarkable method which optimizes the learning rate using the second-order moment
of the gradient [25]. Subsequently, many more algorithms based on AdaGrad have been proposed, such as the root
mean square propagation (RMSProp) [29], the moment-based RMSProp method and the Adam method [27]. Among
them,  the  Adam algorithm can be  regarded as  the  combination of  the  RMSProp and the  momentum methods,  see
Algorithm 1 (the Adam algorithm).
 
 

Algorithm 1 Adam algorithm
ϵRequire: Learning rate  (Recommended default value: 0.001);

ρ1 ρ2Require: Exponential decay rate of momentum estimation,  and  in range of [0, 1) (Recommended default values are 0.9 and 0.999
respectively);

δRequire: A small constant value  to make sure the numeral computing stable (Recommended default value: 10−8);
θ0Require: Initialed value of ;

u = 0 r = 01: Initial the value of the first-order and second-order moments: , ;
k = 02: Initial the time step, ;

3: while Don’t fit the stop condition do

m {x(1), · · · ,x(m)} y(i)4: 　Sampling  samples  from the training data set as the mini batch data whose labels are ;

g =
1
m
∇θk

∑
i
L( f (θk,x(i)),y(i)))5: 　Compute the gradient: ;

uk+1 = ρ1uk + (1−ρ1)g6: 　Update the biased first-order moment estimation: ;
rk+1 = ρ2rk + (1−ρ2)g7: 　Update the biased second-order moment estimation: ;

û =
uk

1−ρt
1

8: 　Revise the first-order moment: ;

r̂ =
rk

1−ρt
2

9: 　Revise the second-order moment: ;

∆θ = −ϵ û√
r̂+δ

10: 　Update the computation:  (Application on each element);

θk+1 = θk +∆θ11: 　Update the parameters: ;
k = k+112: 　 ;

13: end while
 

ρ1 ρ2

The Adam algorithm utilizes the first-order and second-order moments to revise the updating process in opti-
mization. The first-order moment is used to determine the final updating direction and the second-order moment is
used to constrain the large gradient direction to get an appropriate and efficient learning rate. This means that, when
the learning rate is too small, Adam will amplify it to increase the training efficiency; and when the learning rate is
too large, Adam will adaptively reduce it to avoid crossing the minimum point of the objective function. When the
parameters  and  are set to be zeros, the Adam algorithm is degraded to the AdaGrad method.

AdaGrad and Adam greatly improve the stability of the training process by adapting to the change of the learn-
ing rate. In some cases (especially when there are too many parameters to be optimized in the network), the training
speed and accuracy will be sacrificed. The reason is that, the second-order moment methods reduce the learning rates
of the large gradient directions more than the small gradient directions (as shown in Figure 1(a)). Compared with the
small  gradient  directions,  it  is  easy  to  reach  the  minimum  point  faster  along  the  large  gradient  direction,  and  the
decrease of the learning rate in this direction has a negative influence on the training speed. Furthermore, the signifi-
cant reduction of the learning rate of the large gradient direction also implies that, the learning rate of the small gradi-
ent  direction  would  influence  the  final  optimal  trajectory  direction,  especially  when  there  are  a  huge  amount  of
parameters to be optimized. For example, the final direction for updating in Figure 1(a) is obviously deviated from
the direction of two larger gradients.
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The original gradient direction

The single dimension optimization gradient direction

The multi dimension optimization gradient direction

The final direction for updating

(b)(a)

Figure 1.  The different effects when using different optimization strategy. 

3. A Novel Adaptive Learning Rate Algorithm

With the increasing of the dimension and complexity of the neural network, more and more saddle points have
appeared in the objective functions. Hence, the gradient descent methods face more challenges. The optimization tra-
jectory jumps out of the saddle point very slowly and guides the optimization process to the local minimum point fol-
lowing the small  gradient value direction due to the facts that,  many gradient values of the multi-dimension neural
network are small, and some larger gradient values can be reduced by the current gradient optimization methods. This
reduces the training speed.

Remark 1: In the neural network training, the optimization trajectory will be guided by the gradient direction.
The AdaGrad-based optimization methods utilize the momentum parameter and the second-order-moment to revise
the optimization direction (speed) and stability (accuracy). The optimization process will stop when the gradient vec-
tor is very small,  even become zeros, which often happens at the saddle position or the optimal position. The opti-
mization process hardly stops at the saddle position when the dimension of the neural network is huge, because it is
difficult to make all the gradient components be zeros. In generally, the gradient descent method could guide the opti-
mization trajectory move away from the saddle position easily.

so f tmax

For the optimization process, the gradient is significant to reduce the loss because it supplies a convinced opti-
mization direction. When there exists a large gradient, we will prefer to select this direction to optimize the model (as
shown  in Figure  1(b)).  Motivated  by  this  idea,  a  novel  adaptive  learning  rate  optimization  algorithm  is  proposed,
which takes the relationship of all the gradient values into consideration. In order to quantize the multi-dimensional
gradient contribution value, the  function is used to produce the weight vector. The exponential decay rate
parameter  is  imported  to  the  algorithm to  reduce  the  negative  effects  of  the  too  fast  decreasing  learning  rate.  The
detail  of  the multi  dimension gradient  optimization algorithm is  shown in Algorithm 2,  which is  named as the M-
AdaGrad algorithm and is based on the AdaGrad algorithm.
 
 

Algorithm 2 M-AdaGrad algorithm
ϵRequire: Learning rate  (Recommended default value: 0.001);

αRequire: Exponential decay rate parameter:  (Recommended default value: 0.99);
βRequire: Exponential decay rate parameter:  (Recommended default value: 1);

δRequire: A small constant value  to make sure that the numeral computing stable (Recommended default value: 10−8);
θRequire: Initialed value of ;

r = 01: Initial the value of the second-order moment: ;
k = 02: Initial the time step, ;

3: while Do not fit the stop condition do

m {x(1), · · · ,x(m)} y(i)4: 　Sampling  samples  from the training data set as the mini batch data whose labels are ;

g =
1
m
∇θ
∑

i
L( f (θk,x(i)),y(i)))5: 　Compute the gradient: ;

η = so f tmax(β, |g|) so f tmax(β, |g|)i =
eβ|gi |∑n
j=1 eβ|g j |

n6: 　Update the multi-gradient information parameters: , where ,  is the number of the

parameters needed optimized;
η̂i = 1+ηi i = 1, · · · ,n7: 　Revise the multi-gradient weight value parameters: , where ;

ρi = αηi i = 1, · · · ,n8: 　Revise the exponential decay rate: , where ;
rk+1 = ρ⊙ rk + (1−ρ)⊙g⊙g9: 　Update the biased second-order moment estimation:  (Application on each element);

∆θ = − ϵ√
rk +δ

⊙g10: 　Update the computation:  (Application on each element);

θk+1 = θk + η̂⊙∆θ11: 　Update the parameters: ;
k = k+112: 　 ;

13: end while
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so f tmaxThe main innovation in Algorithm 2 is the import of the multidimension gradient information. The 
function  is  utilized  to  describe  the  optimization  ability  in  different  gradient  directions,  and  has  the  following  good
characteristics.

so f tmax
1) Saturation characteristic. When there are only a few gradient directions, the weight of these directions would

not be very big because the maximum value of the  function is 1. This guarantees the weight holds in a con-
trolled range so that the ‘gradient explosion’ situation could be efficiently prevented as shown in Figure 2.
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Figure 2.  Gradient explosion restraining.
 

so f tmax
e(input)

β

2) Significant preferences in directions of large gradients. The basic function of the  is the exponential
function , and the weight of the larger gradient direction will be further enhanced compared with the small gra-
dient direction, which is shown in Figure 3. The exponential decay rate parameter  is used to adjust the distribution
of the weight vector.
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1
n

n

3) The uniform distribution when the inputs are small. The optimization trajectory usually changes slowly when
going around the local minimum point, because all the gradient components are very small. In this case, the weight

value will converge to , where  is the number of the parameters to be optimized. Figure 4 shows the change of
weights in the gradient range from −0.0001 to 0.0001 for n=11, where the weight value vector is distributed almost
uniformly. This indicates that the final direction of the optimization will be the same as the original gradient vector
direction. Hence, the optimization process could reach local minimum solution stability. In other words, this method
holds the advantage of the traditional gradient descent method when the search point is close to the optimal solution.
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β so f tmax
β (0,1]

e(input)

β

Remark 2: It should be noted that the exponential decay rate parameter  in  is designed to balance the
enhancement ratio of the multi-gradient direction. When the value of  is larger (in the range of ), the ratio of
the multi gradient direction would be enhanced more significantly, which can be seen in Figure 3. Meanwhile, this
parameter  could prevent  the numerical  computation error.  Almost  all  computation platforms (e.g.  MATLAB) have
the  limitation  of  the  biggest  computing  numerical  value.  There  might  be  overflow  caused  by  the  function 
when the input gradient value is big. The parameter  can be set artificially to constrain the magnitude of the power
of the exponential function, which provides a way to deal with this kind of problem. It is still recommended that pre-
process the training data to make sure that the training process work well. This is good to improve the performance of
the neural networks.

ϵ

α β δ

α ρ

ρi = αηi ρi = α

ρ

Furthermore,  four  parameters  should  be  initialized  including  the  learning  rate ,  the  exponential  decay  rate
parameters  and ,  and  the  small  constant  in  the  proposed  M-AdaGrad  algorithm.  Especially,  the  exponential
decay  parameter  is  designed  to  adjust  the  exponential  decay  of  the  momentum estimate .  When  the  modified
function  degenerates to , the form of the exponential decay of momentum estimation will be the same
as the RMSProp. By introducing the modified , the learning rate will change adaptively according to the gradient
value. For the large gradient direction, the learning rate attenuation will be small, so as not to weaken its guiding sig-
nificance for the optimization process. Meanwhile, this exponential decay rate can also ensure a small learning rate
when the optimization trajectory is close to the optimal solution. Hence, the optimization process can converge to the
target point.

4. Simulation

To identify the advantages and characteristics of the proposed M-AdaGrad, a visible simulation experiment is
carried out in this section. A multi-parameter nonconvex optimization task is designed using a set of sigmoid based
functions given by (2).

s(b,w) =
K

1+ e−a( (b+px )2

C1
+

(w+py )2

C2 )
, (2)

b w K a px py C1 C2where  and  are the parameters to be optimized, and , , , ,  and  are constant parameters. Six sig-
moid-based functions are imported to build a nonconvex optimization face and the corresponding parameters are pre-
sented in Table 1.
  

Table 1    The parameters of the simulation function model
Functions K a px py C1 C2

s1(b,w) 6 0.1 −2 10 4 9
s2(b,w) 4 0.1 7 −10 20 4
s3(b,w) 7 0.8 10 5 4 17
s4(b,w) 7 0.8 −12 −5 14 25
s5(b,w) 6 0.7 −10 10 4 9
s6(b,w) 10 1.3 1 −1 25 40

 

The loss function is designed as follows based on the above function set.

J(b,w) =
1
m

m∑
i=1

(yi− xi(−s1− s2+ s3− s4− s5+ s6))2, (3)

(x,y) m b
w J(b,w)

where the training data set  is presented in Table 2 and  is the number of the training data. The parameters 
and  are the targets to be optimized by minimizing the loss function .
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Table 2    The data set of the simulation
variable 1 2 3 4 5

x 0.33 0.31 0.32 0.2  0.22  
y 0.64 0.63 0.61 0.39 0.42  

variable 6 7 8 9 10
x 0.02 0.17 0.06 0.2  0.6    
y 0.02 0.19 0.06 0.22 0.151

 

Combining  the  data  and  the  loss  function  mentioned  above,  a  complex  optimization  space  can  be  obtained
which includes four different local minimum positions and two different local maximum positions as shown in Fig-
ure 5.
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Figure 5.  The 3D visible plane of the loss function.
 

(b,w) = (−3,0.8)
(b,w) = (1.5,0.8) (b,w) = (−0.8,−1.8)

t = 160

In the deep learning training process, the optimization result will finally converge to a local minimum solution,
and the initial  points  play important  roles  during this  process.  To fully verify the performance of  the proposed M-
AdaGrad  in  different  situations,  three  experiments  are  designed  at  different  initial  points ,

 and . In  the  first  experiment,  the  starting  point  is  between  two  local  mini-
mum positions; in the second experiment, there are three local minimum positions in front of the starting point; and in
the third experiment, the starting point is close to a local minimum position. In every experiment, two optimization
trajectories are presented using the proposed new algorithm and the general algorithm. The iteration number is set to
be a constant value  to compare the converging speed of the two optimization algorithms.

4.1. The First Experiment
The optimized trajectory result of the first experiment is shown in Figure 6. Although the optimization trajecto-

ries are opposite,  both of them converge to a local minimum point,  which shows the effectiveness of the proposed
method. What is more, the trajectory of M-AdaGrad is more sparse near the initial position, and approaches the local
optimal point more directly than the trajetory of the general optimization.
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Figure 6.  The optimized trajectory of the first experiment
 

b w
Figure 7 shows the gradient curves of every direction/dimension. The gradients optimized by the proposed M-

AdaGrad (both  and ) converge to zeros much faster than the gradients in general optimization algorithms. Fur-
thermore, combined with the weight curves in Figure 8, M-AdaGrad tends to assign more weights to the large gradi-
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ent  directions.  Therefore,  the  gradient  curves  of  M-AdaGrad  fluctuate  more  heavily  especially  around  the  saddle
point, which indicates that M-AdaGrad is also helpful to the optimization process in escaping the saddle point effi-
ciently.
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1
2

1
n nFigure  8 also  shows  that  the  weight  in  M-AdaGrad  converges  to  (this  value  will  be  when  there  are 

parameters), which indicates that the weight value will not influence the main direction when the optimization trajec-
tory is close to the target point. This characteristic could be utilized to judge whether the optimization process con-
verges or not, and design a corresponding stopping condition for training.

4.2. The Second Experiment
The second experiment simulates another situation where two local minimum positions exist in front of the ini-

tial point. Figure 9 presents the optimized trajectories of the two different gradient descent optimization algorithms. In
general optimization algorithms, the learning rate is too much weakened in large gradient directions, which leads to
the increased influence of small gradient directions on optimization, especially near the saddle point where the gradi-
ents of all parameters are relatively small and the small gradient directions even dominate the optimization route. This
results  in  that  the  optimization trajectory bypasses  a  lower  local  minimum position (the red line  in Figure  9).  This
drawback is improved by the M-AdaGrad algorithm, in which the weight is enhanced in the direction of large gradi-
ents.  Hence,  the  optimization trajectory  will  approach a  relatively  smaller  local  minimum position,  which means  a
better optimization result.
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Figure 9.  The optimized trajectory of the second experiment.
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n = 2

Figure 10 and Figure 11 show the gradient curves for the two parameters and the corresponding weight values.
The gradient curves of the general algorithm in Figure 10 shows that the optimization speed is slow, even when the
gradient is larger that that of the proposed algorithm, which again verifies that the information of the larger gradient
directions  is  not  fully  used  in  the  general  algorithm.  In  addition,  same  as  the  first  experiment,  the  weight  in  this

experiment also converges to  where .
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Figure 10.  The gradient curves of every gradient direction of the second experiment.
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4.3. The Third Experiment

The third experiment is carried out under the condition that there is only one local minimum point near the ini-
tial point. In this experiment, the general optimization algorithm and the proposed M-AdaGrad algorithm eventually
converge around the same minimum point, but the optimization trajectories of the two algorithms are different. Fig-
ure  12 shows  that  M-AdaGrad  can  efficiently  shorten  the  optimization  trajectory  and  stably  converge  to  the  local
minimum position. Furthermore, although the final optimization results are very close, the objective function value at
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the convergence point of M-AdaGrad is still slightly smaller than that of the general optimization algorithm. In addi-
tion,  similar  to Figure  8 and Figure  11,  the  weights  in Figure  13 eventually  converges  to  1/2  as  expected,  which
demonstrates that the M-AdaGrad algorithm is able to stably adjust the convergence weights.
 
 

The trajectory of general optimization

The trajectory of new optimization

5.0
10

−5

4.55

0

4.0

0

5

3.5

−5

10

3.0

−10

2.5

−15

2.0

1.5

1.0

w

b

Cost value=1.1337

Cost value=1.1337

Figure 12.  The optimized trajectory of the third experiment.
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Figure 13.  The gradient curves of every gradient direction of the third experiment.
 

5. Applications

To further  verify  the  practical  value  of  the  proposed algorithm,  we apply  M-AdaGrad to  network  training  to
minimize the loss function and compare M-AdaGrad with other gradient descent optimization algorithms.

The mixed national institute of standards and technology database (MNIST) is a public computer vision dataset
that contains 70000 grayscale images of handwritten numbers. Each image contains 784 (28 * 28) pixels, which can
be transformed into a one-dimensional array of length 784 and used as input features. A fully connected neural net-
work can be used for MNIST training to generate similar handwritten digital images. The loss function of this net-
work can be written as (4).

min
N

max
D
EX∼Pt

[log D(X)]+EI∼Pc
[log(1−D(N(I)))] (4)

Pc N X
Pt D

where  is the distribution that the detected images belong to,  is  the generator network,  is  the output of the
generator  network,  is  the distribution that  the target  images belong to,  and  is  the discriminator  network.  The
activation function of the hidden layers is  the rectified linear unit  (ReLU) and the activation function of the output
layers (including the generator network and discriminator network) is the sigmoid function.

We use the Adam algorithm and M-AdaGrad to optimize the loss function, respectively, with the same training
parameters. Figure 14 shows the comparison of the training results of the generated network after a fixed number of
iterations by M-AdaGrad and Adam. Figure 14 shows that,  although the network trained by M-AdaGrad still  con-
tains some noises, it is able to generate a relatively legible handwritten digital image after 1200 iterations. In contrast,
the shape of the numbers is hard to be recognized in the images generated by the Adam trained network. Previous
experiments  on the sigmoid-based functions show that  M-AdaGrad can minimize the objective function to  a  more
optimal value with a faster speed than Adam. This is also verified in the application to network training based on the
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public dataset (i.e. the MNIST dataset).
 
 

Adam after

1200th iterations

M-AdaGrad after

1200th iterations

Figure 14.  Comparison between two different optimization methods on the public dataset.
 

As neural networks are extensively applied to finish practical industrial tasks, we next apply M-AdaGrad to a
specific industrial case. Crack detection is one of the important tasks in visual NDT, which is widely used to main-
tain large equipment in the industrial  process [30, 31].  In visual NDT, the cracks in the detection image cannot be
accurately characterized compared with the tangible object  identification such as face detection.  Deep learning is  a
good way to build a model to process the visual NDT images and has been widely used in recent years. In this case,
an efficient optimization algorithm is required to train the model more fast and accurate.

The magnetic optical image (MOI) is one of the visual NDTs. To identify the crack from the detected image
which is shown in Figure 15, the GAN method is used to segment and enhance the image. The SGD, Adam and pro-
posed M-AgaGrad are used to train the network, respectively, and the loss function is shown as follows:

min
N
λ∥N(I)− Ilab∥F +Ls (5)

λ ∥ ∗ ∥F ∥A∥F =
»∑

i, j A2
i, j N

I Ilab Ls

where  is a hyperparameter,  is the Frobenius norm whose definition is ,  is the genera-
tor network,  is the detected image,  is the target image, and  is the general loss function shown in (4).
 
 

Crack

Original image Gray image

Figure 15.  The detected MOI image and its gray image.
 

P = ∥N(I)− Ilab∥FIn  the  loss  function,  the  performance  function  is  used  to  stop  the  training  process,  which
shows the error between the reconstructive image and target image. The initialization parameters of the GAN are the
same for each optimization algorithm.

Remark 3:
The target image (ground truth) in the neural network is obtained according to the known features (shape and

size) of the crack. The target image is full  of experiential  knowledge and is only used as a part  of the training set.
When a trained neural network is used for actual detection, the shape of the defect is unknown.

Figures  16-18 show the  error  curves  of  different  optimization  algorithms  under  the  three  cases  mentioned  in
Section.  4.  In Figure  16,  compared  with  the  SGD,  the  error  curves  of  the  two  adaptive  learning  rate  algorithms
(Adam and M-AdaGrad) both decline as the iteration number increases. The error curve of Adam decreases rapidly at
the beginning, and converges to a larger local minimum point with large fluctuations. In contrast, the error curve of
the M-AdaGrad algorithm converges to a smaller error with a better local optimal point.
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Figure 16.  The error using different optimizations under the case of the first experiment.
 
  

0 500 1000 1500 2000 2500 3000

Iteration index

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

E
rr

o
r

Adam

M-AdaGrad

SGD

Figure 17.  The error using different optimizations under the case of the second experiment.
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Figure 18.  The error using different optimizations under the case of the third experiment three.
 

In Figure 17, the three error curves change towards different directions. The error curve of the SGD algorithm is
approximately maintained at the initial position, indicating that the initial value is near the saddle point and it is hard
for the SGD to make the optimization process jump out of the saddle point. The Adam algorithm can jump out of the
saddle point quickly, but the error gradually increases and finally converges to a position with greater errors. M-Ada-
Grad improves the disadvantage of Adam by jumping out of the saddle point quickly, iterating the optimization pro-
cess along the direction of the error reduction, and finally converging to a position where the error is smaller than the
initial value.

Figure 18 shows the error curves under the last case in Section. 4. The Adam and M-AdaGrad algorithms con-
verge around the same local minimum point, hence the error curves are almost the same. The main difference is that
the  M-AdaGrad  algorithm  is  faster  than  the  Adam  algorithm  in  reaching  the  direction  along  which  the  error
decreases.  In  addition,  the  convergence solution of  M-AdaGrad is  smaller  than that  of  Adam in  a  limited iteration
time.

M-AdaGrad  also  has  its  limitations. Figures  16-18 show  that  M-AdaGrad  can  quickly  reduce  the  objective
function/loss  function  to  a  relatively  small  value,  but  the  negative  impact  is  that  there  may  be  a  relatively  gentle
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decline rate that maintains for a period. This indicates that M-AdaGrad may have a decrease in model sensitivity with
the increase of  model  sensitivity.  Nevertheless,  the experiments  also show that  M-AdaGrad can still  converge to  a
lower value than Adam and SGD, if the iteration number increases. The guiding significance of this limitation is that
M-AdaGrad has a clear advantage, if we want to get a pre-trained result quickly in a short time. If we want to get a
more accurate training result, we need to increase the iteration number. It is worth noting that even if we increase the
iteration number,  the performance of  M-AdaGrad is  still  better  than Adam and SGD in terms of  the accuracy and
convergence speed.

Figure 19 is the reconstructive image which is generated by the GAN optimized using the proposed algorithm,
and the image is enhanced and segmented well for the crack identification. The experiment in this specific industrial
case shows that the proposed M-AdaGrad is a novel gradient descent optimization algorithm which can ensure good
training effects of neural networks, while improving the training efficiency.
  

Crack Crack

Detected image Reconstructive image

Figure 19.  The reconstructive image using GAN.
 

6. Conclusion

In this paper, a novel multi-dimension SGD-based adaptive learning rate optimization algorithm (M-AdaGrad)
has  been proposed,  which  fuses  the  gradients  of  all  parameters  and produces  weight  vectors  based  on  the softmax
function  to  adaptively  adjust  the  learning  rate.  The  simulation  experiments  under  three  different  initial  points  have
verified that the optimized trajectory of the proposed algorithm is more influenced by the large (other than small) gra-
dient components. This helps improve the training speed and guide the loss function to a smaller local optimal solu-
tion to improve the training effect of the network. In an industrial case (the magneto-optical NDT), it has been shown
that compared with the widely used SGD and Adam algorithms, M-AdaGrad has superior performances in jumping
out of the saddle point faster and converging to an optimal position with lower errors. To sum up, M-AdaGrad shows
great potentials for industrial applications. In the future, we will apply M-AdaGrad to more application scenarios to
fully explore its potential.
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